CATCH ME IF YOU CAN... Part 2

Advanced Mechatronics : Propeller Mini Project

<u>Presented By:</u> Federico Gregori Karim Chamaa

<u>Presented to:</u> Dr. Vikram Kapila

Outline

- Introduction
- Improvements
- Circuit Design
- Coding

- System Speed
- Comparisons and Results
- Future Improvements
- Conclusion

Introduction

- Trying to achieve better results with design improvements
- Collecting data by LabVIEW and transferring them to the microcontrollers
- Comparing results obtained using
 Arduino or Propeller microcontroller

Improvements

- Achieved a stable system decreasing the length of the second link
- Obtained a larger workspace area
- Increased the torque of the servos by supplying a 10A power source
- Improved the simultaneity of the commands using two cogs in parallel
- **Decreased** the friction using a ballpoint pen with a smaller diameter

Improvements

Graphs obtained through a Matlab simulation

Circuit Design

Coding

Acquiring data Automatically from LabVIEW

G22		$-$: $\times \checkmark f_x$																¥		
			-		-	-	-							••	-					
	A	В	C	D	E	F	G	H		J	K	L	M	N	0	Р	Q	R	S	^
1	Graph																			
2	Angle1	1417,141	4,1412,14	09,1407,141	.0,1407,141	0,1407,141	10,1413,14	10,1413,141	16,1416,14	18,1421,14	24,1423,14	26,1429,14	431,1434,14	33,1436,14	438,1441,1	.443,1445,1	448,1450,1	1452,1455,	1457,1459,1	L46
3	Angle2	1015,100	9,1004,99	9,994,993,98	88,987,982,	981,981,97	75,975,974	,968,967,96	6,966,959,9	959,958,95	7,956,949,9	948,947,946	6,945,944,9	43,942,941	,939,938,9	937,935 <mark>,</mark> 934	1,933,931,9	30,928 <mark>,</mark> 922	,920,918,93	17,9
4	Angle3	89,89,89,	89,89,89,8	9,89,89,89,8	89,89,89,89	,89,89,89,8	9,89,89,89	, <mark>89,89</mark> ,89,89	9,89,89,89,	39,89,89,89	,89,89,89,8	89,89,89,89	,89,89,89,8	9 <mark>,89,89,89</mark> ,	89,89,89,8	9,89,89,89	,89,89,89,8	9,89,89,89,	89,89,89,89	,89
5																				
6	Random	Top:85m	m, Bottom	1:40mm																
7	Angle1	1338,134	1,1339,13	44,1347,134	9,1352,135	5,1358,136	50,1363,13	66,1368,137	71,1374,13	76,1379,13	82,1384,13	87,1389,13	392,1394,13	97,1399,14	102,1404,1	407,1409,1	412,1414,	417,1419,	1421,1424,1	142
8	Angle2	934,934,9	929,934,93	4,934,933,9	33,933,932	,932,931,9	31,930,930	,929,929,92	28,928,927,	926,925,92	5,924,923,	922,922,92	1,920,919,9	18,917,910	6,915,914,	913,912,91	0,909,908,9	907,905,90	4,903,902,9	00,
9	Angle3	89,89,89	89,89,89,8	9,89,89,89,8	39,89,89,89	89,89,89,89,8	9,89,89,89	,89,89,89,89	9,89,89,89,	39,89,89,89	,89,89,89,8	39,89,89,89	,89,89,89,8	9,89,89,89,	89,89,89,8	9,89,89,89	,89,89,89,8	9,89,89,89,	89,89,89,89	.89
10																				<u> </u>
11	Square	49mm																		
12	Angle1	1415.141	2.1410.14	07.1405.140	2.1400.139	7.1395.139	92.1389.13	87.1384.138	32.1379.13	76.1374.13	71.1368.13	66.1363.13	360.1357.13	55.1352.13	349.1346.1	343.1341.1	338,1335.1	332.1329.	1326.1323.1	132
13	Angle2	998 993 9	987 982 97	7 971 966 9	61 955 950	945 939 9	34 928 923	917 912 90	06 900 895	889 883 87	7 872 866	860 854 84	8 842 836 8	30 824 81	8 812 806	800 794 78	7 781 775	768 762 75	5 749 742 7	36
14	Δngle3	89 89 89	89 89 89 89 8	9 89 89 89 89 8	39 89 89 89	89 89 89 89 8	9 89 89 89	89 89 89 89 80	9 89 89 89 89	39 89 89 89 89	89 89 89 89 8	29 29 29 29 29	89 89 89 89 8	9 89 89 89	89 89 89 89 8	9 89 89 89 89	89 89 89 89 8	9 89 89 89	89 89 89 89 89	89
15	Angles	05,05,05,	05,05,05,0	5,05,05,05,0	,00,00,00	,00,00,00,00,00	.5,05,05,05	,00,00,00,00	,00,00,00,	55,05,05,05	,00,00,00,00,0	,00,00,00	,00,00,00,0	5,05,05,05,	00,00,00,00,0	,5,65,65,65	,00,00,00,0	5,05,05,05,	05,05,05,05	,00
16	Postongla	120mmv	00mm																	
10	Amela 1		0 1 4 1 7 4 4	1 5 1 4 1 4 1 4 4	2 1 4 1 0 1 4 0	0 1406 144	DE 1402 14	01 1200 120	1205 12	1202 42	00 1 200 4 2	06 1 204 12	000 1000 10	70 1 276 1	74 1 2 2 4	270 1260 1	266 1264 /	1261 1250	1257 1255 1	125
17	Angiel	1421,141	9,1417,14	15,1414,141	.2,1410,140	0,1400,140	J5,1403,14	01,1599,135	97,1595,13	95,1592,13	90,1388,13	00,1384,13	562,1380,13	/0,13/0,13	5/4,13/2,1	.570,1368,1	1300,1304,.	1301,1359,.	1337,1335,1	133.
18	Angle2	11/8,11/	3,1168,11	54,1159,115	4,1149,114	4,1140,113	35,1130,11	25,1120,111	15,1111,11	56,1101,10	96,1091,10	86,1081,10	0/6,10/1,10	66,1061,10	156,1051,1	.046,1041,1	1036,1031,1	1025,1020,1	1015,1010,1	100
19	Angle3	89,89,89,	89,89,89,8	9,89,89,89,8	39,89,89,89	,89,89,89,8	9,89,89,89	,89,89,89,89	9,89,89,89,	89,89,89,89	,89,89,89,8	89,89,89,89	,89,89,89,8	9,89,89,89,	89,89,89,8	89,89,89,89	,89,89,89,8	9,89,89,89,	89,89,89,89	,89

