
MultiQ-3 TM

8 Analog to Digital Converters
8 Digital to Analog Converters

Up to 8 Quadrature input decoders/counters
8 Digital inputs

8 Digital outputs
3 Realtime clocks

PROGRAMMING MANUAL

Quanser Consultin g

CAUTION

The flat ribbon cables must be inserted into the MultiQ-3 board and the
TERMINAL board with the correct orientation . Do not force the connectors in.

CAUTION

The board is static electricit y sensitive. Be ver y careful with electrical
dischar ge. Alwa ys touch a ground plane BEFORE you handle the board.

CAUTION

Some of the wirin g you perform to the terminal board carries POWER. Be sure
your wirin g is correct as appl ying power incorrectl y may either dama ge the
device you are connectin g to, the board or your computer!

NEED HELP ?

CALL US AT (905) 527 5208 or FAX your question to (905) 570 1906

OR EMAIL TO : help@quanser.com

1

Photo of MultiQ-2. The MultiQ-3 has 8 encoder connectors on the terminal board.

MultiQ-3 I/O BOARDTM

Quanser Consultin g

1.0 General description

The MultiQ-3 is a general purpose data acquisition and control board which has 8 single ended analog inputs, 8
analog outputs, 16 bits of digital input , 16 bits of digital output, 3 programmable timers and up to 8 encoder inputs
decoded in quadrature (option 2E to 8E). Interrupts can be generated by either of the three clocks, one digital input
line and the end of conversion from the A/D.

The system is accessed through the PC bus and is adressable via 16 consecutive memory mapped locations which
are selected through a DIP switch located on the board.

2.0 Principles of operation

2.0.1 Terminal board
Turn off the PC. Guide the flat ribbon cables carefully out through the backplane and then insert the MultiQ board
into the ISA slot. Tighten the screw. Insert the two flat ribbon cables into the terminal board. Make sure you insert
them in the correct orientations.

Turn on the PC. The LED on the terminal board should li ght up. If not, then the FUSE on the terminal board
may be blown. Check your connections first. If they seem fine, then turn off the computer and check the fuse. It is
a 1 ampere field replaceable fuse similar to those used in a PC keyboard. Any computer repair shop should have
them.

2

2.1 Analo g to di gital conversion

The A/D of the MultiQ is a single ended bipolar signed 13 bit binary (12 bit plus sign) A/D. You can perform a
conversion on one of 8 channels by selecting the channel and starting a conversion. the EOC_I (end of conversion
interrupt) bit in the STATUS REGISTER indicates that the data is ready and can be read. The data is read by issuing
2 consecutive 8 bit reads from the AD_DATA register.

The data returned is two 8 bit words which must be combined to result in a 16 bit signed word. 5 volts input maps
to 0xFFF while 0 volts maps to 0x0 and -5 Volts maps to 0xFFFF000.

2.1.1 Wirin g to the A/D

All inputs to the A/D multiplexer are single ended in the range +/- 5 Volts and should be wired to the RCA jacks
labelld Analg inputs.

3

2.1.2 Antialiasin g filters

If you wish to low pass filter the anlog signals before they are applied to the A/D converter, you may do so by
populating the section of the terminal board indicated in the above figure. It is hi ghly recommended that you
attach a capacitor to the input of each A/D. This is simpl y done b y solderin g a capacitor at the appropriate
location. The factory configuration is Ra = short, Rb = open and C = open. The choice for the component values
depends on the impedence of the sensor and the sampling frequency of the control software. Typically you select
a cutoff frequency less than half the sampling frequency.

A/D Ra Rb C

0 R1 R5 C2

1 R2 R6 C3

2 R3 R7 C4

3 R4 R8 C5

4 R12 R16 C9

5 R11 R15 C8

6 R10 R14 C7

7 R9 R13 C6

2.2 Analo g output

The digital to analog (D/A) converters are 12 bit unsigned binary. An input of -5 volts maps to 0x000, 0 volts to 0x3FF
and 5 volts maps to 0xFFF. Your program should write a 12 bit number (0 to 4095) to the appropriate register and
latches the data. The analog outputs change when the data is latched.

2.3 Encoder Inputs

The board can be equipped with up to eight encoder decoders.
(Models -2E, 4E , 6E and 8E). The encoders data is decoded
in quadrature and used to increment or decrement a 24 bit
counter. With 24 bits, you can obtain 16,777,215 counts. With
a 2000 line encoder in quadrature, this results in 8000 counts
per revolution and 2097 revolutions can be measured without
overflowing the counters. Higher counts can be handled by
software.

2.4 Insertin g the encoder chips

If you are up gradin g the board and insertin g the encoder
chips yourself, please ensure that the y are inserted in the
orientation shown on the last pa ge of this manual. Also
make sure the legs are not bent.
Each encoder chip accommodates two quadrature encoders.

