SMART TRASH CANS

September 2009 – December 2009
Mihai Pruna, Pavel Khazron, Jennifer S. Haghpanah
Smart kitchen aids, smart power tools, smart home appliances, smart security system, etc.
SMART TRASH CANS

• Outline

• Current Trashcans
• Capacitance Sensors
• Capacitance based Trashcan
• Bill of materials for capacitance based trashcan
• Photoresistor and RCtime
• Photoresistor and Rctime based trashcan
• Bill of materials for Photoresistor and Rctime based trashcan
• Conclusions & Futureworks
SMART TRASH CANS

Smart Trash Cans RFID-Based Recycling Technology Makes Philadelphia Greener

Recycling Without Sorting Engineers Create Recycling Plant That Removes The Need To Sort
SMART TRASH CANS

- Aluminum Cans: Capacitance = 2.15
- Plastic Bottles: Capacitance = 2.0 - 2.15
- Paper Cups: Capacitance = 1.5
- Air: Capacitance = 1.5
SMART TRASH CANS

Equation 1
\[C = \frac{Q}{V}, \quad C = \frac{dQ}{dV} \]

Equation 2
\[C = \frac{\varepsilon_0 \varepsilon_r A}{d} \]

Equation 3
\[C = \frac{\varepsilon_0 \varepsilon_r A}{w-d} \]

Capacitance = 2.15

Capacitance = 2.0 - 2.15
SMART TRASH CANS

![Graph showing capacitance over time with peaks labeled METAL and PLASTIC.]
SMART TRASH CANS
SMART TRASH CANS

<table>
<thead>
<tr>
<th>Bin 1</th>
<th>Bin 2</th>
<th>Bin 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastic</td>
<td>Paper</td>
<td>Aluminum</td>
</tr>
</tbody>
</table>

![Images of three trash cans labeled for different materials: Bin 1 for plastic, Bin 2 for paper, and Bin 3 for aluminum.](image-url)
SMART TRASH CANS
SMART TRASH CANS

Bill of Materials/Capacitance

- BS2 $240
- Cables $ 2.00
- Labor $200
- Trash Can $ 30.00
- Label Maker $ 25.00
- White Cardboard $ 15.00
- Trash $ 8.00
- Capacitance plates $ 10.00
- Tape $ 15.00
SMART TRASH CANS
SMART TRASH CANS

- Plastic Bottle
 - Transparent Light
- Aluminum Can
 - Reflected Light
- Paper Cup
 - Scattering Light/Variable Reflectance
PHOTORESISTOR SMART TRASH CAN CONCEPT
SMART TRASH CAN DETAIL
SMART TRASH CANS
SMART TRASH CANS

[Diagram of a circuit involving ULTRASONIC SENSOR, PHOTORESISTOR, STANDARD SERVO, and LCD DISPLAY]
SMART TRASH CANS

<table>
<thead>
<tr>
<th>Material</th>
<th>high time right</th>
<th>low time left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastic Bottle</td>
<td>high = 05162</td>
<td>low = 04165</td>
</tr>
<tr>
<td></td>
<td>left = 12050</td>
<td>left = 09954</td>
</tr>
<tr>
<td>Aluminum Can</td>
<td>high = 42550</td>
<td>low = 34598</td>
</tr>
<tr>
<td></td>
<td>left = 19742</td>
<td>left = 14722</td>
</tr>
<tr>
<td>Paper Cup</td>
<td>high = 45538</td>
<td>low = 43780</td>
</tr>
<tr>
<td></td>
<td>left = 12542</td>
<td>left = 11417</td>
</tr>
</tbody>
</table>

Table 1: Experimental values extracted with the RCTime command for each photoresistor
SMART TRASH CANS

Bill Of Materials/ Photoresistor

- BS2 $240
- Cables $2.00
- Labor $200
- Light source with battery $30.00
- Trash Can $100.00
- Vex dirty parts kit $20.00 on ebay
- Duck tape $2.00
- Styrofoam $2.00
- White Cardboard $15.00
- Tape $5.00
Conclusions/ Future Work

We have designed two trashcans with the same capabilities based on resistance and capacitance

This opens up some great simple ideas for smart trash cans in homes and schools

More people would become interested in science, technology, engineer, and recycling if they have this in their homes and schools
SMART TRASH CANS

Lion Precision, “Capacitive Sensor Operation and Optimization,” St. Paul, MN., 2009

Dr. Vikram Kapila. Polytechnic Institute of New York University, 6 MetroTech Center, Brooklyn NY,11201, 2009. Mechatronics class, topics 4 and 6

We would like to acknowledge professor Kapila, GK-12 fellowship, arlo Yuvienco, Parth Kumar, Peter James baker, Nicole Abaid, Matte, student offices on the basement floor, and eighth floor bathroom trashcan.