Data:

- Formatted(10th of a degree)
- Separated by commas
- Transposed

Data should be copied and pasted in SimpleIDE

Coding Propeller servo_angle (Multi Cogs)

STEP2

Propeller Code-Part1

```
finclude "simpletools.h"
#include "servo.h"
#define SERVO1 14// Defining the pins that are attached to the servos as constants
#define SERVO2 15
#define SERVO3 16
void ServolCog(void *par) ;//Defining 3 functions for the 3 cogs
void Servo2Cog(void *par) ;
void Servo3Cog(void *par) ;
unsigned int stack[40 + 25];
unsigned int stack1[40 + 25];
unsigned int stack2[40 + 25];
static volatile int Servo1[]={};//Data copied from Excel Spreadsheet
static volatile int Servo2[]={};
static volatile int Servo3[]={};
int main()
pause(500);
cogstart(&ServolCog, NULL, stack, sizeof(stack));// Launch Cog 1-2-3 in parallel
cogstart(&Servo2Cog, NULL, stack1, sizeof(stack1));
cogstart(&Servo3Cog, NULL, stack2, sizeof(stack2));
٦.
```

Coding Propeller servo_angle (Multi Cogs)

STEP2

Propeller Code-Part2

```
void Servo2Cog(void *par)
void ServolCog(void *par)
                                                                     for(int i = 0; i <sizeof(Servo2)/sizeof(Servo2[0]); i++)</pre>
for(int i = 0; i <sizeof(Servol)/sizeof(Servol[0]); i++)</pre>
                                                                        pause(200);
 pause(200);//System speed
                                                                     servo angle(SERV02, Servo2[i]);
servo angle(SERVO1, Servo1[i]);//Angle1
                                                                     if(i==0 || Servo3[i-1]==0) {
if (i==0 || Servo3[i-1]==0) {//In case the third servo lifts
                                                                        pause(3000);
  pause(3000);
                                             void Servo3Cog(void *par) {
                                              for(int i = 0; i <sizeof(Servo3)/sizeof(Servo3[0]); i++)</pre>
                                             if(i==0 || Servo3[i-1]==0){
                                               pause(3000);
                                              pause(200);
                                              servo angle(SERVO3, (Servo3[i]+2)*10);
```

Each COG is controlling the position of a servo motor

Total pause time in each COG is maintained equal

Coding Propeller pulse_out (Single Cog)

```
#include "simpletools.h"
#include "servo.h"
#define SERVO1 14
#define SERVO2 15
#define SERVO3 16
 short Servo1[]={1913,1915,1913,1918,1921,1924,1927,1930,1933,1936,1939,1942,
 short Servo2[]={1486,1486,1486,1486,1486,1485,1485,1485,1484,1484,1484,1483,
  int main()
pause(500);
for(int i = 0; i <sizeof(Servol)/sizeof(Servol[0]); i++) {</pre>
for (int j=0; j<4 ;j++) {</pre>
pulse out(SERVO1, Servo1[i]);
pulse out(SERV02, Serv02[i]);
pause(10);
servo angle(SERVO3, (Servo3[i]+2)*10);
if(i==0 || Servo3[i-1]==0) {
 pause(3000);
servo angle(SERVO3, (Servo3[i]+2)*10);
if(i==0 || Servo3[i-1]==0) {
 pause(3000);
pause(200);
```