2.3.1 Wirin g to the Encoder inputs.

Each encoder connector is equipped with one 5 pin DIN socket and one 10 pin header on the terminal board. You
may use either of these to attach an encoder to the desired channel. The connector supplies a +5V, and GND
to bias the encoders and receives an 'A' channel and a 'B' channel from the encoder. You must use 5 Volt output
encoders onl y. The figures above show the pin definition for the 5 pin DIN connector and the 10 pin header and
the way to wire them. Note that this is the view from the insertion direction.

4

2.4 Digital inputs

The board can read 16 digital input lines mapped to one I/O address. The digital input is normally high ('1') and
results in a low ('0') when the line is pulled to GND. Digital input line #0 can be tied to an interrupt using the jumpers
supplied.

2.5 Digital outputs

The board can control 16 individual digital outputs mapped to one I/O address. Writing a '0' to the appropriate bit
results in zero volts (TTL LOW) at the output while writing a '1' results in 5 Volts (TTL HIGH).

2.6 Realtime clocks

The board is equipped with three independent programmable clock timers. Each timer can be programmed to run
at a frequency between 2 MHz Hz and 30.52 Hz. The principle of operation is to write a divisor (N) to the desired
clock and the output frequency will be 2.0/N MHz. (N) is a 16 bit integer value between 2 and 65535 (0xFFFF). The
output of any of the three clock can be tied to an interrupt line using a jumper on the board.

3.0 PROGRAMMING

3.1 Base address selection

The base address is selected by using the dip switches(SW2) on the board. Factory configuration is 0x320. make
sure there are no other devices on that address and up to Base+0xF (0x32F factory configuration).

Base Address

B A 9 8 7 6 5 4 3 2 1 0

0 0 SW2-F SW2-E SW2-D SW2-C SW2-B SW2-A Decoded on board

3.1.1 Factor y confi guration

Base Address

0 0 SW2-F SW2-E SW2-D SW2-C SW2-B SW2-A Decoded on board

0 0 1(OFF) 1(OFF) 0(ON) 0(ON) 1(OFF) 0(ON) 0

3 2 0

3.2 Board Re gisters The table below shows the registers on the MULTIQ. Each register is described in its
appropriate section.

Base + Read Write Size

0 DIGIN_PORT DIGOUT_PORT 16 bit

1

2 DAC_DATA 16 bit

3

4 AD_DATA AD_CS 16 bit write
8 bit read

5

6 STATUS CONTROL 16 bit

7

5

8 N/A CLK_DATA 8 bit

9 N/A N/A N/A

A N/A N/A N/A

B N/A N/A N/A

C ENC_DATA ENC_DATA 8 bit

D N/A N/A N/A

E ENC_CONTROL ENC_CONTROL 8 bit

D N/A N/A N/A

3.2.1 Digital port : Base + 0 (DIGIN_PORT & DIGOUT_PORT)

3.2.1.1 Write (DIGOUT_PORT)

This is the Digital outport port. A 16 bit write to this port outputs the 16 bit data to the digital output header on the
terminal board. Eg. writing a 0x0F40 results in bits 11,10,9,8 and 4 to go high.

DIGIN_PORT Write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DO DO DO DO DO DO DO DO DO DO DO DO DO DO DO DO
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3.2.1.2 Read (DIGIN_PORT)

This is the Digital input port. A 16 bit read from this board returns the digital levels at the header labelled Digital input
on the terminal board. The inputs are tied high and a read with nothing connected to the header results in reading
a 0xFFFF. A returned value of 0xF5FF means that bits 11 and 9 have been pulled low by an external device (for
example a switch).

DIGIN_PORT Read

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DI DI DI DI DI DI DI DI DI DI DI DI DI DI DI DI
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3.2.2 D/A data Port : Base + 2 (DAC_DATA)

3.2.2.1 Write (DAC_DATA)

A write to this port sets up the Data for the D/A output. The data should be written to bits(DO11 to DO0). A value
of 0 puts out -5 Volts, a value of 0x1FF puts out 0 Volts and 0xFFF puts out +5 Volts. The output channel is selected
by writing to bits (DA2 DA1 DA0) of the CONTROL REGISTER and the output is latched when a (11) is written to
bits (LD0 LD1) of the CONTROL REGISTER.

DAC_DATA Write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NA NA NA NA AO AO AO AO AO AO AO AO AO AO AO AO
11 10 9 8 7 6 5 4 3 2 1 0

6

3.2.2.2 Read (NOT APPLICABLE)

3.2.3 A/D Register : Base + 4 (AD_CS and AD_DATA)

3.2.3.1 Write (AD_CS)

A write to this register (any data) initiates a conversion after the A/D has been properly set up using the CONTROL
REGISTER.The program must wait for (EOC) to go high in the STATUS REGISTER before initiating a conversion.

