

This work was supported by the National Science Foundation under a RET Site Grant 0227479.

Science and Mechatronics Aided Research for Teachers 2003—2005

What is Mechatronics?

 Combines various fields of engineering to build "smart" machines

Need for New Instructional Tools

Modern Physics is abstract

 A plethora of demonstrations for other physics topics

Hands-on activities engage students

Project Goals

To address three skills that students learn

To make the topic interesting and engaging

To actively involve students

New York Standards

- STANDARD 1—Analysis, Inquiry, and Design.
 Mathematical Analysis
- STANDARD 4—The Physical Setting
- STANDARD 6—Interconnectedness: Common Themes
- STANDARD 7—Interdisciplinary Problem Solving

Theory

Bohr model

Absorption and emission spectra

Examples of energy levels proposed by Neils Bohr

Examples of emission and absorption spectra

Quantum Leap

Allows Students to:

- Move the "electron"
- Determine the energy emitted or absorbed
- Determine the related frequency of light
- See the emission or absorption "spectra"

Project Design

Sensors: photoresistors detect electron location

 Microcontroller: Interpret sensors' output and determines spectra and energy value

Actuators: LEDs and servo motor receive information from BS2 and display output

Parts and Components

BOE with BS2

Photoresistors

LEDs

Transistors

Fiber Optics

Servo Motor

Electron Wand

2 Layers of Plexiglass

Circuit Design

Program Logic

- A. Electron Location Detection
- B. Calculating Spectra Lines
- C. Energy Level Detection

Lesson Plans/Class Activities

The most stable condition of an electron is called the _____ state.

 Predict whether you would see absorption or emission spectra when an electron moves from n = 2 to n = 4.

Conclusions and Next Steps

- SMART project extraordinary training tool
- Empowering science teachers and students
- Grants to expand/develop/implement more programs
- Continuous feedback starting October 2004

Acknowledgments

- Polytechnic University
- National Science Foundation
- Professor Kapila
- Sang-Hoon Lee (Nathan)
- Anshuman Panda
- Arthur Nisonov