

UAV ATTITUDE AND HEADING HOLD SYSTEM

Parth Kumar ME5643: Mechatronics

NEW YORK UNIVERSITY

Introduction

- Goal: To create a Low Cost Plug and Play UAV
- UAV Classification
 - Large Scale
 - Medium Scale
 - Micro
- Poly UAV: Smaller than Medium Scale UAV's, larger than Micro sized.
- Ability to carry small payloads
- Plug-n-Play
- Open Platform for testing control algorithms

Hardware & Software

- Hardware Components
 - Airframe
 - Flight Computer
 - Inertial Measurement Unit (IMU)
 - Global Positioning System (GPS)*
 - Servo Controller
 - Airspeed Sensor*
 - Flight Radio
 - Radio Modem*
 - Safety Switch

*Not present in current configuration

- Software Components
 - Flight and Control Software
 - Hardware Modules
 - Controller Module
 - Integration Architecture
 - Operating System

Budgets/Costs

- Project funded through NASA Space Grant (Prof. Kapila in Poly)
- Support from Ames Research Center

Component	Description	Poly	NASA
Airframe	Hangar 9 1/4 Scale J3 Piper Cub	\$630	
Engine	Fuji Imvac BT43		\$512
Hardware	Servos, Props, connecters etc.	\$800	
Aircraft Radio	JR XP662		
Flight Computer	Fit PC2	\$315	
GPS Sensor	Garmin 18x USB		\$90
IMU	Microstrain 3DM-GX3	\$2000	
Servo Controller	Propeller Servo Control Unit	\$40	
Safety Switch	NASA Custom UAV safety switch		
Airspeed Sensor	MPXV500 Diff. Pressure Sensor	\$20	
Telemetry Radio	MaxStream OEM 900 Mhz		
Control Software	Reflection		
Operating System	Microsoft Windows XP Embedded SDK		\$1000
Approximate Total		\$3805	\$1602

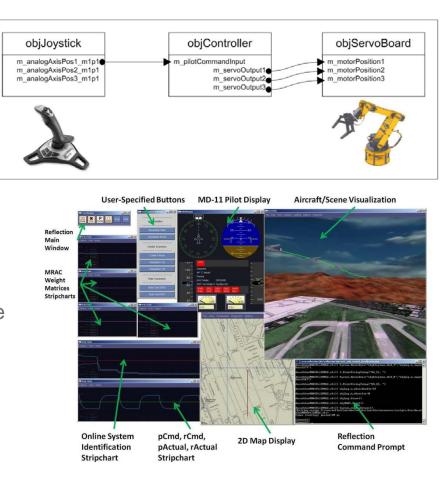
Table 1: Cost Description

- Flight Computer: Fit PC2
 - Intel Atom Z530 1.6GHz
 - 1GB DDR2-533 on-board
 - 6 USB 2.0 High Speed ports
 - 802.11g WLAN
 - 16Gb Solid State Hard Drive
- Advantages
 - Smallest form factor
 - Rugged and Robust
 - Quick Deployment : No assembly Required

- Airframe: 1/4th scale Piper J3 Cub
 - Well instrumented aircraft
 - Available in Almost Ready to Fly Kit
 - Large wing area allows for higher payload capacity
 - Slow response
 - Gasoline Engine (Fuji-Imvac BT-43i) improves range
 - Individually actuated control surfaces can simulate damage

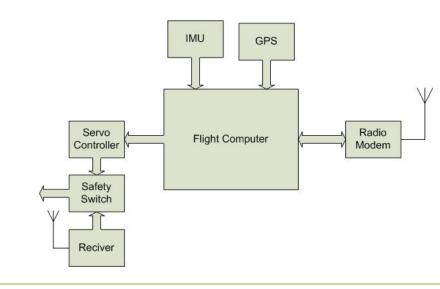
- Inertial Measurement Unit : Microstrain 3DM-GX3 25
 - Smallest and Lightest AHRS
 - Calibrated for sensor misalignment, gyro Gsensitivity, magnetometer hard-iron effects.
 - On board filtering
 - USB 2.0 and serial TTL communication
 - Sampling rate between 100Hz and 1000 Hz

- Servo Controller: Propeller Servo Control Board
 - P8X32A-M44 Propeller chip on-board
 - 16 Servos
 - Servo Ramping
 - Baud Rate 38.4 kbps
 - USB 2.0 serial TTL
- Safety Switch: NASA Custom
 - Optically Isolates Manual Radio System from Autopilot