3.2.3.1 Read (AD_DATA)
This is an 8 bit read re gister and contains the high byte on the first read and the low byte on the second read. The
structure of the two 8 bit reads is shown below:

AD_DATA Read (First time)

7 6 5 4 3 2 1 0

SIGN SIGN SIGN SIGN AI AI AI AI
11 10 9 8

AD_DATA Read (Second time)

7 6 5 4 3 2 1 0

AI AI AI AI AI AI AI AI
15 14 13 12 11 10 9 8

To convert the data to a voltage the two bytes should be combined into a 16 bit word as follows:

integer_data = (high_byte<<8)|(low_byte&0xFF);
volts = integer_data * 5.0/4096;

where (<<) is the shift left operator, (|) is bitwise 'OR' and (&) is bitwise 'AND'. This means mask off the left 8 bits of
the low byte just in case there is extraneous noise, and then merge it with the high byte shifted left 8 bits. This results
in a number between (-4096) and (4095). These are mapped to -5V and +5V.

3.2.4 CONTROL REGISTER: Base + 6 (STATUS & CONTROL)

3.2.4.1 Write (CONTROL)

CONTROL REGISTER Writre

X X X LD1 LD0 CLK S/H CAL AZ EN A2 A1 A0 DA2 DA1 DA0
E2 E1 E0 RC1 RC0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits 0-2 (DA0 DA1 DA2) : Select the D/A channel number. eg writing a 0x03 selects channel D/A ch3
Bits 0-1 (RC0 RC1) : Select the realtime clock register
Bits 3-5 (A0 A1 A2) : Select the analog input channel you want to Multiplex to the A/D
Bits 3-5 (E0 E1 E2) : Select the encoder channel on which you want to perform operations
Bit 6: (MX) Enable the 8 channel multiplexer
Bit 7: (AZ) Enable Auto Zero on the A/D
Bit 8: (CAL)Enable Autocalibration on the A/D
Bit 9: (S/H) Disable Sample and Hold on the A/D Keep this bit hi gh all the time
Bit 10 (CLK): Select base clock frequency for the A/D. 1 is 4 MHz, 0 is 2 MHz. (Always use 4 Mhz). Keep this bit
high all the time
Bit 11-12(LD0,LD1): Latch data to the selected D/A channel when both bits are set high.

7

3.2.4.2 Read (STATUS)

STATUS REGISTER Read

EOC_I EOC CT1 CT2 CT0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits 0-2(CT0,CT1 CT2): Counter timeout states for the three timers.
Bit 3:(EOC) End of conversions on the A/D. Goes high when A/D is ready for another conversion.
Bit 4:(EOC_I) End of conversion Interrupt. Goes high when A/D conversion is complete.
3.2.5 Clock data register: base + 8 CLK_DATA

3.2.5.1 Write (CLK_DATA)

This an 8 bit write only register that accesses any of the four registers on the realtime clock chip. The register
(CLK_0 to CLK_4, see section on programming) is selected by writing to bits (RC1 RC0) of the CONTROL
REGISTER and then writing the data to CLK_DATA.

CLK_DATA Write

7 6 5 4 3 2 1 0

CD CD CD CD CD CD CD CD
7 6 5 4 3 2 1 0

3.2.5.2 Read (NOT APPLICABLE)

3.2.6 ENCODER REGISTERS Base + 0xC (ENC_DATA) and Base + 0xD (ENC_CONTROL)

In order to read or write to the appropriate channel, you must first select the channel by writing to bits (E2 E1 E0)
of the CONTROL REGISTER (Base + 0x06). Writing to this register selects which of the 8 encoder counters you
want to operate on. The encoder number is specified in bits (E2 E1 E0)

3.2.6.1.1 Read ENC _DATA

You should always reset the byte counter before you read from this register. You then read three consecutive bytes
from this register. The first read is the low byte of the data, the second read is the mid byte and the third read is the
high byte. You construct the 24 bit counter by merging the three bytes as follows:

data = low_byte | (mid_byte << 8) | (high_byte <<16)

ENC_DATA Read (first time)

7 6 5 4 3 2 1 0

E7 E6 E5 E4 E3 E2 E1 E0

ENC_DATA Read (second time)

7 6 5 4 3 2 1 0

E15 E14 E13 E12 E11 E10 E9 E8

ENC_DATA Read (third time)

7 6 5 4 3 2 1 0

E23 E22 E21 E20 E19 E18 E17 E16

8

3.2.6.1.2 Write ENC _DATA

This is an 8 bit write register to which you can write preload values to the counters as well as the clock filtering
frequency. The clock filter frequency determines the frequency of the digital filter which is used to filter the A & B
signals from the encoders. The base frequency is 4 MHz. Normally you keep the frequency at 4 MHz.

