

ME-GY 6933 Advanced Mechatronics

PROJECT-1

MOHIT LALA (N12051916) SHWETA VAVIYA (N17038710)

OBJECTIVE

Our aim for the term project will be to deploy a swarm of two robots in an unknown environment and generate its map using various sensors and techniques as we progress and learn our concepts over three stages of the project.

PROPOSAL

- Arduino stage: [2D Environment Mapping]
- A differential drive robot will be deployed in an environment to generate a 2D map of the environment.
- Propeller stage: [Swarm Robotics]
- The aim of this stage is to model and develop a system of two robots that localize themselves in an unknown environment while they cover different regions in the environment, i.e., no overlap in the regions covered. The robot will have a specific task assigned in its own region.
- Raspberry Pi stage: [3D Environment Mapping]
- At this stage we use a collection of sensors or a camera mounted on a robot to generate a 3Dmap of an unknown environment.
- **Term Project:** [Swarm Robots for Environment Mapping]
- For the term project we will integrate all the work done and data collected from at each stage and develop a swarm of two robots to map an unknown environment.

NYU Tandon School of Engineering (Fall 2016)

APPLICATIONS

- Mapping of unknown environment and locating land mines during military operations.
- Surveillance in dangerous and inaccessible places.
- Rescue search operations during disaster management.
- Sensor specific applications such as using the system to sense the levels of toxic gases, etc.

System Block Diagram

WHAT WE ACHIEVED (Arduino Stage)

- MOTION:
- Wall tracking
- COMMUNICATIONS:
- Wireless communication between Arduino and Xbee (XCTU)
- Serial communication between Xbee(on Arduino) and MATLAB
- 2D MAPS:
- MATLAB creates a map using data points sent by Arduino.

NYU Tandon School of Engineering (Fall 2016)

LIMITATIONS (for developed prototype)

FUTURE SCOPE

- Sensor:
- range is limited to 10-80 cm
- Mapping techniques:
- Limited accuracy
- Arduino:
- Need of multiple power sources due to limited current capabilities

- Sensor:
- Use of better/more sensors
 e.g.: LIDAR, for better
 accuracy
- Mapping techniques:
- Implementing a more robust algorithm and add robot localization

VIDEO - I <u>Milestone 1:</u> Wall-follower

Milestone 2: Get Scan Sensor data

VIDEO - II

Milestone 3: Generate Map using obtained data

VIDEO - III

VIDEO - IV

THANK YOU

NYU Tandon School of Engineering (Fall 2016)