
One Webcam, Multiple Robots:
Controlling Experiments Through A Network

Dilruba Akther, Amanda Hersh, Rogaite Shafi

Abstract

 In this project, an individual’s control of other projects with a webcam is
explored. Currently, one webcam per robot is required to activate one robot via the
Internet. This project makes it possible to control multiple robots through the Internet
using only one webcam, which views the robots performing their tasks while located on a
platform. The webcam allows the individual to visualize the robots’ tasks while the
network allows the user to control the robots. PBASIC is used to send commands to the
platform telling it to rotate (0-360 degrees) and tilt (0-45 degrees). The webcam focuses
on the various projects surrounding it. Java is used to activate these projects through the
Internet. This communication of information is executed through an Ethernet board,
placed in the board of education alongside the webcam. Three robots were used to test
this project by having the webcam rotate to each one and having an Internet user activate
them. The robots were successfully able to execute the commands given through the
Internet and were viewed on the computer. This scheme is useful to businesses such as
Microsoft and everyday people. They would only need to purchase and program one
webcam, thereby saving time and money. It also opens up a new world of controlling
operations through a network. The elderly and/or disabled individuals would no longer
need to depend on others for help and would be able to retain their independence by using
this project to perform everyday tasks through the Internet.

Introduction

Robots, defined by Merriam-Webster Dictionary as devices that automatically perform
complicated often repetitive tasks, are utilized all over the world for a variety of tasks.
Robots are able to work more efficiently than humans and are more reliable at completing
a task error free. The automobile industry uses robots for painting and assembling cars.
Robots can be used in dangerous jobs such as the handling of hazardous and toxic
materials. Robots are capable of assisting doctors in surgery due to their precision and
ability to achieve a smaller incision. Additionally, robots can be sent into areas that
humans cannot investigate, like active volcanoes and far away planets.1

 Teleoperation, also known as tele-robotics, is the control of a robot via the Internet.
Human-robot interaction via the Internet is becoming more and more popular in modern
society. One type of a robotic assembly planning system is called WebROBOT which

1 Charles C. Weems. Computer Science. 2004.
<http://encarta.msn.com/enyclopedia_761563863_2/Computer_Science.html>.

specifies assembly jobs as well as controls a robot through the Internet.2 A healing robot
for the elderly has been constructed which is able to send and receive information
through the Internet as it has been programmed to recognize twenty commonly used
words. 3 Another example of teleoperation is seen in a robot built capable of receiving
orders from a building management system through a LAN (local area network). This
robot can be used as a surveillance robot in buildings in order to minimize the amount of
people working to manage the surveillance.4 Robots are also capable of asking a person
questions if it needed help. This allows the robot to work autonomously but if it did
come across any problems, it would inform the person over the Internet and the
individual would be able to assist the robot. 5 Teleportation can also be used when
doctors are performing surgery, with computer-based robots assisting in surgery while
being controlled by a physician. These types of robots have proven to be accurate and
precise. 6 Teleoperation has many unique applications. It has the potential to activate of a
series of robots using a board of education, or a circuit board. The board of education
consists of a breadboard for the circuitry and a basic stamp or micro controller and is
connected to the Internet. The board of education is able to complete a programmed task,
such as activating robots to perform tasks that are too dangerous for humans to perform;
exploring active volcanoes or searching for explosives in either the same location or
multiple locations. It can also activate different robots to perform different tasks in
emergency situation. For example, it might trigger one robot to remove debris and rubble
while setting in motion another robot to send a signal that a person has been located. A
series of robots can also be activated to locate people trapped during disasters, activating
multiple robots to search for multiple people.

 Teleoperation is also able to aid a person who is not mobile or who does not
have full manual dexterity. Such an individual may not be capable of standing up to turn
the lights on and off or may not be capable of maneuvering their fingers to shift the light
switch. They will be able to click on the task on their computer and activate the
electricity. Similarly, if this person necessitated a change in room temperature and was
not physically capable of getting to the thermostat they would be able to activate a
change in the temperature of their location through the computer. Currently, it is possible
for a single webcam to view a single robot which is being activated via the Internet. This
project was designed to allow a single webcam to rotate and face a series of robots when
activated by a person on their personal computer and thereby set in motion each robot,
one at a time, to perform its specified task. The webcam is positioned on a platform in
the center of the room with various robots in a circle around the webcam. An individual
is able to be in a different room on the pre-designed website and select which robot they

2 V.B Sunil and S. S. Pande. WebROBOT: Internet based robotic assembly planning system. Computers in
Industry. 54:2 (2004) 191-207
3 Takashi Oyabu, Akira Okada et al. Proposition of a survey device with odor sensors for an elderly person.
Sensors and Actuators B : Chemical. 96: 1-2 (2003) 239-244
4 Albert T.P. Soa, W.L. Chan. LAN-based building maintenance and surveillance robot. Automation in
Construction. 11:6 (2002) 619-627
5 Terrance Fonga, Charles Thorpe et al. Robot Asker of questions. Robotics and Autonomous Systems.
42:3-4 (2003) 235-243
6 P. Vendruscolo, S. Martelli. Interfaces for computer and robot assisted surgical systems. Information and
Software Technology. 43:2 (2001) 87-96

wish to see perform its specified task. A DC motor, which is programmed in PBASIC, is
then activated and rotates to the programmed angle, either clockwise or
counterclockwise. The DC motor, being controlled by a micro dual serial motor
controller, is connected to the platform and rotates the platform so that the webcam can
view the specified robot. A potentiometer, which measures electromotive force, is used
to calculate the angle that the DC motor has rotated. Therefore when the individual
selects on their computer which robot they want to observe perform its task, the single
webcam rotates to the designated robot and that robot is activated to perform its task.