3.2.6.2 Write ENC_CONTROL

Writing to this register allows for various functions to be performed. These are described below:

ENC_CONTROL Write

7 6 5 4 3 2 1 0

EC7 EC6 EC5 EC4 EC3 EC2 EC1 EC0

EC7: Keep always low

EC6 EC5

0 0 Select Reset and load decoder register (RLD)

0 1 Select Counter mode register (CMR)

1 0 Select I/O control register (IOR)

1 1 Select index control register (IDR)

Once you have determined which of the above 4 registers you want to write to, you then select the lower 5 bits
according to the function you want to achieve.

3.2.6.2.1 Writin g to reset and load re gisters (RLD)

EC6 EC5

0 0 Select Reset and load decoder register (RLD)

EC4 EC3

0 0 NOP

0 1 Transfer preload to counter. Used to preload the counters with a value

1 0 Transfer counter to output latch. Must be performed before a read.

1 1 Transfer prescale factor to prescaler. Used to set digital filter frequency.

EC2 EC1

0 0 NOP

0 1 Reset 24 bit counter to 0

1 0 Reset Borrow, Carry and Compare toggle flip flops(NOT USED)

1 1 Reset Error

EC0: Reset Byte pointer. Writing a ‘1' to this bit resets the byte pointer for the following read operations. Resetting
the byte pointer ensures that the read cycle from the EN_DATA regsiter remain in synch with the expected sequence
of lowbyte, mid byte and high byte.

9

3.2.6.2.2 Counter mode re gister (CMR)

EC6 EC5

0 1 Select Counter mode register (CMR)

EC4 EC3

0 0 NOT USED

0 1 NOT USED

1 0 NOT USED

1 1 Quadrature count

EC2 EC1

0 0 Normal count

0 1 NOT USED

1 0 NOT USED

1 1 NOT USED

EC0: ‘0' = Binary count, ‘1' = BCD. Normally use ‘0'.

3.2.6.2.3 Counter mode re gister (IOR)

EC6 EC5

1 0 Select I/O control register (IOR)

EC4 EC3

0 0 NOT USED

0 1 NOT USED

1 0 NOT USED

1 1 NOT USED

EC2 EC1

0 0 NOT USED

0 1 NOT USED

1 0 NOT USED

1 1 NOT USED

EC0: ‘0' = Disable counter , ‘1' = Enable counter. Normally ‘1'

10

3.2.6.2.4 Index control re gister (IDR)

EC6 EC5

1 1 Select index control register (IDR)

EC4 EC3

0 0 NOT USED

0 1 NOT USED

1 0 NOT USED

1 1 NOT USED

EC2 EC1

0 0 NOT USED

0 1 NOT USED

1 0 NOT USED

1 1 NOT USED

EC0: ‘0' = Index disable. Normally ‘0'.

3.2.6.3 READ ENC_CONTROL

An eight bit read from the encoder control register will read the following byte:

ENC_CONTROL READ

7 6 5 4 3 2 1 0

EC7 EC6 EC5 EC4 EC3 EC2 EC1 EC0

EC4 indicates that noise was picked up on lines A or B of the inputs. Reset EC4 by writing to (EC2 EC1) of the RLD.

4.0 SAMPLE PROGRAMS

The following are sample programs written in Turbo C and can be used by your main program. These functions are
included in the file mq3.drv . The file also contains the definitions of the register locations based on a base address
0x320 as shown below:

#define base_port 0x320

#define digin_port base_port + 0x00
#define digout_port base_port + 0x00
#define dac_cs base_port + 0x02
#define ad_cs base_port + 0x04
#define status_reg base_port + 0x06
#define control_reg base_port + 0x06
#define clk_reg base_port + 0x08
#define enc_reg1 base_port + 0x0c
#define enc_reg2 base_port + 0x0e

#define AD_SH 0x200 /* active low */
#define AD_AUTOCAL 0x100 /* active high */
#define AD_AUTOZ 0x80 /* active high */
#define AD_MUX_EN 0x40 /* active high */
#define AD_CLOCK_4M 0x400 /* high = 4 MHz */

11

/* IMPORTANT */
/* sample and hold disabled to prevent exrtaneous sampling */
/* and fix the clock speed to 4 MHz */

#define CONTROL_MUST (AD_SH | AD_CLOCK_4M)

unsigned int control_word = CONTROL_MUST;

/* ENCODER CHIP COMMANDS */

#define CLOCK_DATA 0 // FCK frequency divider
#define CLOCK_SETUP 0X18 // transfer PR0 to PSC
#define INPUT_SETUP 0X41 // enable inputs A and B
#define QUAD_X4 0X38 // quadrature
#define BP_RESET 0X01 // reset byte pointer
#define CNTR_RESET 0X02 // reset counter
#define TRSFRPR_CNTR 0X08 // transfer preset register to counter
#define TRSFRCNTR_OL 0X10 // transfer CNTR to OL (x and y)
#define EFLAG_RESET 0X06 // reset E bit of flag register

4.1 D/A operation

- Write the analog output channel number to bits (DA2 DA1 DA0) of CONTROL along with a (11) to LD1 and LD0
of the CONTROL REGISTER
- Write the actual data to DAC_DATA (16 bit write lowest 12 bits carry the data).
- release the latch by writing a (00) to both bits (LD1 LD0) of the CONTROL REGISTER.

