Mechatronics Outreach @ Poly

Dr. Vikram Kapila
Associate Professor of Mechanical Engineering &
Senior Faculty Fellow of The Othmer Institute for Interdisciplinary Studies
URL: http://mechatronics.poly.edu/

Polytechnic University
6 Metrotech Center
Brooklyn, NY 11201
A Quick History Lesson

- October 4 1957: Soviets launched the world’s first artificial satellite Sputnik I
- November 3, 1957: Soviets flaunt their power again by launching Sputnik II
Sputnik: Aftermath & U.S. Response

- Shock
- Existential worries
- Confidence crisis
- Hysterical fear of Soviet missiles
- Debate on science-ed

- Missile and recon-sat program
- NASA
- ARPA
- Federal education-aid
- Race to the Moon
The New Sputniks

• Global problems
 – Terrorism
 – Poverty → civic and social unrest
 – Public health, communicable disease (Avian flu)
 – Global warming → environment
 – Energy crisis
• Outsourcing of American service sector operations
• Increasing import of services and manufactured goods → growing trade deficits
• Perennial disinterest in STEM disciplines among students threatens the American leadership in scientific discovery and technical innovation (Innovation Economy/Knowledge Economy)
• Newspaper editorials, business/government advisory groups, and industry captains point to an urgent need to develop a strong and technologically trained workforce to ensure the American leadership in scientific discovery and technological innovation
National Education Summit on High Schools

Prepared remarks by Bill Gates, Co-founder

OP-ED COLUMNIST

Where Have You Gone, Joe DiMaggio?

By THOMAS L. FRIEDMAN

Published: May 13, 2005

The World Is Flat
A Brief History of the Twenty-First Century
Thomas L. Friedman

Is America Flunking Science?

Losin the Competitive Advantage:
The Challenge for Science and Technology
In the United States
February 2005

Assessing the Capacity of the
U.S. Engineering Research Enterprise
Preliminary Report for Public Review

The Second Installment of the ITEA/Gallup Poll and What It Reveals as to How Americans Think About Technology
A Report of the Second Survey Conducted by the
Gallup Organization for the International Technology Education Association
Today’s Students

• Lack interest in science and math due to:
 – Uninspiring lab experiments
 – Lack of connection to real life applications

• Attracted to new gadgets
 – iPod
 – Video games
 – Cell phones
Science and Mechatronics Aided Research for Teachers (SMART): A Research Experience for Teachers Program

- PI, over a dozen Poly students, and 38 NYC metropolitan area teachers since 2003 participated in this project.
- The teachers are being empowered to reinforce STEM training and educational experience of a diverse student body from New York metropolitan area.
- Teachers
 - conduct field trips for students to mechatronics lab;
 - raise funds to integrate mechatronics activities;
 - use mechatronics demos in their classes and labs;
 - develop new robotics curriculum;
 - initiate after school science and robotics research clubs;
 - disseminate their RET Site experience

4-week RET workshop

First 2-weeks: teachers learn about sensors, actuators, electro-mechanical components, and microcontrollers

Last 2-weeks: teachers develop mechatronics-aided science projects to experience the design, model, analyze, refine, prototype, and validate cycle arising in real-world mechatronics system development.

Teachers integrate project-based learning:

- Training: Anshuman presenting the automated conductivity experiment to teachers.
- Mentoring: Ilya helps SMART weather balloon team test their experiment.
- Research: Ed and Dvora work on a hands-on structured project.

Prototype Projects by Teachers

Amanda and Ram with Quantum Leap experiment

- Critical Angle of a Prism
- Robo submarine
- The Heat Seeking Electron Probe
- Earth's Seasonal Heat Absorption and Emanation, Magnetic Model
- Bioreactor Beetle
- The Cudgel Decider
- Vehicle of Revolution
- The Smart Rosensmee Tube
“Smart” Teachers

Mr. Richard Balsamel of Science High School, Newark, NJ, raised over US$4,000 from his school robotics for mechatronics kits and supplies and began a robotics research club. In addition, he is introducing mechatronics in his physics classes by integrating hands-on activities for students. Mr. David Deutsch of Manhattan Center for Science and Math High School, New York, NY, has raised over US$3,000 from his school and the Children’s Aid Society for mechatronics and robotics kits. He is teaching students in an after-school mechatronics club. Mr. Paul Siefman of Remsen Park High School, New York, NY, has raised over US$1,500 from his school’s alumni association for robotics kits. He has partnered with a colleague to train students in an after-school program. Mr. Robert Gantoff of Piscataway High School, Piscataway, NJ, reported on his SMART experience in his school district newspaper [12]. Mr. William Leacock of W.C. Stegman High School, Bellmundo, NY, received a US$1,500 stipend from his school district for mechatronics kits. Every other day, during a single class period of AP physics, he teaches a class known introducing his students to a hands-on activity planned for a double-class period the following day. Mr. Leacock wrote the following to us: “The students are enjoying it so much that, even though I allow them a break in between the double periods, almost all of them stay and work right through the break. It is wonderful to see them learn and enjoy themselves so much.” Mr. Michael McOwen of Midwood High School, Brooklyn, NY, used over US$3,000 funding from his school to obtain robotics kits and taught robotics to over 300 students in the fall of 2004 and Spring of 2004 through robotics and advanced robotics courses. Furthermore, with colleagues, he applied for and received a three-year US$300,000 grant from his school district under the Vocational and Technical Education Act (VTEA). The VTEA grant will enable him to develop and implement a four-year robotics curriculum in his school. Finally, Mr. Maritime McGarry of the Christa McAuliffe School, Brooklyn, NY, raised over US$1,500 for a project titled “Young Engineers are Made in Brooklyn Through Robotics and Mechatronics.” Through an online grant agency. From this grant, she obtained robotic robots and access to kits, and is using these in her high school classroom. She also wrote an article [13] on her SMART experience.
RAISE: A GK-12 Project