Methodology

For this project, a Micro Serial Motor Controller was used to control the two DC motors
that were used in this project at the same time. The motor controller was bought from
Pololu. Also, the two DC motors and two potentiometers, which are used to adjust angles,
were provided by the YES Center along with the jumper wires, Basic Stamp 2, and
Ethernet board, which were used for the circuitry. In addition, the three platforms, the
legs of the platform, the shaft, the webcam, and the hinges were provided by the YES
center.

This experiment mainly consisted the use of the webcam, along with
programming languages to instruct the webcam using PBASIC and Java. The first step is
designing the platform for the webcam. The webcam is needed to rotate in order to focus
on various experiments at once. So, a platform is added so that it can rotate and focus on
the project at the same time.
 The mobility of the platform is done by using hinges connecting two platforms
and using a DC motor and potentiometer to move the webcam, which has been mounted
on top of the platforms up or down to focus on an project. The DC motor also allowed the
platform to move up or down and the potentiometer allows the platform to move at a
certain angle. The two platforms were then connected to a shaft, which is in turn is
connected to another platforms. This platform is mounted on four legs or stands, with the
DC motor in the bottom, center of the platform, connecting to the shaft, This also
contains a gear that was is joined with another gear, which is attached to another
potentiometer. The DC motor enables the gears to turn while the potentiometer rotates the
shaft at a certain angle.

The next step was connecting the basic stamp to the platform in order for it to
rotate and programming the projects to perform their function when the webcam focuses
on them using PBASIC and also placing it on the network using an Ethernet board. The
last step taken was to program Java in order for a person to access these projects and
control it through the net from anywhere in the world.

Schematic

Programming Code

'{$STAMP BS2p}
'{$PBASIC 2.5}
'CONNECTIONS FROM THE BASIC STAMP TO THE EMBEDDED ETHERNET
BOARD
' p0-p3 Crystal address bus a0-a3
' p4 /RD
' p5 /WR
' p6 AEN
' p7 N/C

' p8-p15 Crystal data bus d0-d7
' A0-A2 DAC serial connection bus
' A14-A16 ADC serial connection bus
' A7 Power amplifier pin
'
' See http://www.vermontlife.com/gary/crystal.html for information on the
Embedded Ethernet Board
' See http://www.crystal/pubs/ftp/pubs/8900.pdf for information on the
CS8900A

'
' Crystal CS8900 PacketPage equates
'
portRxTxData CON $00 'Receive/Transmit data (port 0)
portTxCmd CON $04 'Transmit Commnad
portTxLength CON $06 'Transmit Length
portPtr CON $0a 'PacketPage pointer
portData CON $0c 'PacketPage data (port 0)

'
' CS8900 PacketPage Offsets
'

ppProdID CON $0002 'Product ID Number
ppIOBase CON $0020 'I/O Base Address
ppIntNum CON $0022 'Interrupt number (0,1,2, or 3)
ppMemBase CON $002C 'Memory Base address register (20 bit)
ppRxCfg CON $0102 'Receiver Configuration
ppRxCtl CON $0104 'Receiver Control
ppTxCfg CON $0106 'Transmit Configuration
ppBufCfg CON $010A 'Buffer Configuration
ppLineCtl CON $0112 'Line Control
ppSelfCtl CON $0114 'Self Control
ppBusCtl CON $0116 'Bus Control

ppISQ CON $0120 'Interrupt status queue
ppRxEvt CON $0124 'Receiver Event
ppTxEvt CON $0128 'Transmitter Event
ppBufEvt CON $012C 'Buffer Event
ppRxMiss CON $0130 'Receiver Miss Counter
ppTxCol CON $0132 'Transmit Collision Counter
ppLineSt CON $0134 'Line Status
ppSelfSt CON $0136 'Self Status
ppBusSt CON $0138 'Bus Status
ppTxCmd CON $0144 'Transmit Command Request
ppTxLength CON $0146 'Transmit Length