Software

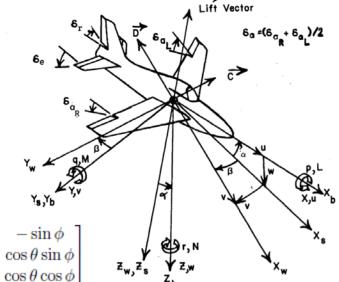
- Reflection Architecture
 - UAV built around Plug-n-Play architecture
 - Visual Studio based (C++)
 - Modular Architecture
 - Provides various functionalities like
 Module swapping in run-time
 - Simulation Environment provides rapid development and testing



Avionics System

- System Powered by two separate batteries
 - 4200 mAh NiMH servo power
 - 2450 mAh LiPo Computer Power
 - Voltage regulator

Software Modules

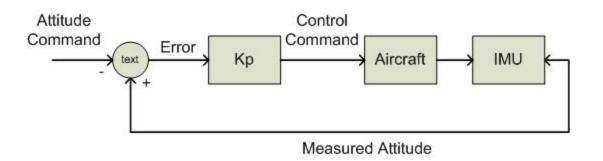

- objPSCU:
 - Communicates with the PSCU
 - Sends 8 byte commands
 - Servo position is set by sending a number between 1250 and 250
 - Accepts Scaled inputs between 1.0 and -1.0
- objMicrostrain
 - Communicates with the IMU
 - Sends single byte binary commands
 - Recieves fixed length binary replies
 - Outputs Acceleration Vector, Angular Rate Vector and Orientation Matrix

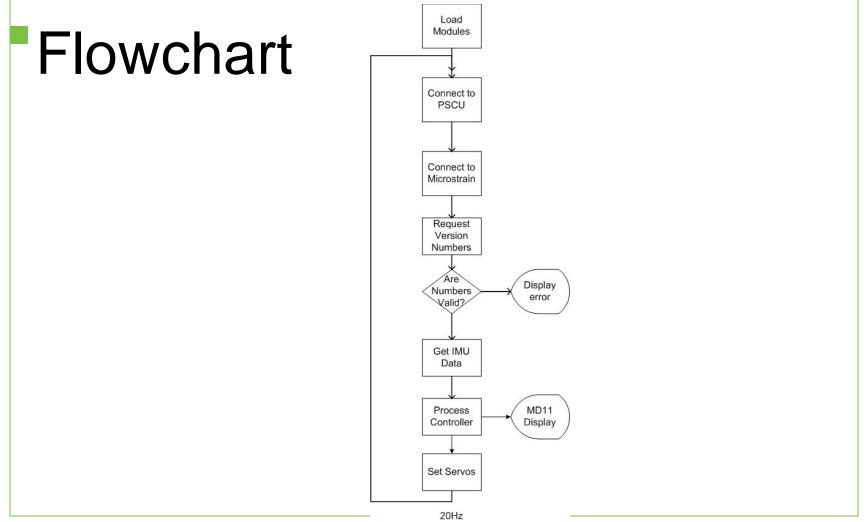
Background

- North East Down Body fixed co-ordinate System
- Rotation Matrix from World axis to Body Axis Defined by

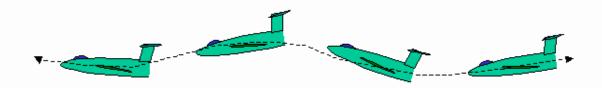
 $M = \begin{bmatrix} \cos\phi\cos\theta & \sin\phi\cos\theta & - \\ \cos\psi\sin\theta\sin\phi - \sin\psi\cos\phi & \sin\psi\sin\theta\sin\phi + \cos\psi\cos\phi & \cos \\ \cos\psi\sin\theta\cos\phi + \sin\psi\sin\theta & \sin\psi\sin\theta\cos\phi - \cos\psi\sin\theta & \cos \\ \cos\psi\sin\theta\cos\phi - \cos\psi\sin\theta & \cos\theta & - \cos\psi\sin\theta & \cos\theta \end{bmatrix}$

• Euler Angles


pitch = arcsin(-M13)
roll = arctan(M23/M33)
yaw = arctan(M12/M11)


Controller

- Heading and Attitude Hold system
 - Proportional controller to hold and correct Roll, Pitch, Yaw commands
 - Input parameters: Euler Angles (Roll Pitch and Yaw)
 - North East Down Co-ordinate System
 - Input parameters: Euler angle Commands, Aircraft states
 - Output Parameters: Scaled Control Surface Command



Applications & Future Work

- Application current system
 - Oscillation reducer. Example Phugoid damper.

- Inner Loop control for system identification
 - Outer Loop program for constant control doublets
- Future Work
 - Integrate GPS: Sensor Fusion
 - Airspeed Indicator
 - Radio Modem to beam telemetry data