- Academic Partners: Polytechnic University, HS: George Westinghouse, Marta Valle, Paul Robeson, and Telecommunication Arts & Technology
- Industry Partners: Con Edison, Symbol Technologies, FIRST, Honeybee Robotics, American Museum of Natural History
- People: 3 Faculty (2 engineering and one education), 13 RAISE fellows, 9 teachers, and ≈400 high school students
- Courses affected: Living Environment, Active Physics, Marine Science, Regents Physics, Math A

- Objectives
 - Elevating academic achievement in STEM disciplines
 - Entice and prepare an underserved student population for higher education and productive career opportunities in STEM disciplines
 - Provide technology literacy to students and teachers
 - Reinforce science and math skills of students
 - Provide professional development (PD) opportunities for NYC teachers
 - Build lab infrastructure for sensor-based STEM curriculum and instruction

- Fellows develop sensor-based lab experiments and demos to illustrate scientific phenomena
- Lab modules are designed such that every member in a group has an active role in the experiment
- Experiments demonstrate connections between real-life applications and high school science
- Integration of real-time sensors alleviates the drudgery of manual data collection and allows students to focus on concepts to be learned
- Sensor-based labs and Vernier’s LoggerPro software allow instructors to convey the material through a wide range of learning styles:
 - Graphical user interface displays sensor measurements through which visual learners easily pick up the concept
 - Team-based tasks require group effort which ultimately benefits auditory/verbal learners
 - Hands-on lab activities aid the tactile/kinesthetic learners
Activities/Events

- Technical training of RAISE fellows: mechatronics training in partnership with RET, exposure to sensing and data acquisition tools of Vernier Inc., and lab development
- 4-day long education/pedagogy workshops for RAISE fellows by an education expert: lesson planning, questioning techniques, student behavior, cognition, learning theory and styles, classroom/group management skills, communication skills
- Technical workshop for RAISE teachers from partner schools: exposure to sensors and DAQ
- Election day (November 2, 2004) PD workshop attended by 20 teachers
- RAISE PD day workshop funded by NY Space Grant Consortium attended by 20 teachers
- 1st Annual RAISE Career Day: April 20, 2005, 100+ attendees: teachers, students, industry professionals
Youth in Engineering & Science: Summer Outreach

Four Legged Hexapod

Polyurethane Applicator

Metal Mine Surveyor

Audio Enabled Hexapod

Autonomous Gardener

RoboVac
Research: Control System Technology

• Theoretical
 – Linear systems: multirate control, robust control, stable stabilization, time-delay systems
 – Nonlinear systems: absolute stability theory, actuator saturation control, adaptive control

• Applied
 – Spacecraft formation control, spacecraft attitude control, cooperative control, UAV path planning

• Experimental
 – Mechatronics: web-enabled control and microcontroller-based low-cost data acquisition and control platform
 – Pervasive wireless sensor network for homeland security
 – Noninvasive device for border security to inspect automobile fuel tanks
 – User friendly, reliable biosensor for cholesterol monitoring
 – Bio-robotics for reproductive biology
Acknowledgments—I

• Funding: Over 2.6 million dollars since 1996
 – National Aeronautics and Space Administration—Goddard Space Flight Center, 2001—Current
 – AFRL—VACA, graduate student summer support 2000, 2001
 – Orbital Research Inc., Cleveland, OH (SBIR company), 2000—2004
 – NASA/NY Space Grant Consortium, 1998—Current

• Companies
 – CRS Robotics
 – Feedback Inc.
 – Mathworks Inc.
 – Parallax
 – Quanser
 – Rixan
 – Vernier Inc.
Acknowledgements—II

- Colleagues: Professors W.M. McShane (Former Dean), K. Levon (Associate Dean, Research), S. Nourbakhsh (Chair), S. Kumar (Former Chair), A. Tzes, M.S. de Queiroz, M. Iskander, and N. Kriftcher
- Graduated Students: Haizhou Pan (Ph.D.), Qiguo Yan (Ph.D.), Hong Wong (M.S.), Guang Yang (M.S.), Sang-Hoon Lee (M.S.), Dariusz Majewski (M.S.) and Yan-Fang Li (M.S.)
- Current Students: Hong Wong (Ph.D.), Sang-Hoon Lee (Ph.D.), Sookram Sobhan (M.S.), Saul Harari (M.S.)—DHS Graduate Fellow, and over a dozen GK—12 Fellows

<table>
<thead>
<tr>
<th>Saul Harari</th>
<th>Dong-Young Ko</th>
<th>Sang-Hoon Lee</th>
<th>Yan-Fang Li</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isaac Osei</td>
<td>Dr. Haizhou Pan</td>
<td>Luis Sampedro</td>
<td>Hong Wong</td>
</tr>
</tbody>
</table>