

Robots for Disabilities Leapmotion Testing for Accuracy as an Input Method for Robotic Surgery

Anthony Brill Matthew Moorhead 5/18/15

Robotic Surgery

- Developed to address issues with traditional surgery techniques
 - increase dexterity/precision
 - reduce recovery time
 - reduce physiologic tremors
- Ability to perform surgery remotely
 - battlefield for wounded soldiers
 - transcontinental for specialized surgery reaching more patients
- Limited long-term studies to truly understand benefits/disadvantages

	Conventional Laparoscopic surgery	Robot-assisted surgery		
Advantages	Well-developed technology	3-D visualization		
	Affordable and ubiquitous	Improved dexterity		
	Proven efficacy	Seven degrees of freedom		
		Elimination of fulcrum effect		
		Elimination of physiologic tremors		
		Ability to scale motions		
		Micro-anastomoses possible		
		Tele-surgery		
		Ergonomic position		
Disadvantages	Loss of touch sensation	Absence of touch sensation		
	Loss of 3-D visualization	Very expensive		
	Compromised dexterity	High start-up cost		
	Limited degrees of motion	May require extra staff to operate		
	The fulcrum effect	New technology		
	Amplification of physiologic tremors	Unproven benefit		

TABLE 1. Advantages and Disadvantages of Conventional Laparoscopic Surgery Versus Robot-Assisted Surgery

Surgical Robots

- Current end effector manipulation accomplished by use of a joysticklike controller
- A more intuitive, hands-free method has potential for ease-of-use

Project Goals

- Examine the accuracy of position measurements made by the Leapmotion sensor
- Control a robotic arm utilizing the Leapmotion sensor as the input

Leapmotion

POLYTECHNIC SCHOOL OF ENGINEERING

Leap Motion

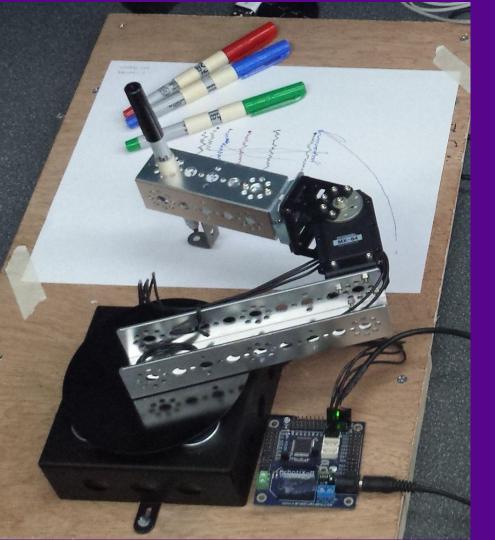
- Two monochromatic IR cameras
- Tracks infrared light (850 nm) projected onto hands
- 8 ft³ of interaction space
- Image processing
- Tracking algorithm infers
 hand position and orientation

Tool tracking

- Tracks the tip of a "tool"
- A pencil is used in this study
- Data is only used once the zcomponent reaches the threshold
- Tool requirements:
 - longer, thinner, and straighter than a finger
 - Cylindrical

A tool is longer, thinner, and straighter than a finger.

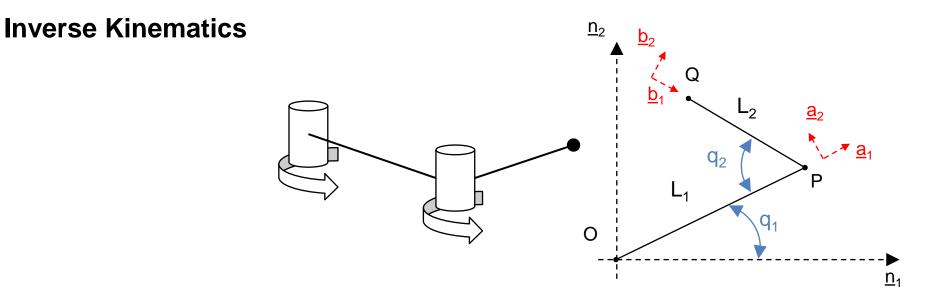

Only thin, cylindrical objects are tracked as tools.