ppIndAddr CON $0158 'Individual Address (IA)
ppRxStat CON $0400 'Receive Status
ppRxLength CON $0402 'Receive Length
ppRxFrame CON $0404 'Receive Frame Location
ppTxFrame CON $0A00 'Transmit Frame Location
'
' Register Numbers
'
REG_NUM_MASK CON $003F
REG_NUM_RX_EVENT CON $0004
REG_NUM_TX_EVENT CON $0008
REG_NUM_BUF_EVENT CON $000C
REG_NUM_RX_MISS CON $0010
REG_NUM_TX_COL CON $0012
'
' Self Control Register
'
SELF_CTL_RESET CON $0040
SELF_CTL_HC1E CON $2000
SELF_CTL_HCB1 CON $8000
'
' Self Status Register
'
SELF_ST_INIT_DONE CON $0080
SELF_ST_SI_BUSY CON $0100
SELF_ST_EEP_PRES CON $0200
SELF_ST_EEP_OK CON $0400
SELF_ST_EL_PRES CON $0800
'
' Bus Control Register
'
BUS_CTL_USE_SA CON $0200
BUS_CTL_MEM_MODE CON $0400
BUS_CTL_IOCHRDY CON $1000
BUS_CTL_INT_ENBL CON $8000
'
' Bus Status Register
'
BUS_ST_TX_BID_ERR CON $0080
BUS_ST_RDY4TXNOW CON $0100
'
' Line Control Register
'
LINE_CTL_RX_ON CON $0040
LINE_CTL_TX_ON CON $0080
LINE_CTL_AUI_ONLY CON $0100

LINE_CTL_10BASET CON $0000
'
' Test Control Register
'

'
' Receiver Configuration Register
'
RX_CFG_SKIP CON $0040
RX_CFG_RX_OK_IE CON $0100
RX_CFG_CRC_ERR_IE CON $1000
RX_CFG_RUNT_IE CON $2000
RX_CFG_X_DATA_IE CON $4000
'
' Receiver Event Register
'
RX_EVENT_RX_OK CON $0100
RX_EVENT_IND_ADDR CON $0400
RX_EVENT_BCAST CON $0800
RX_EVENT_CRC_ERR CON $1000
RX_EVENT_RUNT CON $2000
RX_EVENT_X_DATA CON $4000
'
'Receiver Control Register
'
RX_CTL_PROMISCUOUS CON $0080
RX_CTL_RX_OK_A CON $0100
RX_CTL_MCAST_A CON $0200
RX_CTL_IND_A CON $0400
RX_CTL_BCAST_A CON $0800
RX_CTL_CRC_ERR_A CON $1000
RX_CTL_RUNT_A CON $2000
RX_CTL_X_DATA_A CON $4000
'
'Transmit Configuration Register
'
TX_CFG_LOSS_CRS_IE CON $0040
TX_CFG_SQE_ERR_IE CON $0080
TX_CFG_TX_OK_IE CON $0100
TX_CFG_OUT_WIN_IE CON $0200
TX_CFG_JABBER_IE CON $0400
TX_CFG_16_COLL_IE CON $8000
TX_CFG_ALL_IE CON $8FC0
'
'Transmit Event Register
'

TX_EVENT_TX_OK CON $0100
TX_EVENT_OUT_WIN CON $0200
TX_EVENT_JABBER CON $0400
TX_EVENT_16_COLL CON $1000
'
' Transmit Command Register
'
TX_CMD_START_5 CON $0000
TX_CMD_START_381 CON $0080
TX_CMD_START_1021 CON $0040
TX_CMD_START_ALL CON $00C0
TX_CMD_FORCE CON $0100
TX_CMD_ONE_COLL CON $0200
TX_CMD_NO_CRC CON $1000
TX_CMD_NO_PAD CON $2000
'
'Buffer Configuration Register
'
BUF_CFG_SW_INT CON $0040
BUF_CFG_RDY4TX_IE CON $0100
BUF_CFG_TX_UNDR_IE CON $0200

'
' The IP address and MAC address can be changed to whatever is appropriate
'
IP1 CON 128 'first octet of IP address
IP2 CON 238 'second octet of IP address
IP3 CON 129 'third octet of IP address
IP4 CON 91 'fourth octet of IP address

MAC1 CON $00 '\
MAC2 CON $00 ' \
MAC3 CON $00 ' \
MAC4 CON $12 ' / 48 bit IEEE OUI
(Organizationally Unique Identifier)
MAC5 CON $34 ' /
MAC6 CON $55 '/

rd CON 4 ' Pin 4 -> EEB read command
wr CON 5 ' Pin 5 -> EEB write command
aen CON 6 ' Pin 6 -> EEB
power_pin CON 7 ' Pin 7 -> Power on/off

addrBusOut VAR OUTA ' Address Bus
dataBusIn VAR INH ' Data IN Bus

dataBusOut VAR OUTH ' Data OUT Bus
addr VAR Nib ' Address Nib
'counter VAR Word ' Counter for main loop
i VAR Nib ' Counter in for loop
k VAR Nib ' Counter in for loop
value VAR Byte
packetType VAR Word

' ---- { Temporary storage word } ----
dataW VAR Word
dataH VAR dataW.HIGHBYTE
dataL VAR dataW.LOWBYTE

offsetW VAR Word
offsetH VAR offsetW.HIGHBYTE
offsetL VAR offsetW.LOWBYTE
choose VAR Bit

' ---- { srcMAC 1--3 locations } ----
srcMAC1_H CON 0
srcMAC1_L CON 1
srcMAC2_H CON 2
srcMAC2_L CON 3
srcMAC3_H CON 4
srcMAC3_L CON 5

