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1 Motivation

The motivation for the DoodleBot stemmed from a MATLAB product demonstration given at
NYU-Poly on September 23, 2011 where they demonstrated closed loop control of a robotic arm
through MATLAB with a video game controller. When the final project guidelines included
“robotic manipulator” in the list of suggested projects, we decided to move forward with some
sort of robotic arm. Two of us had taken more than one robotics class, and all had experience in
control theory, but we had never implemented closed loop control on actual hardware. By
building a robotic arm from scratch - from hardware through software design - we were able to
not only meet project requirements but also provide ourselves with a learning platform.

After initial research, we realized that a generic robotic arm with modular parts and expandable
control software could have several potential uses. For example, the Meal Mate robotic feeder
[1] and the Meal Buddy Robotic Assistive Feeder [2]are both robotic arms designed to help those
with cerebral palsy, head/spinal injuries, rheumatoid arthritis, muscular dystrophy, upper limb
amputations etc, and many other persons with learning difficulties or neurological conditions eat
independently (Figure 1). A device like this would satisfy the “smart kitchen aids, smart home
appliances,” and “projects that respond to a societal need” sections in the list of suggested
projects.

Figure 1: The Meal Mate robotic feeder [1] (left) and the Meal Buddy Robotic Assistive
Feeder [2](right)

Another application of robotic arms can address two other sections in the suggested project
guidelines: “enhance laboratory education in grades K-12” and “mechatronics-enabled pre-
college level science experiments (physics)”. A generic robotic arm could be used as an
educational platform. LEGOs are already a popular way to teach mechatronics to this age group,
and LEGO robotic arms already exist (Figure 2). The company has also recently released new
sets aimed at encouraging young women to explore robotics.



Figure 2: LEGO robotic arm [3] (left) and a new LEGO kit [4] (right) targeted at
encouraging young women to explore robotics

Additionally, toy robotic arms are becoming increasingly affordable, with one particular example
from OWI Robotics retailing for just $40 (Figure 3). However, both the LEGO arm and toys like
the OWI Robot Edge obscure the actual motors and electronics that go into such a project. It is
difficult to make the leap from playing with LEGOs and toy robots to designing real world
robotic systems.

Figure 3: OI Robotic Arm Edge

It follows from the above that a transparently designed real world robotic arm might serve as an
engaging platform for mechatronics learning. Robotics can be intimidating, but it’s clear from
numerous studies that the US needs to encourage interest in STEM education in order to
maintain a globally competitive work force [5]. One way to mask a seemingly intimidating
subject like robotics is to include familiar functionality. We chose drawing as our means of
making the robotic arm more interesting and engaging to those who might not otherwise be
drawn to explore robotics.

Several robots already exist that have been deployed in museums, galleries, and public outreach
events to engage audiences both young and old (Figure 4). We designed our robotic arm to work

in similar environments. This will help address a societal need to encourage students to pursue
STEM education.



Figure 4: (Left) SADbot at Maker Faire (Middlé) SADbot in Eyebeam’s window gallery [6]
(Right) Robotic Installation art [7]

2  Theory/Mathematical Background

2.1 Two link manipulator

The DoodleBot is a two link planar manipulator. One of the links is connected to a fixed point
while the other link is connected to the end point of the first one. The end point of the second
link (the end effector) is free to move. A diagram for a two link planar manipulator is shown in
Figure 5. Two problems are encountered when trying to find the values of the angles and the
position of the end point. The problems are known as the forward kinematics and inverse
kinematics problems.
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Figure 5: Kinematics of a two link manipulator

The inverse kinematics is the problem of determining the joints angles based on a given
position of the end effector of the manipulator. The equations relating the joint angles for a

two link manipulator are:
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Where 1; and 1, are the link 1 and 2 lengths respectively and 0, and 6, are the angles
corresponding to each link.

In contrast to inverse kinematics, forward kinematics gives the position of the end point based on
the given joint angles. The equations for x and y coordinates of the end point are given below
based on the nomenclature in Figure 5:

x=1; cosO; + 1; cos (0;+ 0,)

y=1; sinf; + I, sin (0,+ 0,)
By using these equations we can calculate the desired angles based on the desired location of the
end point and use that as the reference input.