4.1.1 Sample C function

void daout(int ch, int ivalue)
{
outport(control_reg, 0x1800 | ch | CONTROL_MUST);
outport(dac_cs,ivalue);
outport(control_reg, CONTROL_MUST);
}

4.1.2 Reset the D/A outputs

void reset_da(void)
{
int zero_v;
zero_v = vtoi(0.0); /* see this function below */
daout(0,zero_v);
daout(1,zero_v);
daout(2,zero_v);
daout(3,zero_v);
daout(4,zero_v);
daout(5,zero_v);
daout(6,zero_v);
daout(7,zero_v);
}

4.1.3 Volta ge to inte ger conversion

This function is used to convert a desired voltage (in volts) to the appropriate integer value for the
D/A.

12

int vtoi(float v)
{
return(ceil(v*2048/5.+2047));
}

4.2 A/D OPERATIONS

4.2.1 Calibratin g the A/D

This can be performed once onl y at the start of a program. Once calibrated, the offset and gain are used for all
subsequent measurements. To calibrate:

1) write a '1' to bit 'CAL' and to 'S/H' of CONTROL REGISTER
2) write a '1' to 'S/H' of CONTROL REGISTER
3) wait for EOC to go high in STATUS REGISTER

4.2.1.1 Sample C function

void reset_ad(void)
{
/* start calibration */
outport(control_reg, AD_AUTOCAL | CONTROL_MUST);
outport(control_reg, CONTROL_MUST);
while((inport(status_reg)&0x08) == 0x00);
}

4.2.2 Acquirin g a sample
1) select the channel and write it to control register bits (A2 A1 A0) along with a '1' to (EN) , a '1' to (S/H) and a '1'
to (CLK) bits of the CONTROL REGISTER. Also write a '1' to bit (AZ) if you want auto zero before the sample. Note
that autozero takes longer and is not normally necessary.
2) wait until (EOC) in STATUS REGISTER goes high.
3) Initiate a conversion by a write to AD_CS (any value)
4) wait until EOC_I in STATUS REGISTER goes high
5) read high byte from AD_DATA
6) read low_byte from AD_DATA

4.2.2.1 Sample C Function

int adin(int ch)
{
unsigned int hb,lb;
int toolong,maxcnt;
maxcnt = 30;
nosound();
control_word = CONTROL_MUST | AD_MUX_EN | (ch<<3); /* select channel and enable mux start S/H*/

/* use the next line instead of above line if you want to auto zero before every sample */
/*control_word = CONTROL_MUST | AD_AUTOZ | AD_MUX_EN | (ch<<3);*/
/* NOTE THAT IT IS SLOWER WITH AUTO ZERO */

outport(control_reg,control_word);
toolong = 0;
while(((inport(status_reg)&0x8) == 0x00) && (toolong <maxcnt)) toolong++;
if(toolong>=maxcnt) sound(400);
outportb(ad_cs,0);
while((inport(status_reg)&0x10) == 0x00);

13

hb = inport(ad_cs) & 0xff;
lb = inport(ad_cs) & 0xff;
outport(control_reg,CONTROL_MUST);
return ((hb<<8) | lb);
}

Note the limited wait loop:

toolong = 0;
while(((inport(status_reg)&0x8) == 0x00) && (toolong <maxcnt)) toolong++;
if(toolong>=maxcnt) sound(400);

which ensures that the wait for EOC is left if it takes too lon g . If this happens, an error has occurred on the
A/D Chip (National Semiconductor ADC1251) durin g a conversion and the chip is not read y for a conversion
after sufficient waitin g. This is not usuall y necessar y but is good practice. If this error occurs, the computer
will generate a sound until issuin g 'nosound()' from the callin g C pro gram. If you do not want the sound to
go on just delete the 'sound(400)' statement.

