

ME-GY 5643 Mechatronics Fall 2015 Group 2:
Silvia Bertini
Francesco Cursi
Federico Gregori

What is it?

Green Thumb Box is a smart autonomous indoor watering system

Why this?

- * Conventional autonomous irrigation systems mostly thought for outdoor environment.
- * Not everyone has a private garden, but many have potted plants in their houses.
- * Commercially available solutions are not automated.

What's new:

- * Continuous feedback from moisture sensor is what makes the difference with traditional automated watering devices.
- * The ones on the market water at fixed times and days, risking to overwater the plant or let them dry.

How is it made?

- * Plant vase
- * Water reservoir
- * Microcontoller
- * Water level sensor
- Pump and drip distributor

- * Moisture soil sensor
- * Temperature sensor
- * Light sensor LCD
- * LED strips
- * RGB LED
- * Batteries

Microcontroller

- * The embedded microcontroller, Basic Stamp 2, is what imparts intelligence to the box.
- * It matches the criteria of simplicity of use and programming while ensuring a control over the numerous sensors and actuators that we needed.

Moisture sensors

- * Two resistive moisture sensors have been used so as to have differential reading and a more precise measurement.
- * Determine moisture level on the basis of the electric resistance of the soil: the wetter the soil, the lower the resistance.
- * The resistance is measured using a voltage divider and sending the signal to the analog pin.

Temperature sensor

* Digital thermometer DS160

Light level

* VT935G-B photoresistor

Water level sensor

* Float switch sensor

Pump

* Micro pump with RS-360SH DC motor

LCD

* Parallax serial LCD

LED strips

* Flexible adhesive green LED strips

RGB

* RGB LED

The circuit

The circuit

The circuit

The code

Mechanical design

Cost analysis

PART NAME	UNITARY COST (\$)	QUANTITY	TOTAL COST (\$)
Basic Stamp 2 Microcontroller	49	1	49
Board of Education	70	1	70
Photoresistor	2	1	2
Digital thermometer	8		8
Float switch	5	1	5
Soil moisture sensor	4	2	8
AD converter	6	1	6
Pump	5.50	1	5.50
TIP120 Transistor	2	1	2
LCD	28	1	28
Voltage regulator	2	1	2
RGB LED	1	1	1
Green LED strips	2	4	8
Pushbuttons	3	3	9
Barrier strip block	4	4	16
Capacitor	0.20	2	0.4
Plywood	5	2	10
AA Battery	0.5	6	3
9V Battery	2	1	2
Acrylic sheet	2	1	2
A 1 111 1 1 A 1 1 1 1			

Additional Material

(Screw, Nut, Spacer, Bracket, Washer,

Pipe, PVC container, Jumper wire,

Resistor, Diode)

TOTAL 261.9

25

Further improvements

- Rechargeable batteries
- * Battery status check
- * Enable outdoor use
- * Remote control
- * Rotating base
- * UV lights

References

- * Kapila Vikram, Notes for the ME3484 Mechatronics Course.
- * Pace Scientific Data Loggers and Sensors, Installation and Setup Instructions EC5 and EC20 Soil Moisture Sensors.
- Parallax Inc. Applied Sensors Student Guide, Version 2.0.
- * R. Munoz-Carpena. Field devices for monitoring soil water content. Bulletin 343, Dept. of Agricultural and Biological Engineering, Univ. of Florida, IFAS Extension.
- * Smith, Keith A. Soil and environmental analysis: physical methods, Revised, and Expanded. CRC Press, 2000.
- * http://www.liquidlevel.com/pages/how-does-a-liquid-level-work.
- * http://us.clickandgrow.com/.
- * http://www.cynergy3.com/blog/how-select-correct-float-switch.

Thanks

Many thanks go to Jared, Sai Prasanth and Ashwin for making the lab facilities available to us at every time

Thank you for your attention!