2.2 DC Motor Modeling
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Figure 6: DC motor schematic

The DC-motors used in DoodleBot consist of two subsystems can be modeled as electrical and
mechanical subsystems. The transfer function, that relates voltage input V, to the DC-motor
load angular velocity w is:

Wi () _ Hgﬁffﬁ'}
Vals) RglegstRobr+EEK K

where J¢q is the total load inertia reflected at the motor shaft, K, is the gear ratio, Ky is the
motor speed constant ((Vs)/rad), Kr is the motor torque constant (Nm)/A), and by is the
rotational viscous friction constant. The transfer function can be simplified in the following
form:
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Where t and K are the mechanical time constant and the dc-gain of the DC servomotor
respectively. To experimentally determine K and 1 for the DC-motor, the transient and steady-
state angular velocity step response of the DC-motor can be obtained by applying a step input
voltage and measuring the angular velocity of the link. A plot of such a response is shown below
Figure 7:
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Figure 7: DC Motor angular velocity step response

The time constant is defined as the time required for the output to reach 63.2% of the final output
value, which can be obtained using the plot in Figure 7. Then K is found by using the transfer
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function and applying the final value theorem (FVT): A step input yields V(s) =
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Where o is the steady state angular velocity.

2.3 Proportional Integral Derivative (P1D) controller
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As the name implies the PID controller has three gains, a proportional (K, ), derivative (Kp )and
integral (K;) gain. A PID controller calculates an error value as the difference between a
measured process variable and a desired set point. The controller attempts to minimize the error
by adjusting the process control inputs. The proportional, the integral and derivative values,
denoted P, I, and D, can be interpreted in terms of time: P depends on the present error, I on the
accumulation of past errors, and D is a prediction of future errors, based on thecurrent rate of
change.

Once K and 7 are determined, the PID controller gains can be determined after getting the closed
loop transfer function corresponding to the closed-loop feedback system shown in Figure 8.
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Figure 8: Closed-Loop Feedback PID control of the DC Motor

The closed loop transfer function is:
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3 Project Specifications

The DoodleBot complies with all of the following project specifications. Details are given in
subsequent sections.

Your device will be controlled by BS2 (or another microcontroller of your choice)

You must incorporate and document hardware and software features to prevent damage
to the BS2 IC and other components on your device. In addition, you must provide
guidelines for safe operation of your device.

Include a provision for instantaneous shutdown of your device in case of incorrect/unsafe
operation.

Your project must include some form of a user interface so that a human user can
monitor and control your device.

Your project must utilize at least one actuator.

Your project must utilize at least one analog and one digital sensor.

Y our actuator must be controlled using sensory feedback. You can use any primitive to
advance control design methodology for this purpose.

4 Mechanical Design

In order to plan what parts to order and confirm everything would work as intended, all
mechanical systems were modeled in Solidworks before purchase and assembly. Off the shelf
parts were used whenever possible to keep the mechanical design and assembly time manageable
and provide a modular system that could be easily duplicated. Solid models of some of the parts
were already available online [8], and these were configured into a two degree of freedom (DOF)
planar robotic arm actuated by standard size servomotors (Figure 9). A solenoid was mounted at
a right angle to the planar arm to provide a way to extend and retract a drawing implement at the



end effector. This robotic arm is referred to as the slave arm, as opposed to the master arm,
which will be described later. A base was machined out of an aluminum u-channel to mount the
robotic arm as well as the electronics.

shoulder

Figure 9: Screenshot from Solidworks with details of slave arm hardware design

4.1 User Interface (Master Arm)

A master arm was modeled and fabricated on a Dimension Elite 3D printer to act as the user
interface to monitor and control the slave arm (Figure 10). Potentiometers were placed at each
of the DOF to use as the reference signal for the commanded arm configuration.

elbow

shoulder

Figure 10: Screenshot from Solidworks showing basic master arm design

5 Electrical Design

In order to determine the required torque in the shoulder motor, we assumed that all the weight
of the elbow motor, solenoid, and connecting components (approximately 5 ounces) was
concentrated at the end effector, 14 inches from the axis of rotation of the shoulder motor. If the
arm was fully extended horizontally, the shoulder model would need at least 70 in-oz of torque
to lift the arm. We had some HS-7950TH high torque servomotors (344 in-0z), but the control
boards had been destroyed by an accidental application of high voltage in a previous project. We
chose to remove the control boards, effectively making them direct current (DC) gearhead
motors with already integrated potentiometers to use as feedback (Figure 11). We left the
mechanical hard stops inside the gearboxes intact because we did not need more than 180°



rotation in either DOF. This step allowed us to lower the cost of procuring parts while recycling
otherwise useless motors. We then soldered wires from ribbon cable to each of the two DC
motor leads and each of the three existing potentiometer wires to allow us to interface with the
solenoid from down near the base of the robotic arm.