4.2.3 Integer to volta ge conversion

The following function converts from an integer value read by the A/D to a floating point value in volts.

float itov(int iv)
{
return(iv*5/4095.);
}

4.3 Digital input operation:

- Read a 16 bit word from DIGIN_PORT

4.3.1 Sample C Function

int digin(void)
{
return inport(digin_port);
}

4.4 Digital output operation

- Write a 16 bit word to DIGOUT_PORT

4.4.1 Sample C Function

void digout(int dig_value)
{
outport(digout_port,dig_value);
}

4.5 Encoder operations

4.5.1 Encoder reset

-Write to CONTROL register (E2 E1 E0) the channel you want to reset.
-Write a reset Error to the RLD (ie 0x06 to ENC_CONTROL)
-Reset the byte pointer (ie 0x01 to ENC_CONTROL)
-Write a clock frequency divider to ENC_DATA (usually 0)
-Transfer the divider to the the prescaler (ie 0x18 to ENC_CONTROL)

14

-Enable the counter inputs (0x41 to ENC_CONTROL)
-Setup to quadrature mode(0x38 to ENC_CONTROL)
-Reset the counter to zero(0x2 to ENC_CONTROL)
-Reset byte pointer (ie 0x01 to ENC_CONTROL)
4.5.1.1 Sample C function
void enc_reset(int ch)
{

control_word = CONTROL_MUST | (ch<<3); // select channel and enable mux start S and H

outportb(control_reg,control_word); /* select the encoder channel */

/*initialize the ENCODER CHIP*/
outportb(ENC_CONTROL, EFLAG_RESET); // reset E bit of flag register
outportb(ENC_CONTROL, BP_RESET); // reset byte pointer (x and y)
outportb(ENC_DATA, CLOCK_DATA); // FCK frequency divider
outportb(ENC_CONTROL, CLOCK_SETUP); // transfer PR0 to PSC (x and y)
outportb(ENC_CONTROL, INPUT_SETUP); // enable inputs A and B (x and y)
outportb(ENC_CONTROL, QUAD_X4); // quadrature multiplier to 4 (x and y)
outportb(ENC_CONTROL, CNTR_RESET); // reset counter (x and y)
}

4.5.2 Encoder read

-Write to CONTROL register (E2 E1 E0) the channel you want to read.
-Latch the data to the output registers (0x10 to ENC_CONTROL)
-Reset byte pointer (ie 0x01 to ENC_CONTROL)
- Read low byte from ENC_DATA
- Read mid byte from ENC_DATA
- Read high byte from ENC_DATA
4.5.2.1 Sample C function
long int enc_in(int ch)
{
unsigned int low_byte, mid_byte, high_byte;
unsigned int high_word,low_word;
unsigned long result;
control_word = CONTROL_MUST | AD_MUX_EN| (ch<<3); // select channel

outportb(control_reg,control_word); /*SELECT THE ENCODER CHANNEL USING THE MUX */

outportb(ENC_CONTROL, BP_RESET); // reset byte pointer

outportb(ENC_CONTROL, TRSFRCNTR_OL); // latch the data

low_byte = inportb(ENC_DATA)&0xff; // least significant byte

mid_byte = inportb(ENC_DATA)&0xff;
low_word = low_byte | (mid_byte <<8)&0xffff;

high_byte = inportb(ENC_DATA)&0xff; // most significant byte
high_word = high_byte&0xffff;

if(high_word & 0x80) high_word = high_word | 0xff00; /*convert to signed 32 bit*/

result = ((long unsigned)high_word << 16) | low_word;
return ((long) result);

}

15

4.6 Clock operations
The three clocks are imbedded in a single integrated circuit (INTEL 82C54). Four registers located on the clock chip
are addressed via bits (RC1 RC0) of the MULTIQ's CONTROL REGISTER. In order to write a desired value to a
specific clock register, first write to (RC1 RC0) of the CONTROL REGISTER the value for the register you want to
access and then write the desired value to the CLOCK DATA REGISTER (Base + 8).

RC1 RC0 Clock IC register

0 0 CLOCK 0 DATA REGISTER

0 1 CLOCK 1 DATA REGISTER

1 0 CLOCK 2 DATA REGISTER

1 1 CLOCK COMMAND REGISTER

The CLOCK COMMAND REGISTER has the following bits:

CLOCK COMMAND REGISTER

7 6 5 4 3 2 1 0

 SC1 SC0 RW1 RW2 M2 M1 M0 BC

The clock you want to perform an operation on is selected using bits (SC1 SC0) and the mode of operation is
selected using bits (M2 M1 M0).

In order to program a specific clock to run at a given frequency, you must first select a divider for the clock. For
example if you want to run at a frequency 'F' the divisor is obtained by using the equation:

DIV = CEIL(2e6/Freq)

where 2e6 Hz is the base frequency for all three clocks. This will be a 16 bit integer value (0 to 65535). Note that
if Freq is smaller than (2e6/65535) the clock will actually run much faster than you expect!

Next you need to write to the CLOCK COMMAND REGISTER the clock number into (SC1 SC0) and select mode2
into (M2 M1 M0)(Baud rate Generator). You do this by first writin g to the CONTROL REGISTER bits (RC1 RC0)
a (1 1) indicating you will be writing to the CLOCK COMMAND REGISTER next and then you write the desired data
.

After you select the clock number and the mode of operation into the CLOCK CONTROL REGISTER, write to the
CLOCK DATA REGISTER (bits RC1 RC0 in the CONTROL REGISTER) the low byte and then the high byte of the
divisor DIV. At this point, the clock you selected will start running at the frequency you specified.