' ---- { Packet Size location } ----
length_H CON 6
length_L CON 7

' ---- { Control Gain memory locations } ----
'P_gain CON 8
'D_gain CON 9

' ---- { Data Buff locations } ----
data_buffer CON 10

' ---- { srcIP Variables [Necessary for checksum computation] } ----
srcIP1 VAR Word
srcIP1H VAR srcIP1.HIGHBYTE
srcIP1L VAR srcIP1.LOWBYTE

srcIP2 VAR Word
srcIP2H VAR srcIP2.HIGHBYTE
srcIP2L VAR srcIP2.LOWBYTE

'---- { Analog to digital and digital to analog variables and constants }

ADres VAR Word 'A-to-D result: one byte.
ADresH VAR ADres.HIGHBYTE
ADresL VAR ADres.LOWBYTE
'ADres1 VAR Word 'A-to-D result: one byte.

adcbits VAR Byte
angle VAR Byte
previous_position VAR Byte
previous_position = 1

ADresNib0 VAR ADresL.LOWNIB
ADresNib1 VAR ADresL.HIGHNIB
ADresNib2 VAR ADresH.LOWNIB
ADresNib3 VAR ADresH.HIGHNIB

ADconfig CON %10000001 ' Configuration for
Potentiometer
ADconfig2 CON %10010001 ' Configuration for Tachometer

AD_CS CON 14 'Chip select is pin 14.
AD_Data CON 13 'ADC data output is pin 13.
AD_CLK CON 15 'Clock is pin 15.
AD_Dout CON 12 'ADC data input is pin 12

DA_CS CON 2 'Chip select is pin 2.
DA_CLK CON 0 'Clock is pin 0.
DA_DATAOUT CON 1 'input to DAC is pin 1.

theta VAR Word
temp VAR Word
CCPP VAR Word

number VAR Byte
base CON 10

'---- {Start of the Program} ----
start:
 HIGH rd
 HIGH wr
 HIGH aen
 DIRH = 0 ' data bus initially input
 DIRA = %1111 ' address bus is always output

 GOSUB verChip
 GOSUB resetChip
 GOSUB initChip
 'DEBUG "Init",CR
 'GOSUB reset_counter

read_loop:

 MAINIO
 offsetW = ppRxEvt
 GOSUB readPP 'read the receiver event
 'CCPP = CCPP + 1

 'IF (CCPP >= 3000) THEN turn_off 'This sequence makes sure that
after 1000 times of read_loop, we turn of power amp.
 IF dataH.BIT0 = 0 THEN read_loop

 'it's important to read the following data high byte first
 addr = portRxTxData+1
 GOSUB ioRead 'read and discard status
 addr = portRxTxData
 GOSUB ioRead
 addr = portRxTxData+1 'read and save length in lengthW
 GOSUB ioRead
 'lengthH = value
 PUT length_H, value

 addr = portRxTxData
 GOSUB ioRead
 'lengthL = value
 PUT length_L, value

 GOSUB recvWord

 'srcMAC1W = dataW
 PUT srcMAC1_H, dataW.HIGHBYTE ' put in EEPROM
 PUT srcMAC1_L, dataW.LOWBYTE ' put in EEPROM

 GOSUB recvWord
 'srcMAC2W = dataW
 PUT srcMAC2_H, dataW.HIGHBYTE ' put in EEPROM
 PUT srcMAC2_L, dataW.LOWBYTE ' put in EEPROM

 GOSUB recvWord
 'srcMAC3W = dataW ' read dest MAC
 PUT srcMAC3_H, dataW.HIGHBYTE ' put in EEPROM
 PUT srcMAC3_L, dataW.LOWBYTE ' put in EEPROM

 GOSUB recvWord
 'srcMAC1W = dataW
 PUT srcMAC1_H, dataW.HIGHBYTE ' put in EEPROM
 PUT srcMAC1_L, dataW.LOWBYTE ' put in EEPROM

 GOSUB recvWord
 'srcMAC2W = dataW
 PUT srcMAC2_H, dataW.HIGHBYTE ' put in EEPROM
 PUT srcMAC2_L, dataW.LOWBYTE ' put in EEPROM

 GOSUB recvWord
 'srcMAC3W = dataW ' read and save source MAC
 PUT srcMAC3_H, dataW.HIGHBYTE ' put in EEPROM
 PUT srcMAC3_L, dataW.LOWBYTE ' put in EEPROM

 GOSUB recvWord 'read the packet type
 packetType = dataW

 IF packetType <> $0806 THEN otherType

' This is optional code, I put this in to show how to transmit data. The
following responds TO the ARP (Address
' Resolution Protocol) request. Someone want to convert an IP address to a
MAC destination. We'll check to see
' if the request is valid and if it's for our IP address (192.168.1.2). If
so, we send the ARP response along
' with our hardware (MAC) address stored in the constants MAC1 - MAC6

 GOSUB recvWord ' next is ar_hwtype (hardware type)
 IF dataW <> 1 THEN discardAndContinue

 GOSUB recvWord ' next is ar_prtype (protocol type)

 IF dataW <> $0800 THEN discardAndContinue

 GOSUB recvWord ' next is ar_hwlen (hardware address) AND ar_prlen
(protocol address length)
 IF dataH <> 6 THEN discardAndContinue
 IF dataL <> 4 THEN discardAndContinue

 GOSUB recvWord ' next is ar_op (ARP operation 1=request, 2=reply)
 IF dataW <> 1 THEN discardAndContinue