A solenoid was mounted to a custom designed washer on the end effector that was 3D printed.
Epoxy putty was used to create a seat for a drawing implement on the plunger of the solenoid.
Longer wires were soldered onto the existing ones to allow us to interface with the solenoid from
down near the base of the robotic arm. A transistor was used to allow current to flow through the
solenoid when the base was activated by a digital signal from the Arduino microcontroller

(Figure 12).
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Figure 12: Example schematic of interfacing a solenoid with an Arduino [9]

The Arduino prototyping platform (Figure 13 - left) was used as the controller for the DoodleBot
[10]. The on board ATmega328 has 14 digital input/output pins (of which 6 can be used as pulse
width modulation (PWM) outputs) and 6 analog input pins. This was paired with the motor
shield from Adafruit Industries (Figure 13 - right). The motor shield ships as a kit with two
L293D h-bridges for assembly that allow a peak current of 600mA per motor. However, we
replaced these with two SN74410 h-bridges to allow up to 1A of current draw per motor [11].
The motor shield also has a clocking chip to drive the PWM much faster than the 490Hz built
into the native Arduino command library.
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Figure 13: (Left) Arduino UNO prototyping platfo (Rit Motor shield from Adafruit
Industries

An single pole single throw switch was also incorporated into the design to kill power to both
motors with a single emergency cutoff switch (Figure 14).
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6 Controls and Software Design

We chose to use the Arduino Microcontroller instead of the BasicStamp. The Arduino has built
in A2D conversion and considering our project was going to include a lot of A2D the Arduino
was the better choice. There were also several shields available to easily integrate a motor
controller along with an existing library of code to aid development (the AFMotor library from
Adafruit Industries).

Our control mechanism is a miniature model of the real arm, referred to as the master arm. The
slave robotic arm is programmed to follow the motions of the master robotic arm. We achieved



this by placing potentiometers at the joints of the master robotic arm. These provided us with
position feedback and we then programmed the robotic arm to attempt to achieve that same
position. The motors in the slave robotic arm provided position feedback using integrated
potentiometers as well.

To get position from the master robotic arm we read the input from the two potentiometers on
analog pins 4 and 5. These pins are capable of doing A2D conversion. After reading the input
from these pins, we constrained them to not exceed the physical limits of our slave robotic arm.
The motors have about 135 degrees of motion while the potentiometers have over 180 degrees. If
the reading exceeds the allowable region, it is changed to be at the upper or lower limit. The
elbow was constrained to operate only in 90 degrees because of the way the arm was

constructed. After constraining the input, it is then mapped from the potentiometer reading to a
degree reading. This is done using the built-in map command on the Arduino.

After getting the position of the master arm, the program retrieves the position of the slave arm.
The potentiometers of the slave arm are the inputs for analog pins 0 and 1. These pins can do
A2D input, and we constrain them to the physical maximum range. After that we map them to
the degrees in the same manner that we mapped the master arm.

At this point we now have the position of the master arm and the position of the slave arm. The
control mechanism needs to make these two positions the same as quickly as it can. To do this,
we implemented the proportional (P) and derivative (D) from PID control. Using the P and D
with appropriate gains, we used pulse width modulation to control the voltage sent to the motors.
This affects the speed with which the motors reacted. The maximum pulse width was 255 and we
found that our motors needed a minimum pulse width of 40 to move. After experimenting with
the PD control, we constrained our pulse width to be between 40 and 255 at all times. We
prevent the motor from trying to move when the slave and master are in the same position by
saying that if the positions were within 1 degree of each other, the motors are turned off.

Finally, to control the drawing mechanism there is a solenoid attached to the end of the slave
arm. This solenoid extends to draw and retracts to move without drawing. There is a button on
the end of the master arm that is linked to this motion. When this button is pressed, it sends a
high signal to the Arduino. The Arduino then sends a high signal out to the solenoid pin, attached
to the base of a transistor, and allows our power supply to extend the solenoid. When the button
is released, the solenoid retracts. See Appendix A for a full listing of the Arduino code.