4.6.1 Sample C functions

void clockdiv(int clk_num,int div_value)
{
unsigned int lb,hb;
lb = div_value & 0xff;
hb = (div_value & 0xff00)>>8;
control_word = 3 | CONTROL_MUST;
outport(control_reg,control_word);/*select register 3 of RTC */
outportb(clk_reg,((clk_num<<6)|0x34));
control_word = clk_num | CONTROL_MUST;
outport(control_reg,control_word);
outportb(clk_reg,lb);
outportb(clk_reg,hb);
}

16

/* this function sets the clock frequency of the desired clock. It calls clockdiv() */

void set_clk_freq(int clk_num,float clk_freq)
{
float base_freq = 2000000;
int divider;
divider = ceil(base_freq/clk_freq);
clockdiv(clk_num,divider);
}

The states of the three clock can be monitored through bits (CT2 CT1 and CT0) of the STATUS REGISTER.

5.0 Tying to interrupts

You may wire the following lines to some of the interrupt lines on the PC bus.

Bit Status

CT0 Clock Timer 0 overflow

CT1 Clock Timer 1 overflow

CT2 Clock timer 3 overflow

EOC_I End of conversion interrupt

DI0 Digital input bit 0

The interrupts lines that can be tied to are

Interrupt# Normall y used b y (on standard PC) Vector address

3 COM1: Serial port 0xB

5 PC Fixed disk controller/ NOT NORMALLY USED 0xD
USED BY MultiQ factor y Confi guration

7 LPT1: Printer 0xF

9 RESERVED RESERVED

10 UNUSED 0x72

11 UNUSED 0x73

12 UNUSED 0x74

15 UNUSED 0x77

The interrupt lines should be physically connected on the board using the jumpers provided. You should be certain
that no other device is tied to the interrupt line you want to use.

17

5.1 Writin g interrupt service routines
The following is a short explanation on how to write interrupt service routines on an IBM PC compatible system. More
detailed information can be obtained from any good book on PC architecture and the C compiler you are using.

An interrupt service routine (ISR) is initiated every time a specified interrupt line associated with the ISR goes high.
The interrupt mask register on the PC is located at address 0x21. It is an eight bit port and in order to activate a
certain interrupt line, you must write a '0' to the associated bit in the interrupt mask register. For example if you want
to allow interrupts only from lines 2 and 7 you must write a (01111011) or (0x7b) to memory location 0x21.

Each interrupt lines causes a jump to the address located in the vector table shown above. For example if you want
a function:

extern void interrupt far newtimer(void);

to be executed every time interrupt #5 occurs, you set it up in the following manner:

disable(); /* disable interrupts */
oldtimer = getvect(0xd); /*save old isr address, see vecctor in column 3 of table above */
setvect(0xd,newtimer); /* setup the new isr */
int_mask = inportb(0x21); /* get the present mask */
outportb(0x21,int_mask&0xdf); /* write out a new mask that sets bit 5 to 0) */
enable(); /* enable interrupts, at this point newtimer is active and will be executed every time line 3 goes high */

Now what happens inside the isr is also very important.
The ISR should have the following structure:

extern void interrupt far newtimer(void)
{
asm fsave data87 /* assembly code to save floating point processor status */
_clear87(); /* clear the floating point processor */
disable(); /* disable other interrupts */

/* here is where you write your code */
/* this will be executed every time the interrupt occurs */

asm frstor data87 /* restore floating point processor status */
outportb(0x20,0x65); /* acknowledges interrupt to 8259 */
enable();
}

data87 must be declared globally as

char *data87[94];

6.0 Testin g your board

Turn off the computer and install the MultiQ into an ISA slot in your PC. Make sure it is well seated and tighten the
screw. Start the computer.

The programs 'test_mq3.c', ‘test_sw3.c' and the driver file 'mq3.drv' are supplied with the board. In order to compile
these programs you need Turbo C and Turbo assembler. Executable versions are also supplied.

-make a directory MQ3 on your hard drive
- copy all files to that directory
- Run the program test_mq3 or test_sw3

The program test_sw3 uses the IBM PC SOFTWARE INTERRUPT and changes the speed of the realtime clock
used for time of day. Run this program to test all the functions on the board except the realtime clocks. Reset the
time of day from DOS if necessary.

18

The program test_mq3 uses the MultiQ CLOCK #1 for hardware interrupts on interrupt line #5. In order to run this
program you should install the jumper labelled CTC1 to pin interrupt 5.(FACTORY CONFIGURATION)

In order to test the encoder preload capability, the programs preload the encoder counters #0 to #7 with the values
0 to 70000 in increments of 10000 consecutively. It also outputs preset values to the D/A channels. You may
loopback from a D/A output to an A/D input to ensure that the value being put out is being measured correctly.