 GOSUB recvWord ' next is senders hardware address (ar_sha)
 GOSUB recvWord
 GOSUB recvWord

 GOSUB recvWord ' next is senders IP address (ar_spa)
 srcIP1 = dataW
 GOSUB recvWord
 srcIP2 = dataW

 'following this is ar_tha and ar_tpa (target mac and IP). We don't
care about this since we already know who we are
 GOSUB dropFrame ' drop the rest

 GOSUB startTx ' start the transmission
 dataW = 42 ' length of arp is always 42, the board will pad the
runt out
 GOSUB setTxLen

waitTx:
 offsetW = ppBusSt ' get bus status
 GOSUB readPP
 IF dataH.BIT0 = 0 THEN waitTx ' is BUS_ST_RDY4TXNOW (ready for
transmit)

 '1st, send the dest MAC address taken from the src in the arp request
 'dataW = srcMAC1W
 GET srcMAC1_H, dataW.HIGHBYTE
 GET srcMAC1_L, dataW.LOWBYTE

 GOSUB sendWord
 'dataW = srcMAC2W
 GET srcMAC2_H, dataW.HIGHBYTE
 GET srcMAC2_L, dataW.LOWBYTE

 GOSUB sendWord
 'dataW = srcMAC3W

 GET srcMAC3_H, dataW.HIGHBYTE
 GET srcMAC3_L, dataW.LOWBYTE

 GOSUB sendWord

 dataW = MAC1<<8|MAC2 'now, send our MAC address
 GOSUB sendWord
 dataW = MAC3<<8|MAC4
 GOSUB sendWord
 dataW = MAC5<<8|MAC6
 GOSUB sendWord

 dataW = $0806 'packet type = 0806, ARP
 GOSUB sendWord

 dataW = 1 'ar_hwtype = 1
 GOSUB sendWord

 dataW = $0800 'ar_prtype = $0800
 GOSUB sendWord

 dataW = $0604 'ar_hwlen = 6, ar_prlen = 4
 GOSUB sendWord

 dataW = 2 'ar_op = 2 (response)
 GOSUB sendWord

 dataW = MAC1<<8|MAC2 'ar_sha
 GOSUB sendWord
 dataW = MAC3<<8|MAC4
 GOSUB sendWord
 dataW = MAC5<<8|MAC6
 GOSUB sendWord

 dataW = IP1<<8|IP2 'ar_spa
 GOSUB sendWord
 dataW = IP3<<8|IP4
 GOSUB sendWord

 'dataW = srcMAC1W 'ar_tha
 GET srcMAC1_H, dataW.HIGHBYTE
 GET srcMAC1_L, dataW.LOWBYTE

 GOSUB sendWord
 'dataW = srcMAC2W
 GET srcMAC2_H, dataW.HIGHBYTE

 GET srcMAC2_L, dataW.LOWBYTE

 GOSUB sendWord
 'dataW = srcMAC3W
 GET srcMAC3_H, dataW.HIGHBYTE
 GET srcMAC3_L, dataW.LOWBYTE

 GOSUB sendWord

 dataW = srcIP1 'ar_tpa

 GOSUB sendWord
 dataW = srcIP2

 GOSUB sendWord

 'DEBUG "ARP sent",CR
 GOTO read_loop

otherType:
 IF packetType <> $0800 THEN discardAndContinue 'filter only IP
packets

'---- {Decompose the IP header} ----
 GOSUB recvWord 'get ip_verlen and ip_tos
 'DEBUG "IP Ver ", DEC dataH.HIGHNIB, ", HDR Length=",DEC
dataH.LOWNIB*4,", TOS=$",HEX2 dataL,CR

 GOSUB recvWord 'get packet length
 'debug "Packet Length=", dec dataW,cr

 GOSUB recvWord 'ip_id
 'debug "Datagram ID=$", hex4 dataW,cr

 GOSUB recvWord 'ip_fragoff
 'debug "Frag Offset=",dec dataW,cr

 GOSUB recvWord 'ip_ttl & ip_proto
 'debug "TTL=",dec dataH,cr

 IF dataL <> 17 THEN notUDP
 'debug "Protocol=UDP",CR
 GOTO nextHdrField

notUDP:
 GOTO discardAndContinue

nextHdrField:
 GOSUB recvWord 'ip_cksum
 'debug "Checksum=$",hex4 dataW,cr

 'debug "Src IP Address="
 GOSUB dumpIP2

 'debug "Dest IP Address="
 GOSUB dumpIP

 'lengthW = lengthW - 34 / 2 'subtract the 2 MAC (3 words each) and the
protocol type (2 bytes) AND the 20 Byte header

 ' dump out the packet data.
 'DEBUG "Packet Data:",CR

 GOSUB recvWord
 'DEBUG ? dataW
 IF dataW = $03E8 THEN next_check
 GOTO read_loop

next_check:
 FOR i = 0 TO 3 'WE MODIFIED THIS to be 0 to 4 instead of 0 to
lengthW
 GOSUB recvWord

checkend:
 NEXT
 IF dataW = $6F6F THEN move_motor '138 is the key, user has to send
this in first DATA Byte