Coding Propeller pulse_out (Multi Cogs)

```
#include "simpletools.h"
#include "servo.h"
#define SERVO1 14
#define SERVO2 15
#define SERVO3 16
void ServolCog(void *par) ;
void Servo2Cog(void *par) ;
void Servo3Cog(void *par) ;
unsigned int stack[40 + 25];
unsigned int stack1[40 + 25];
unsigned int stack2[40 + 25];
short Servo1[]={1913,1915,1913,1918,1921,1924,1927,1
short Servo2[]={1486,1486,1480,1486,1486,1485,1485,1
int main() {
pause(500);
cogstart(&ServolCog, NULL, stack, sizeof(stack));
cogstart(&Servo2Cog, NULL, stack1, sizeof(stack1));
cogstart(&Servo3Cog, NULL, stack2, sizeof(stack2));
```

```
void ServolCog(void *par) {
for(int i = 0; i <sizeof(Servol)/sizeof(Servol[0]); i++) {</pre>
pause(200);
for (int j=0; j<4; j++) {
pulse out(SERVO1, Servo1[i]);
pause(10); }
if(i==0 || Servo3[i-1]==0){
  pause(3000);} }}
void Servo2Cog(void *par) {
for(int i = 0; i <sizeof(Servo2)/sizeof(Servo2[0]); i++) {</pre>
  pause(200);
for (int j=0; j<4 ; j++) {
pulse out(SERV02,Serv02[i]);
pause(10);}
if(i==0 || Servo3[i-1]==0){
  pause(3000);} }}
void Servo3Cog(void *par) {
 for(int i = 0; i <sizeof(Servo3)/sizeof(Servo3[0]); i++) {</pre>
if(i==0 || Servo3[i-1]==0) {
  pause(3000);}
 pause(200);
 servo angle(SERVO3, (Servo3[i]+2)*10); }}
```

Coding Propeller servo_angle (Single Cog)

```
#include "simpletools.h"
#include "servo.h"
#define SERVO1 14
#define SERVO2 15
#define SERVO3 16
static volatile int Servo1[]={1338,1341,1339,1344,1347,1349,1352,1355,1358,1360,1363,1366,
static volatile int Servo2[]={934,934,929,934,934,934,933,933,933,932,932,931,931,930,930,
int main()
pause(500);
for(int i = 0; i <sizeof(Servol)/sizeof(Servol[0]); i++)</pre>
servo angle(SERV01, Servo1[i]);
servo angle(SERV02, Servo2[i]);
if(i==0 || Servo3[i-1]==0) {
 pause(3000);
 servo angle(SERVO3, (Servo3[i]+2)*10);
if(i==0 || Servo3[i-1]==0){
 pause(3000);
pause(200);
```

System Speed

Comparison

Results LabVIEW + Arduino

The error evaluated is 1.2%*

* The technique used is the mean value of the relative error of the three measurements.

Arduino

- The error evaluated is 1.6%
- Labview does not influence the output obtained with Arduino

Propeller Servo_angle (Multi Cogs)

- The error evaluated is 5.8%
- Propeller provides a larger error than Arduino

Propeller Comparison

Servo_angle Single Cog

- The error evaluated is 7.8%
- Using a single core will decrease the accuracy of the system

Pulse_out Single Cog

- The error evaluated is 2%
- Results comparable with those of Arduino
- Needed many calibration due to pulse out command
- Better shapes with faster loop but less accuracy

Pulse_out Multi Cogs

- ► The error evaluated is 1.2%
- Results obtained using multiple
 cogs are better than single cog
 but not really parallel
- Needed many calibration due to pulse out command
- Better shapes with faster loop but less accuracy

Conclusions

- We achieved better results by replacing the servo-angle command in a propeller code with a pulse-out and this is due to several reasons including:
 - Range of Angle in pulse out(2400-550=1850) bigger than the range of Angle in servoangle(1800-0=1800) by 50 Angles.
 - Angles used in servo-angle function were rounded to the nearest angle.
- Coding using writeMicroseconds() in Arduino and pulse-out command in Propeller gave similar result. Slight percentage error between them is due to :
 - Error while measuring the percentage error
 - Precise scaling of the for loop.

Conclusions

- Servo motors do not offer a valid solution for the aim of the project
- More stable and accurate actuators are needed
- The results obtained by Arduino or Propeller are comparable
- An high current is necessary to run the servos properly
- Controlling Arduino directly from LabVIEW does not implicate worst results

Future Improvements

Improving the accuracy and the stability of the system with stepper motors.

Acquiring an image through the raspberry pi cam and processing it which will eliminate the need of LabVIEW.

Thank You

Questions ?