7 Bill of Materials

In order to keep procurement costs down, we utilized as many existing parts as we could and
supplemented these with off the shelf hardware components. Our cost for one unit was
significantly lower than it would have been to buy just one of all the necessary parts since we did
not have to purchase motors or several of the components to breadboard the circuit (Table 1).



Slave arm hardware

Slave arm electronics

Master arm

Other

Table 1: Bill of Materials (our cost)

Vendor Part number Description #in pack Quantity Price (1) Subtotals (1)
Lynxmotion [ASB-04 Aluminum Multi-Purpose Servo Bracket 2 1| $11.95 $11.95
Lynxmotion |ASB-09 Aluminum "C" Servo Bracket with Ball Bearings 2 1] $12.90 $12.90
Lynxmotion |HUB-08 Aluminum Tubing Connector Hub 2 2|  $8.00 $16.00
Lynxmotion |AT-04 Aluminum Tubing - 6" 1 2 $3.60 $7.20
Adafruit ID: 412 Solenoid 1 1|  $9.95 $9.95
Servocity HS-7950TH  |High Torque Digital Servo Motor 1 4| $119.99 $0.00
McMaster 16307332 Aluminum c-channel base 1 1| $15.06 $0.00
Adafruit I1D: 81 Motorshield 1 1| $19.50 $19.50
Sparkfun COM-00315 [SN754410 h-bridge 1 2 $2.35 $4.70
Adafruit ID: 50 Arduino UNO 1 1| $30.00 $30.00
Mouser 511-TIP102 [TIP102 (for solenoid) 1 1| $0.80 $0.80
Sparkfun COM-08589 |Diode 1N4001 1 1 $0.15 $0.15
McMaster 7395K44 Illuminated rocker switch 1 1|  $7.02 $7.02
Sparkfun COM-09288 |Rotary Potentiometer - Linear (10k ohm) 1 2|  $0.95 $1.90
Sparkfun COM-09190 |Momentary pushbutton 1 1|  $0.50 $0.50
SolidConcepts 3D printed parts 1 1| $0.00 $0.00
Sparkfun CAB-10647 |Ribbon Cable - 10 wire (15ft) 1 1|  $0.99 $0.99
Misc. jumper wire, resistors, connector,etc. $0.00| $0.00|

Art Store Foam core, padding, sketch paper, marker $25.00 $25.00
Total $148.56

7.1 Cost Analysis for Mass Production

The cost analysis for mass production was completed for 100 units (Table 2). Servomotors were
identified that would provide adequate torque (90 in-0z) but minimize cost. This cost does not
include the foam core backing or sketch paper.

Slave arm hardware

Slave arm electronics

Master arm

Other
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Table 2: Bill of Materials (cost per unit at 100 units)

Vendor Part number Description #in pack Quantity Price (100) Subtotals (100)
Lynxmotion |ASB-04 Aluminum Multi-Purpose Servo Bracket 2 1 $10.76, $10.76,
Lynxmotion |ASB-09 Aluminum "C" Servo Bracket with Ball Bearings 2 1 $11.61 $11.61
Lynxmotion |HUB-08 Aluminum Tubing Connector Hub 2 2 $7.20 $14.40
Lynxmotion |AT-04 Aluminum Tubing - 6" 1 2 $3.24, $6.48,
Adafruit ID: 412 Solenoid 1 1 $7.96 $7.96
Servocity HS-7950TH [High Torque Digital Servo Motor 1 4 $16.99 $67.96
McMaster 16307332 Aluminum c-channel base 1 1 $15.06 $15.06
Adafruit ID: 81 Motorshield 1 1 $15.60 $15.60)
Sparkfun COM-00315 |SN754410 h-bridge 1 2 $1.88 $3.76
Adafruit ID: 50 Arduino UNO 1 1 $25.46 $25.46
Mouser 511-TIP102 |TIP102 (for solenoid) 1 1 $0.53 $0.53
Sparkfun COM-08589 |Diode 1N4001 1 1 $0.12 $0.12
McMaster 7395K44 Illuminated rocker switch 1 1 $7.02 $7.02
Sparkfun COM-09288 [Rotary Potentiometer - Linear (10k ohm) 1 2 $0.76 $1.52
Sparkfun COM-09190 |Momentary pushbutton 1 1 $0.40 $0.40
SolidConcepts 3D printed parts 1 1 $5.00 $5.00
Sparkfun CAB-10647 [Ribbon Cable - 10 wire (15ft) 1 1 $0.79 $0.79
Misc. jumper wire, resistors, connector,etc. $2.00 $1.50,