 GOTO read_loop

move_motor:
 'AUXIO
' HIGH power_pin
' PAUSE 100
 'MAINIO

 GOSUB recvWord
 packetType.LOWBYTE = dataL
 packetType.HIGHBYTE = dataH

 'IF packetType = $FFFF THEN reset_counter
 'theta = packetType
 GOSUB recvWord
 'DEBUG CR, DEC dataH, "--", DEC dataL, CR ' This recvWord gets Pgain
 'PUT P_gain, dataH ' put in EEPROM
 angle = dataH
 'PUT D_gain, dataL ' put in EEPROM

 '---- { PD CONTROL ALGORITHM } ----
 AUXIO

initial:

GOSUB stop_moving

'DEBUG ? angle

'HIGH 0
'LOW 0
'LOW 1
'PULSOUT 1, 210
'SHIFTIN 2, 1, MSBPOST, [adcbits\8]

prepare:
GOSUB stop_moving
'DEBUG CLS
'DEBUG "select position from 1-3" ,CR
'DEBUGIN DEC angle

main:

GOSUB check_top_ADC
DEBUG ? adcbits

number = 1

GOSUB moving_down

 '---- { END OF PD CONTROL ALGORITHM } ----

 MAINIO
 GOTO sending_packet

'----{ SENDING OF PACKET }----
sending_packet:
 'counter = counter + 1
 CCPP = 1

'Old way of computing packetType
' packetType = $8679 + srcIP1 + srcIP2 + 3 'packetType variable is
being recycled again FOR holding the checksum
' packetType = $FFFF - packetType

'New way:
 'Calculate checksum
 packetType = $FFFF - $8679 - srcIP1 - srcIP2 - 3 'packetType variable
is being recycled again FOR holding the checksum

 GOSUB startTx ' start the transmission
 dataW = $0030 ' Length of entire transmission including link
layer DATA (bytes)
 GOSUB setTxLen

waitTy:
 offsetW = ppBusSt ' get bus status
 GOSUB readPP
 IF dataH.BIT0 = 0 THEN waitTy ' is BUS_ST_RDY4TXNOW (ready for
transmit)

 '1st, send the dest MAC address taken from the src in the arp request
 'dataW = srcMAC1W
 GET srcMAC1_H, dataW.HIGHBYTE
 GET srcMAC1_L, dataW.LOWBYTE

 GOSUB sendWord
 'dataW = srcMAC2W
 GET srcMAC2_H, dataW.HIGHBYTE
 GET srcMAC2_L, dataW.LOWBYTE

 GOSUB sendWord
 'dataW = srcMAC3W
 GET srcMAC3_H, dataW.HIGHBYTE

 GET srcMAC3_L, dataW.LOWBYTE

 GOSUB sendWord

 dataW = MAC1<<8|MAC2 'now, send our MAC address
 GOSUB sendWord
 dataW = MAC3<<8|MAC4
 GOSUB sendWord
 dataW = MAC5<<8|MAC6
 GOSUB sendWord

 dataW = $0800 'packet type = 0800, IP
 GOSUB sendWord

 '********* end of ether

 dataW = $4500 '** IP Version/Header Length (32bit words)
 GOSUB sendWord

 dataW = $0022 '*** TOTAL Packet Length (bytes) ***

 GOSUB sendWord

 dataW = $0000 '*** ID (if fragment) ***
 GOSUB sendWord

 dataW = $4000 '***** FLAGS/OFFSET *****
 GOSUB sendWord

 dataW = $FF11 '***** TTL/PROTOCOL *****
 GOSUB sendWord

 dataW = packetType '******* IP CHKSUM ******* 'MUST BE CHANGED for
each different packet OR will be droped
 GOSUB sendWord

 dataW = $80EE '******* SRC IP 1 ********
 GOSUB sendWord

 dataW = $8158 '******* SRC IP 2 ********
 GOSUB sendWord

 dataW = srcIP1 '******* DEST IP 1 *******
 GOSUB sendWord

 dataW = srcIP2 '******* DEST IP 2 *******
 GOSUB sendWord

 dataW = $03E8 '******** SRC PORT *******
 GOSUB sendWord

 dataW = $03E8 '******* DEST PORT *******
 GOSUB sendWord

 dataW = $000E '******** LENGTH *********
 GOSUB sendWord

 dataW = $0000 '***** UDP CHECKSUM ******
 GOSUB sendWord

 'dataH = ADres 'CHANGED FROM Error
 'dataL = ADres '********* DATA (position reading) **********

 FOR k = 0 TO 1
 GET data_buffer+(2*k), dataW.HIGHBYTE
 GET data_buffer+(2*k)+1, dataW.LOWBYTE
 GOSUB sendWord
 NEXT

 'dataW = counter '********* DATA (sample number) **********
 dataW = 1 '********* DATA (sample number) **********
 GOSUB sendWord

'------------- END of SENDING OF PACKET -----------------

 GOTO read_loop

dumpIP:
 GOSUB recvWord
 'DEBUG DEC dataH,".",DEC dataL,"."

 GOSUB recvWord
 'DEBUG DEC dataH,".",DEC dataL,CR
 RETURN

dumpIP2:
 GOSUB recvWord

 srcIP1H = dataH

 srcIP1L = dataL
 'DEBUG DEC dataH,".",DEC dataL,"."