Leapmotion

Hardware Communication

- Leap Motion data is accessed through processing
- Robotic Arm
 - Tip position is sent to the arbotiX-M Robocontroller through Serial Com.
- Data Collection
 - Text-files created are exported for analysis in excel



- Diagram
- Transformation matrices
- End effector equation

Rotation matrices:						Q	
NRA	<u>a₁ a</u>	^A R ^B	<u>b</u> 1	<u>b</u> 2	b		
<u>n</u> 1	C ₁ -S	$B_1 = \frac{a_1}{a_1}$	C ₂	s ₂		q ₂	P <u>a</u> 1
<u>n</u> ₂	S ₁ C	1 <u>a</u> 2	-s ₂	C ₂		L	Q ₁
${}^{N}R^{B} = {}^{N}R^{A} \cdot {}^{A}R^{B}$							
NRB	<u>b</u> 1	<u>b</u> 2	-	NRB	<u>b</u> 1	<u>b</u> 2	
<u>n</u> 1	$c_1 c_2 + s_1 s_2$	$c_{1}s_{2} - c_{2}s_{1}$	=	<u>n</u> 1	C ₁₋₂	S ₂₋₁	
<u>n</u> ₂	$c_2 s_1 - c_1 s_2$	$s_1s_2 + c_1c_2$		<u>n</u> ₂	S ₁₋₂	C ₁₂	

5/18/2015

End effector:

$$\underline{\mathbf{r}}^{Q/O} = \underline{\mathbf{r}}^{P/O} + \underline{\mathbf{r}}^{Q/P} = L_1 \underline{a}_1 - L_2 \underline{b}_1$$

= $L_1 c_1 \underline{n}_1 + L_1 s_1 \underline{n}_2 - L_2 c_{1-2} \underline{n}_1 - L_2 s_{1-2} \underline{n}_2$
 $L_2 \underline{s}_{1-2} \underline{n}_2$
 $\mathbf{x} = L_1 c_1 - L_2 c_{1-2}$

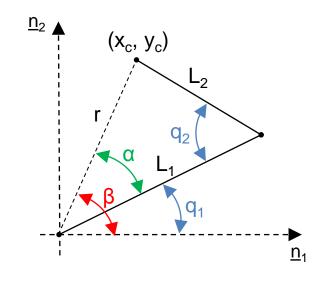
$$y = L_1 s_1 - L_2 s_{1-2}$$

 $\begin{array}{c|c} \underline{n}_2 \\ \underline{p}_1 \\ \underline{p$

Inverse Kinematics:

$$\beta = \operatorname{atan2}(x_{c}, y_{c})$$

$$q_{1} = \beta - \alpha$$


$$\alpha = \operatorname{acos}\left(\frac{r^{2} + L_{1}^{2} - L_{2}^{2}}{2rL_{1}}\right)$$