Art Store Foam core, padding, sketch paper, marker
Total $195.92

Operation Guidelines

For general operation, use the master arm to position the slave arm in similar postures. The
button at the end of the master arm controls the solenoid at the end effector of the slave arm. To




extend the drawing implement press and hold the button on the master arm, and to retract the
drawing implement release the button.

8.1 Document hardware and software features to prevent damage to Arduino or other
components

The digital input/output pins on the Arduino can source 40mA and sink 50mA. Staying within
these limits prevents damage to the board. The two digital I/O pins we use are both protected by
safety resistors. There is a 220 ohm resistor from the master arm button to the Arduino, which
limits the current that can be sourced to 23mA. Another 1k ohm resistor is used to connect a
digital I/O pin to the base of the transistor, limiting the source current to SmA. In software, the
arm's motion is limited to remain within the allowable range. This prevents the master from
sending commands to the slave arm that it cannot perform. Without the software limits, the
motors would attempt to push the arm beyond its limits causing structural failure or motor
burnout.

8.2 Provide Guidelines for safe operation

To operate the arm safely, make sure you have a clear work space. The two pads on the base
show where the arm will make contact with the base if driven to the extremes. Do not place
anything here as it will get hit by the arm. In addition, do not swing the arm rapidly to its
extremes. This causes it to hit the pads with force and over time could cause the arm to
eventually break. In addition, be careful when moving the arm near the Arduino board as the
wires can reach up into the arms operational region. Needless to say, it is bad to hit wires or pull
them out.

8.3 Include provision for instantaneous shutdown

There is a switch that can instantaneously cut power to the motors. Use this if the robot has
deviated from normal working conditions or any time an instantaneous shutdown is desired.

9 Conclusion and Future Work

In this project we created a modular and extendable robotic arm and demonstrated it’s use as a
drawing mechanism through closed loop master-slave control. The advantages of design include
modularity and the ability to easily extend the software and hardware. A disadvantage of the
current design is that the proportional controller could be better tuned and/or augmented to a full
PID controller to allow for better tracking of the output vs. input signal.

We plan to give back to the open hardware community we learned from in this project by
publishing a tutorial on the build on Instructables.com, and perhaps pursuing other goals such as
a completed robotic assistive feeder design. The Doodlebot will also be used as a research
platform in the Applied Dynamics & Optimization Lab at NYU-Poly, and can be used for
outreach activities both on and off campus such as Maker Faire and in open lab events.

Appendix A
/*

Robot arm control using hacked servos and a master arm with
pots as control in

master-slave system.



*/
#include <AFMotor.h>

// lInstantiate both motors
AF_DCMotor shoulder(3);
AF_DCMotor elbow(4);

// declare pins

int MasterElbowPin = A4; // the pot iIn the robot arm elbow

int MasterShoulderPin = A5; // the pot in the robot arm shoulder
int SlaveElbowPin = Al;

int SlaveShoulderPin = AO;

int SolenoidPin = 2; // pin solenoid transistor is attached to
int DrawPin = 13; // pin button for drawing is attached to

// initialize constants

const int P_Elbow = 15; // this i1s the proportional gain
const int P_Shoulder = 10;

const double difconstE 60;

const double difconstS 60;

const int lowL = 50; // the lower bound of speed below which
the motor won"t move

const int SlaveElbowCCW = 961; // joint limits of slave
robotic arm

const int SlaveElbowCW = 100;

const int SlaveShoulderCCW = 220;

const int SlaveShoulderCWw = 750;

const int MasterElbowCCW = 743; // joint limits of master
robotic arm

const int MasterElbowCW = 0;

const int MasterShoulderCCW = 964;

const int MasterShoulderCW = 295;