 GOSUB recvWord
 srcIP2H = dataH
 srcIP2L = dataL
 'DEBUG DEC dataH,".",DEC dataL,CR

 RETURN

discardAndContinue:

 GOSUB dropFrame
 GOTO read_loop

recvWord:
 addr = portRxTxData
 GOSUB ioRead
 dataH = value
 addr = portRxTxData+1
 GOSUB ioRead
 dataL = value
 RETURN

' Sends the transmit start command to the board
startTx:
 dataW = TX_CMD_START_ALL
 addr = portTxCmd
 value = dataL
 GOSUB ioWrite
 addr = portTxCmd+1
 value = dataH
 GOSUB ioWrite
 RETURN

' Sends the length of the transmission contained in dataW
setTxLen: value = dataL
 addr = portTxLength
 GOSUB ioWrite
 value = dataH
 addr = portTxLength+1
 GOSUB ioWrite
 RETURN

' Transmits the word at dataW

sendWord:
 addr = portRxTxData
 value = dataH
 GOSUB ioWrite
 addr = portRxTxData+1
 value = dataL
 GOSUB ioWrite
 RETURN

dropFrame:
 offsetW = ppRxCtl
 GOSUB readPP
 dataW = dataW | RX_CFG_SKIP
 GOSUB writePP
 RETURN

' ---- {Initializes the CS8900} ----
initChip:
 offsetW = ppLineCtl
 dataW = LINE_CTL_10BASET
 GOSUB writePP ' set to 10BaseT
 offsetW = $0118 'ppTestCtl con $0118 'Test Control
 dataW = $4000
 GOSUB writePP ' set to full duplex
 'no offsetW = ppRxCfg
 'irqs dataW = RX_CFG_RX_OK_IE
 ' gosub writePP
 offsetW = ppRxCtl
 dataW = RX_CTL_RX_OK_A|RX_CTL_PROMISCUOUS
 GOSUB writePP
 'no offsetW = ppTxCfg
 'irqs dataW = TX_CFG_ALL_IE
 ' gosub writePP
'
' Important: The IA needs to be byte revered IA=aa:bb:cc:dd:ee:ff
'
 offsetW = ppIndAddr
 dataW = MAC2<<8|MAC1
 GOSUB writePP
 offsetW = ppIndAddr+2
 dataW = MAC4<<8|MAC3
 GOSUB writePP
 offsetW = ppIndAddr+4
 dataW = MAC6<<8|MAC5
 GOSUB writePP

 ' offsetW = ppBusCtl
 'no gosub readPP
 'irqs dataH.bit7 = 1 ' enable irq
 ' gosub writePP
 offsetW = ppLineCtl ' get line control
 GOSUB readPP
 dataL.BIT6 = 1 ' SerRxOn
 dataL.BIT7 = 1 ' SerTxOn
 GOSUB writePP
 RETURN

' ---- {Resets the CS8900 and checks to insure initialization done bit is
set} ----
resetChip:
 offsetW = ppSelfCtl
 dataW = SELF_CTL_RESET
 GOSUB writePP ' issue a reset to the chip

resetWait:
 PAUSE 1 ' wait 1 millisecond
 offsetW = ppSelfCtl 'get the Self Control status
 GOSUB readPP
 'debug "ppSelfCtl=",HEX4 dataW,cr
 IF dataL.BIT6 = 1 THEN resetWait
 ' bit 6 cleared, chip is reset
 offsetW = ppSelfSt 'get self status
 GOSUB readPP
 'debug "ppSelfSt=",HEX4 dataW,cr
 IF dataL.BIT7 = 0 THEN resetWait ' INITD means initialization is done
when set
 'debug "CS8900 RESET",cr
 RETURN

verChip: ' first, get the signature at portPtr which should
be $3x0x
 addr = portPtr

 GOSUB ioRead
 dataL = value
 addr = portPtr+1
 GOSUB ioRead
 dataH = value
 IF dataH.HIGHNIB = 3 THEN validChip

 END

validChip:
 'DEBUG "Signature=", HEX4 dataW,CR
 offsetW = $0000 'ppEISA con $0000 'EISA
Registration number of CS8900
 GOSUB readPP
 'DEBUG "EISA=", HEX4 dataW,CR
 offsetW = ppProdID
 GOSUB readPP
 'DEBUG "ProdID=", HEX4 dataW,CR
 RETURN

' ---- {Writes the value at dataW to the packet page register at offsetW}

writePP:
 GOSUB setPPPointer
 addr = portData
 value = dataL
 GOSUB ioWrite
 addr = portData+1
 value = dataH
 GOSUB ioWrite
 RETURN

' ---- {Read packet page data at offsetW and put result in dataW} ----
readPP:
 GOSUB setPPPointer
 addr = portData
 GOSUB ioRead
 dataL = value
 addr = portData+1
 GOSUB ioRead
 dataH = value
 RETURN