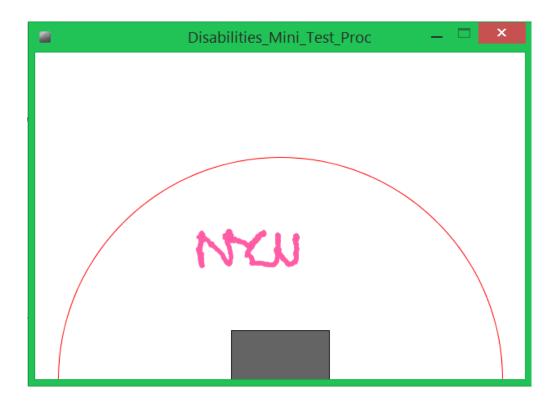
$$r^{2} = x_{c}^{2} + y_{c}^{2}$$

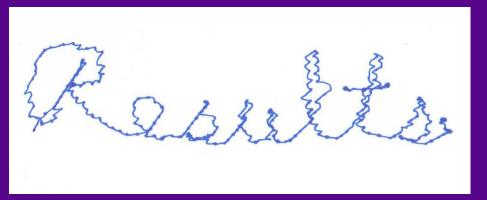
$$q_{1} = \operatorname{atan2}(x_{c}, y_{c}) - \operatorname{acos}\left(\frac{x_{c}^{2} + y_{c}^{2} + L_{1}^{2} - L_{2}^{2}}{\pm 2L_{1}\sqrt{x_{c}^{2} + y_{c}^{2}}}\right)$$

$$q_{2} = \operatorname{acos}\left(\frac{L_{1}^{2} + L_{2}^{2} - x_{c}^{2} - y_{c}^{2}}{2L_{1}L_{2}}\right)$$
5/18/2015

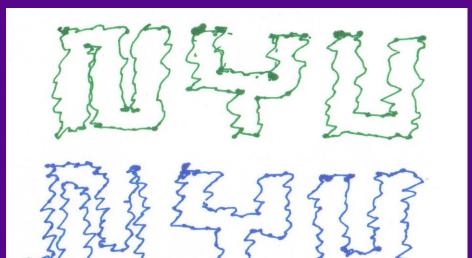
Robotic Arm

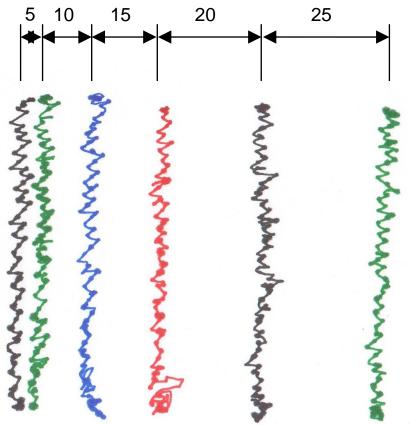
Processing Code:


- Acquires tip position from Leapmotion
- Maps values for graphical interface
- Sends position information to Arbotix


```
for (Map.Entry entry : toolPositions.entrySet())
   Integer toolId = (Integer) entry.getKey();
   Vector position = (Vector) entry.getValue();
   if(position.getY() <= 155.0){</pre>
     fill(toolColors.get(toolId));
     noStroke();
      xPos = round(position.getX());
     yPos = (-1)*round(position.getZ());
     //output.println(position.getX() + "\t" + (-1)*position.getZ());
                                                                          // write coordinates to a file
      if(xPos >= -300 && xPos <= 300){
        xPos = xPos + 300;
      } else{
        if(xPos < -300){
          xPos = 0;
        else{
          if(xPos > 300){
            xPos = 600;
      }
      ellipse((xPos), (400 - yPos), 5.0, 5.0);
      val[0] = byte(xPos/256);
     val[1] = byte(xPos%256);
      val[2] = byte(yPos/256);
      val[3] = byte(vPos%256);
```

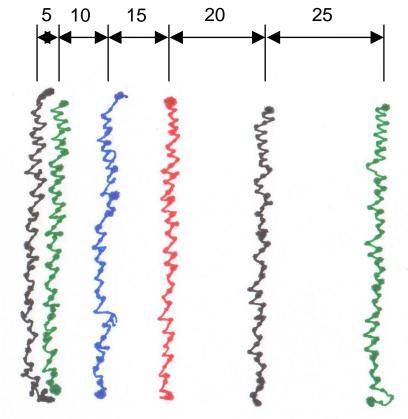

Graphical Interface:


- Grey box motor mount
- Red line extension limit of arm
- Colored line tracked tip position


Drawing Results

Parameter testing:

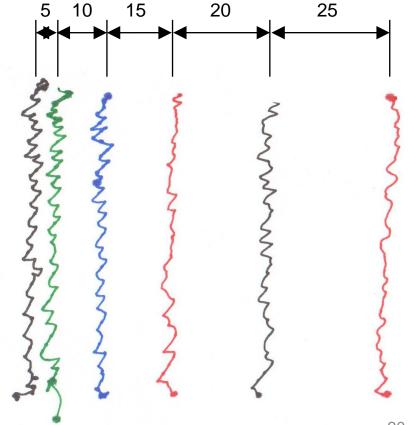
- Motor Speed: ~2.20rpm
- Delay: 10ms
- **Observation: choppy output**
- **Change: increase motor speed**

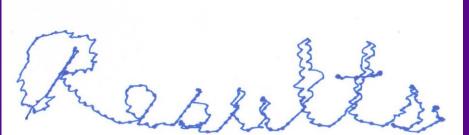


Robotic Arm Drawing Results

Parameter testing:

- Motor Speed: ~8.79rpm
- Delay: 10ms
- **Observation: no noticeable change**
- Change: reduce delay time





Robotic Arm Drawing Results

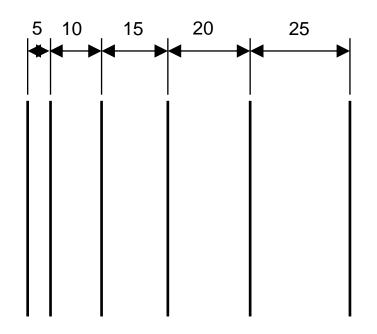
Parameter testing:

- Motor Speed: ~4.39rpm
- **Delay: 5ms**
- Observation: slightly smoother lines at higher tip speed
- Change: increase path accuracy between points (future)

L	IVI	IN	U	۲	ų	к	2	
/g left			15mm				xavg l	
4.9319	170			-32.8063	154.4934		-33.1	
4.9319	70			-32.7319	154.4374		-33.1	
				-32.6881	154.4478			
d dev le	eft			-32.7167	154.5047		stnd c	
413463				-32.7167	154.5047		0.516	
4.5184	160			-32.7037	154.3256		-32	
4.5184	80			-32.7134	154.2357		-32	
				-32.6746	154.1254			
5.3453	160			-32.6659	153.9924		-33.6	
5.3453	80			-32.7651	154.1272		-33.6	
				-32.752	154.1917			
g right				-32.6257	154.0738		xavg r	
061166	170			-32.557	153.9339		-17.0	
061166	70			-32.5834	153.9753		-17.0	
				-32.6673	154.0392			
d dev right			-32.6203	153.9777		stnd c		
342119				-32.5885	153.9294		0.859	
103284	160			-32.6154	153.77		-16.1	
403284	80			-32.5834	153.7028		-16.1	
				-32.5496	153.6898			
719047	160			-32.5251	153.6742		-17.8	
719047	80			-32.4945	153.6359		-17.8	
				-32.4341	153.5462			
tance				-32.3428	153.4329		distan	
.99303				-32.3256	153.3611		16.11	

Experimental set up:

Coordinate resolution


• Coordinates are provided in mm's

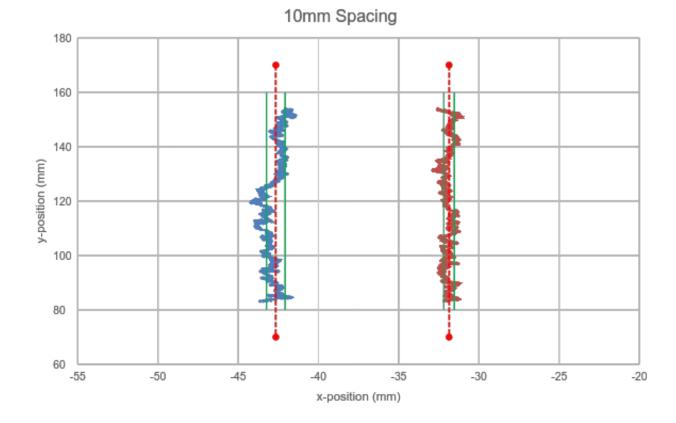
Series of two lines

- 25, 20, 15, 10, and 5mm apart
- Mean of x-position
- Standard deviation of x-position