// initialize variables
float range = 1; // use 1 to avoid any divide by O errors

int slaveElbowAngle = 0; // initialize all angles to O
int slaveShoulderAngle = 0O;

int masterElbowAngle = O;

int masterShoulderAngle = 0;

int pwmElbow = 0; // sets effective voltage level of motor
which sets speed
int pwmShoulder = O;



int elbowError = 0; // difference between master and slave
int shoulderError = 0O;

boolean isPressed = 0; // is the drawing button pressed or not

// PID

double delT;

unsigned long lastT;

double deltaElbow;

double deltaShoulder;

double lastElbow, lastShoulder;

void setup() {
Serial .begin(9600); // set up Serial library at 9600

bps

pinMode(SolenoidPin, OUTPUT);
pinMode (DrawPin, INPUT);

elbow.setSpeed(pwmElbow) ; // set the speed to pwmElbow
shoulder.setSpeed(pwmShoulder); // set the speed to
pwmE I bow

}

void loop() {
// read the values from all the pots
masterElbowAngle = analogRead(MasterElbowPin);
slaveElbowAngle = analogRead(SlaveElbowPin);
masterShoulderAngle = analogRead(MasterShoulderPin);
slaveShoulderAngle = analogRead(SlaveShoulderPin);

// constrain master and slave to ignore out of range values

masterElbowAngle = constrain(masterElbowAngle, MasterElbowCW,
MasterElbowCCW) ;

masterShoulderAngle = constrain(masterShoulderAngle,
MasterShoulderCW, MasterShoulderCCW);

slaveElbowAngle = constrain(slaveElbowAngle, SlaveElbowCW,
SlaveElbowCCW) ;

slaveShoulderAngle = constrain(slaveShoulderAngle,
SlaveShoulderCCW, SlaveShoulderCWw);

// now map the angles so they correspond correctly

masterElbowAngle = map(masterElbowAngle, MasterElbowCCW,
MasterElbowCW, 45, 135);

slaveElbowAngle = map(slaveElbowAngle, SlaveElbowCCW,
SlaveElbowCW, 45, 135);



masterShoulderAngle = map(masterShoulderAngle,
MasterShoulderCCW, MasterShoulderCw, 0, 135);

slaveShoulderAngle = map(slaveShoulderAngle, SlaveShoulderCCWw,
SlaveShoulderCW, 0, 135);

Serial .print(millis(Q)); // debug value
Serial.print(” ™);

Serial _.print(masterElbowAngle); // debug value
Serial .print(" ");

Serial .print(slaveElbowAngle); // debug value
Serial .print("" ");

Serial .printIn(pwmElbow); // debug value

// DRIVE ELBOW
unsigned long now=millis();
delT=double(now-lastT);

lastT=now;

elbowError = (slaveElbowAngle - masterElbowAngle);

deltaElbow = (elbowError-lastElbow)/delT;

pwmElbow = P_Elbow * elbowError + difconstE*deltaElbow;

lastElbow=elbowError;

pwmElbow = abs(pwmElbow);

pwmElbow = constrain(pwmElbow, lowL, 255);

elbow.setSpeed(pwmElbow) ; // set the speed

iT ( slaveElbowAngle > (masterElbowAngle + range)) {
elbow. run(FORWARD) ; // turn i1t on going forward

else 1t ( slaveElbowAngle < (masterElbowAngle - range)) {
elbow. run(BACKWARD) ; // turn i1t on going forward

else elbow.run(RELEASE); // stopped

// DRIVE SHOULDER

shoulderError = (slaveShoulderAngle - masterShoulderAngle);

deltaShoulder = (shoulderError-lastShoulder)/delT;

pwmShoulder = P_Shoulder * shoulderError;// +

difconstS*deltaShoulder;
lastShoulder=shoulderError;
pwmShoulder = abs(pwmShoulder);

pwmShoulder

constrain(pwmShoulder, lowL, 255);

shoulder.setSpeed(pwmShoulder); // set the speed

iT ( slaveShoulderAngle > (masterShoulderAngle + range) ) {
shoulder.run(BACKWARD) ; // turn it on going forward



}

else 1Tt ( slaveShoulderAngle < (masterShoulderAngle - range) )

{
shoulder.run(FORWARD) ; // turn it on going forward

}
else shoulder.run(RELEASE); // stopped

// DRIVE SOLENOID
isPressed = digitalRead(DrawPin);
digitalWrite(SolenoidPin, isPressed);

}
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