' ---- {Sets the packetpage address} ----
setPPPointer:
 value = offsetL
 addr = portPtr
 GOSUB ioWrite
 value = offsetH
 addr = portPtr+1
 GOSUB ioWrite
 RETURN

ioRead:
 DIRH = 0 ' make data bus input
 addrBusOut = addr
 LOW aen
 LOW rd
 value = dataBusIn
 HIGH rd
 HIGH aen
 RETURN

ioWrite:
 DIRH = %11111111 ' make data bus output
 dataBusOut = value
 addrBusOut = addr
 LOW aen
 LOW wr
 HIGH wr
 HIGH aen
 RETURN

'reset_counter:
 'counter = 1
' CCPP = 1
' RETURN

'-------- New Subroutines ---------

initialize_motor:
HIGH 4
LOW 5
HIGH 5
PAUSE 10
RETURN

moving_down:
GOSUB check_top_ADC
IF (number -10) <= adcbits AND (number +10) >= adcbits THEN RETURN

GOSUB initialize_motor
SEROUT 4,240,[$80,0,3,44]
PAUSE 20

GOTO moving_down

moving_upward:
GOSUB check_top_ADC

IF (number -10) <= adcbits AND (number +10) >= adcbits THEN RETURN

GOSUB initialize_motor
SEROUT 4,240,[$80,0,2,60]
PAUSE 20

GOTO moving_upward

moving_clockwise:
GOSUB check_bot_ADC

IF (theta -2) <= adcbits AND (theta +2) >= adcbits THEN RETURN

GOSUB initialize_motor
SEROUT 4,240,[$80,0,0,66] 'shaft rotates clockwise
PAUSE 20

GOTO moving_clockwise

moving_counterclock:
GOSUB check_bot_ADC

IF (theta -2) <= adcbits AND (theta +2) >= adcbits THEN RETURN

GOSUB initialize_motor
SEROUT 4,240,[$80,0,1,55]
PAUSE 20

GOTO moving_counterclock

check_top_ADC:
'DEBUG CLS
HIGH 0
LOW 0
LOW 1
PULSOUT 1, 210
SHIFTIN 2, 1, MSBPOST, [adcbits\8]
'DEBUG CR, "Value for Top ADC ", ? adcbits
RETURN

check_bot_ADC:
'DEBUG CLS
HIGH 10
LOW 10
LOW 11
PULSOUT 11, 210
SHIFTIN 12, 11, MSBPOST, [adcbits\8]
'DEBUG CR, "Value FOR Bottom ADC ", ? adcbits
RETURN

stop_moving:
GOSUB initialize_motor
SEROUT 4,240,[$80,0,1,0]

GOSUB initialize_motor
SEROUT 4,240,[$80,0,3,0]
PAUSE 20
RETURN

set_angle1:
theta = 40
number = 1
RETURN

set_angle2:
theta = 60
number = 20
RETURN

set_angle3:
theta = 80
number = 40
RETURN

Data

 Angle

platform was
programmed

to rotate

Angle
platform
actually
rotated

Angle
platform was
programmed

to tilt

Angle
platform
actually

tilted

Robot A

40°

40°

1°

1°

Robot B

60°

60°

20°

20°

Robot C

80°

80°

40°

40°

0
10
20
30
40
50
60
70
80
90

100

A B C

Angle platform was
programmed to
rotate
Angle platform
actually rotated

0
5

10
15
20
25
30
35
40

A B C

Angle platform
was
programmed to
tilt
Angle platform
actually tilted

Discussion

After conducting our experiment we came to the decision that the webcam would not be
able to rotate to any position from 0-360 because it was originally programmed to move
only clockwise. Because of this an angle moving from 270 degrees to 269 degrees would
have to complete a 359-degree turn. Instead, it was decided to make three pre-
programmed positions that would turn either clockwise or counterclockwise depending
on where it was. If it was at position three and needed to go to position two or one it
would turn counterclockwise. If it was at position one and needed to go to position two
or three it would turn clockwise. If it was at position two it would turn clockwise to three
and counterclockwise to one. In the future this project could be enhanced by adding
temperature and light sensors and by programming it to activate other robots according to
their environmental needs.

Conclusion
After conducting the experiment, it was proved that making one web camera perform the
task of several robots was successful. The camera also succeeded in giving feed to the
Internet, making it possible for others to activate robots from various locations without
having to see the robot they are activating. Although the serial micro dual controller
performed its purpose, it was suggested that it was not a dependable component because
it tended to burn out several times without much cause.

References

Charles C. Weems. Computer Science. 2004.
<http://encarta.msn.com/enyclopedia_761563863_2/Computer_Science.html>.

V.B Sunil and S. S. Pande. WebROBOT: Internet based robotic assembly planning
system. Computers in Industry. 54:2 (2004) 191-207.

Takashi Oyabu, Akira Okada et al. Proposition of a survey device with odor sensors for
an elderly person. Sensors and Actuators B : Chemical. 96: 1-2 (2003) 239-244.

Albert T.P. Soa, W.L. Chan. LAN-based building maintenance and surveillance robot.
Automation in Construction. 11:6 (2002) 619-627.

Terrance Fonga, Charles Thorpe et al. Robot Asker of questions. Robotics and
Autonomous Systems. 42:3-4 (2003) 235-243.

P. Vendruscolo, S. Martelli. Interfaces for computer and robot assisted surgical systems.
Information and Software Technology. 43:2 (2001) 87-96.

