DETACHABLE
POTHOLE DETECTION AND WARNING
SYSTEM

Kwok Yu Mak
Valentin Siderskyi
Lamia Iftekhar
Existing work

• Obstacle detection
 – Mechanical
 – Image processing
 – Mostly protruded obstacles

• Autonomous avoidance
Current needs

• Pothole detection
 – for baby strollers, wheelchairs, grocery carts etc.

• Warning system only
 - not autonomous control
 - wheelchair users prefer manual control
 - too risky for baby strollers
Project Objective

- To build a handy, detachable, user-friendly device that can be mounted on a variety of human-manuevered slow-speed vehicles.

Focus on: baby strollers
Detection method

• Attempt
 – Mechanical extension: bulky, already done
 – Laser sensors: too sensitive, costlier

• Chosen
 - PING)))™ Ultrasonic Distance Sensor (#28015)
Warning Method

• Vibration Motor
 – Can be turned off if desired
• LEDs
 – Two for obstacles
 – Two for battery levels
 – On/off
• Battery meter
 – Using voltage divider
Overall structure

- System A attached to front of vehicle
- System B worn on wrist
Mechanical Design
System A
Mechanical Design
System A: close-up
Mechanical Design
System B
Mechanical Design
System B: Vibrator Motor close-up
Circuit of System B
Circuit Diagram
System A
Circuit Diagram
System B
'----------Search for critical angle----------

getcriticalAngle:
GOSUB getDistance

IF 2260*distance1 < 300 THEN
 motorAngle1 = motorAngle1 + 1
 FOR counter = 1 TO 10
 PULSOUT motor1, motorAngle1*10
 PAUSE 20
 NEXT
GOTO getCriticalAngle
ELSEIF 2260*distance2 < 300 THEN
 motorAngle2 = motorAngle2 - 1
 FOR counter = 1 TO 10
 PULSOUT motor2, motorAngle2*10
 PAUSE 20
 NEXT
GOTO getCriticalAngle
ELSE
 motorAngle1 = motorAngle1 - 1
 motorAngle2 = motorAngle2 + 1
 FOR counter = 1 TO 10
 PULSOUT motor1, motorAngle1*10
 PULSOUT motor2, motorAngle2*10
 PAUSE 20
 NEXT
GOSUB getDistance

ENDIF
'-------- Detect Pothole--------------'
detectPothole:
DO
 GO SUB getDistance
 IF 2260**distance1 > (initialdistance1 + 5) AND 2260**distance1 < 100 THEN 'right
 warning = 2
 ENDIF
 IF 2260**distance2 > (initialdistance2 + 5) AND 2260**distance2 < 100 THEN 'left
 warning = 4 + warning
 ENDIF
 IF battery = 0 THEN
 warning = 1 + warning
 ENDIF

 PULSOUT 7, 1200
 SEROUT 7, 16460, ["!", warning]
 PAUSE 10
 warning = 0
LOOP
END

'-------- Get Distance ---------------'
getDistance:
 PULSOUT ping1,5
 PULSIN ping1,1, distance1
 PULSOUT ping2,5
 PULSIN ping2,1, distance2

 DEBUG CLS, DEC 2260**distance1, " ", DEC motorAngle1*10, " ", DEC initialdistance1
 DEBUG CR, DECS 2260**distance2, " ", DEC motorAngle2*10, " ", DEC initialdistance2
 DEBUG CR, DEC battery
 PAUSE 100
RETURN
PBasic Code
System B

' pin 7 left
' pin 6 right
' pin 8 receiver
' pin 9 ON/OFF
' pin 11 hand held battery
' pin 13 cart battery
' pin 2 battery meter
' pin 0 motor control

control VAR Byte
'control
'LSB down TO msg
'0 cart battery active high
'1 right
'2 left

HIGH 13
DO
OUT11 = IN2 ' handheld battery
SERIN 8, 16468, [WAIT("!")], control
IF control < 7 THEN
OUT13 = ~control.BIT0
OUT6 = control.BIT1
OUT7 = control.BIT2
IF control >= 2 THEN
OUT0 = 1
PAUSE 500
OUT0 = 0
ENDIF
ENDIF
LOOP

LOW 9 'power
Prototype Cost

<table>
<thead>
<tr>
<th>Serial No.</th>
<th>Item Name</th>
<th>Quantity</th>
<th>Price per item ($)</th>
<th>Total cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BASIC Stamp 2 Module</td>
<td>2</td>
<td>49</td>
<td>98</td>
</tr>
<tr>
<td>2</td>
<td>BS2 Board of Education</td>
<td>1</td>
<td>69.95</td>
<td>69.95</td>
</tr>
<tr>
<td>3</td>
<td>PING))) Ultrasonic Distance Sensor</td>
<td>2</td>
<td>29.95</td>
<td>59.9</td>
</tr>
<tr>
<td>4</td>
<td>Standard Servo (#900-00005)</td>
<td>2</td>
<td>12.95</td>
<td>25.9</td>
</tr>
<tr>
<td>5</td>
<td>DC Vibration Motor</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Parallax 433.92 MHz RF Transmitter (#27980)</td>
<td>1</td>
<td>39.95</td>
<td>39.95</td>
</tr>
<tr>
<td>7</td>
<td>Parallax 433.92 MHz RF Receiver (#27981)</td>
<td>1</td>
<td>39.95</td>
<td>39.95</td>
</tr>
<tr>
<td>8</td>
<td>Velcro</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>C-Clamp</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>Connection cables/wires</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>Plexiglas</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>NPN BJT TIP120</td>
<td>1</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>13</td>
<td>7805 Voltage Regulator</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GRAND TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>360.55</td>
</tr>
<tr>
<td>Serial No.</td>
<td>Item Name</td>
<td>Quantity</td>
<td>Price per item ($)</td>
<td>Total cost ($)</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>----------</td>
<td>--------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>1</td>
<td>PIC micro controller</td>
<td>2</td>
<td>2.50</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Custom Ultrasonic Distance Sensor w/ Circuitry</td>
<td>2</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>Standard Servo (#900-00005)</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>DC Vibration Motor</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Custom RF Transmitter</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>Custom RF Receiver</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>Velcro</td>
<td>1</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>8</td>
<td>C-Clamp</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>Switches</td>
<td>2</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>10</td>
<td>Plastic Cover</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>NPN BJT TIP120</td>
<td>1</td>
<td>0.05</td>
<td>.05</td>
</tr>
<tr>
<td>12</td>
<td>7805 Voltage Regulator</td>
<td>1</td>
<td>.05</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>GRAND TOTAL</td>
<td></td>
<td></td>
<td>40.40</td>
</tr>
</tbody>
</table>
CONCLUSION

• Prototype was successful
• Possible improvements
 – Smaller wrist part
 – Earlier detection of potholes.