CATCH ME IF YOU CAN...

Advanced Mechatronics : Arduino Mini Project

<u>Presented By:</u> Federico Gregori Karim Chamaa

<u>Presented to:</u> Dr. Vikram Kapila

Outline

- Introduction
- Building the Prototype
- > Theoretical Analysis
- Circuit Design

- Coding
- Cost Analysis
- > Future Improvements
- Conclusion

Introduction

- This device is thought to reproduce any hand-writing picture.
- It can satisfy the necessity to sign a document with a real pen from a long distance.
- The system acquires the picture from an external device and duplicates it on a paper.

Building Prototype

Building an automated 3 DOF manipulator:

Structure:

- Two joints moved by two motors to control the translation of the plane of the paper
- One joint to control the component normal to the paper
- 3D Printed links
- Ball caster to add stability to the system
- End effector with pen attachment

Theoretical Analysis

2 DOF Inverse Kinematics:

$$\frac{x^2 + y^2 - \alpha_1^2 - \alpha_2^2}{2\alpha_1\alpha_2} := D$$

$$\theta_2 = \tan^{-1}\frac{\pm\sqrt{1 - D^2}}{D}$$

$$\theta_1 = \tan^{-1}(y/x) - \tan^{-1}\left(\frac{\alpha_2\sin\theta_2}{\alpha_1 + \alpha_2\cos\theta_2}\right)$$

Minimum Distance Between 2 Points:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

writeMicroseconds():

Servo1(µs)=2900 -
$$\left(\left(\frac{95}{9} * Angle\right) + 500\right)$$

Servo2(µs)= $\left(\left(\frac{95}{9} * Angle\right) + 500\right)$

Circuit Design

.....

Coding

Acquiring an image from paint and transforming it into a matrix.

Selecting the points that represent the image.

Coding

Creating an algorithm to map the selected pixels.

STEP4

Applying the inverse kinematics equations and finding the corresponding angles.

# Poir	nts Import a Picture	path to JPEG file						
12		8	6					
Array	الا ک بر کا کا کا کر ہے جا کا کا کا کا دور سر مرحد مرحد مرحد مرحد مرحد		A	Angle 1		Angle 2		Lift Array
18 00	00000000	•••••••••••••	0	6.95458	0	104.163	0	•
21 00	0000000	•••••••••••••		10.4879		100.197		•
00		••••••••••••		13.9888		96.0972		
	00000000	••••••••••••••		17.4777		91.8486		2
	00000000	000000000000000000000000000000000000000		16.3359		90.3156		
	00000000			15.36		88,6024		
	000000000			14.5523		86,7074		õ
00	00000000	000000000000000000000000000000000000000		10.9295		90.9467		0
00	00000000	•••••••••••••		7.30959		95,0102		0
	00000000	••••••		3,67264		08.0166		
00	00000000	••••••••••••••		4 58063		100.920		2
00	00000000	000000000000000000000000000000000000000		5 67425		100.050		1
00	00000000			3.07435		102.588		

Coding

Converting Angles in Degree to Microsecond Units

STEP6

Writing the corresponding Angles to the Three Servos

Cost Analysis

Materials	Quantity Usage	Unit of Measure	Unit Cost	Usage Cost	
Plexiglas	1	Each	24	24\$	
Bolts and Nuts	1	Each	5\$	5\$	
Servos	3	Each	25\$	75\$	
Printing Parts	1	Each	15\$	15\$	
Arduino Uno	1	Each	15\$	15\$	
Breadboards	1	Each	5\$	5\$	
Jumper Wires	1	Each	14\$	14\$	
Lippo Batteries	2	Each	10\$	20\$	
Voltage Regulator	1	Each	1\$	1\$	
		Prototype T	174\$		

Future Improvements

Improving the stability of the system by implementing high torque servo motors.

Acquiring an image through the raspberry pi cam and processing it which will eliminate the need of LabVIEW.

Conclusions

- > This robot will provide an inexpensive solution to a possible user need
- The system need more stability to operate correctly
- Actual servos can not carry out the torque requested to place the pen
- The code can be modified to obtain more regular trajectories
- The structure of the system can be enhanced to reduce the friction with the paper and the stresses on the motors

Thank You

Questions ?