Comparison

• Comparing the measured distance to average distance from the leap

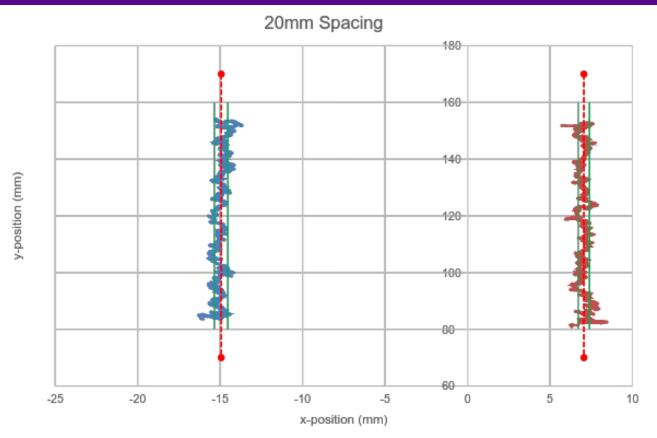
5mm Spacing 180 160 140 y-position (mm) 120 100 80 60 -55 -50 -45 -40 -35 x-position (mm)


Distance (mean): 5.26mm

Standard Deviation: Left: 0.83mm Right: 0.43mm

Distance (mean): 10.80mm

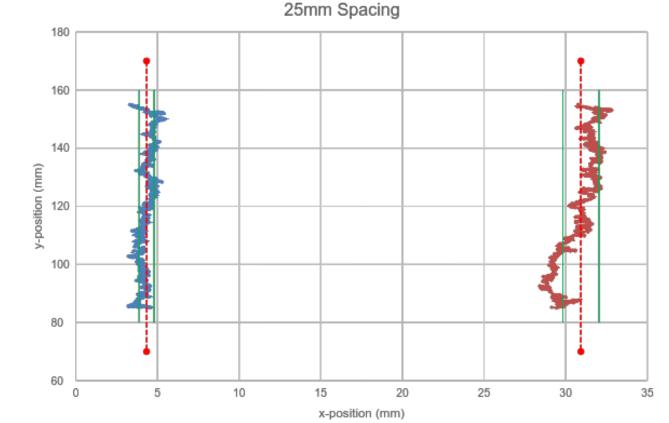
Standard Deviation: Left: 0.59mm Right: 0.33mm



15mm Spacing 180 160 140 y-position (mm) 120 100 80 60 -35 -20 -15 -40 -30 -25 -10 -5 x-position (mm)

Distance (mean): 16.11mm

Standard Deviation: Left: 0.52mm Right: 0.86mm



Distance (mean): 21.99mm

Standard Deviation: Left: 0.41mm Right: 0.34mm

Distance (mean): 26.60mm

Standard Deviation: Left: 0.46mm Right: 1.11mm

Problems

- Robotic Arm
 - The path of the end effector between points is random
 - Does not provide smooth transition between data points
 - Tip position data is not smooth
 - Motor resolution provides limited accuracy
- Data Collected
 - Standard deviations are fairly large
 - Human error introduces significant effects on data

Conclusion

- The Leap Motion successfully controls the robotic arm through tool tracking
 - Results show a noisy output, implementing a filter would help
 - Implementing a dynamic controller (PD,PID..) would improve performance
 - Path planning could decrease error between data points
- Data collected from the sensor on average was within 1.5 mm of the actual distance
 - Not acceptable for robotic surgery needs