The program is interactive. You can plot selected data in realtime. You can select the parameters associated with
the letters in brackets []. For example entering the letter [v] you will be prompted to enter a voltage which will be
output to D/A channel specified by hitting [o]. The program is interrupt driven and all variables are monitored on the
screen in realtime. The A/D channel associated with the letter [i] can be plotted in realtime as well as the encoder
input associated with the letter [e]. Entering [z] will reset the encoder selected. You can output a digital word to the
digital output port by entering [d] followed by a hexadecimal number. You can select the data you want to plot in
realtime by hitting [V]. Hit 'x' to exit realtime plotting. Selecting [T] allows you to alter the duration of the x axis of the
realtime plot.

[i]: A/D input channel number
[o]: D/A output channel number
[v]: output volts
[d]: Digital word out
[e]: Encoder channel
[z]: Encoder reset
[F]: Sampling Frequency(Hz)
[T]: X axis time duration(Sec)
[V]: Y axis variable: eg voltage or encoder
[R]: Realtime plot
[Q]: Quit program

6.1 Compilin g the source code

If you need to change anything in the source code of the above programs, you will need to recompile them. Use the
following lines to obtain new executable code.

Turbo C users

tcc -r -B -f87 -ml %1 graphics.lib

Borland C users

tcc -r -B -f87 -ml %1 graphics.lib

where %1 is the name of the program.

Note Turbo assembler (TASM) should be in the PATH as well as (TC\BIN) or (BC\BIN). The file EGAVGA.BGI
must be present in the director y.

6.2 Execution speed

The program `speed.c` tests the speed of the various operations on the board using the drivers listed above. The
speeds are obtained on a Pentium II 200MHz and may vary with the processor you use. The speeds do not solely
depend on the board but also on execution time of the instructions in the drivers. For example, a single A/D
conversion is performed in only 8 µseconds but it really takes 19.2 µseconds to actually acquire the data into the
program. The extra time is due to bus access (inport, outport wait loops).

The results from 'speed.c' are tabulated below. These are calculated by obtaining an average over one million
consecutive operations using the driver functions given above.

19

Function Execution speed in µ seconds

Digital input (16 bit) 2

Digital output (16 bit) 2

Encoder read (24 bit) 7

Analog todigital conversion (13 bit) 19.2

Digital to analog conversion (12 bit) 5.0

The above information is important when determining what is the maximum sampling frequency you can set in an
ISR. Suppose you would like to sample all 8 analog input channels, output to all 8 channels, read 8 encoders and
perform 16 bit digital I/O in a single interrupt service routine. These would take approximately (2+2+7x6+19.2x8+5x8)
= 239.6 microseconds. Therefore the ISR should be called at a frequency slower than 4.1 Khz. If you want to perform
calculations in an ISR (which you typically would for a controller), then the time for calculations should also be taken
into consideration. Assuming the calculations you are performing take another 230 microseconds, then the ISR
should execute slower than 2 Khz. You would also like to have some time left over for foreground jobs. Lets's say
50% of processor time left for foreground operations(plotting, user interaction, etc), then the ISR should be set to
a maximum of 1 kHz. This is the suggested maximum sampling frequency when the board is being used at full
capacity. Of course, the less channels are use and the simpler the controller, the faster you can set the speed of the
ISR.

7 WIRING

7.1 Flat ribbon Cable and Terminal board

The flat ribbon cables must be inserted into the MULTIQ board and the TERMINAL board with the correct
orientation. Note the small rid ges on the flat ribbon cable ends. Do not force the connector in!

7.2 Wirin g to an A/D

The inputs to the A/D's are available at the RCA plugs labelled Analog inputs. The outside shield of the connector
is the ground. The inside is the signal. Wire the analog signal from a source in the range of of +/- 5 Volts . Wire a
common ground to the top part of the header.

7.3 Wirin g to a D/A

The outputs from the D/A's are available at the RCA plugs labelled Analog outputs. The outside shield of the
connector is the ground. The inside is the signal.

7.4 Wirin g to the Encoder Inputs

The encoders are powered from the terminal board using the +5 volt supply from the computer. Use the wiring
diagram in section 3.2.1 as a guide.

7.5 Wirin g to Di gital Inputs

The digital inputs are applied to the terminal block labelled DIGITAL INPUTS.

7.6 Wirin g to Di gital Outputs
The digital outputs are available at the terminal block labelled DIGITAL OUTPUTS.

7.7 Selectin g interrupt sources

 Select the interrupt source using the jumpers at the headers labelled Interrupts . USE ONE INTERRUPT JUMPER
PER HEADER.

20

1) Placing a jumper at the header labelled A/D will cause an interrupt from EOC_I to occur at the line to which the
jumper is attached. ie if the jumper is attached between A/D and the pin labelled '5', an EOC_I will cause an interrupt
number 5 to occur.

2) Placing a jumper at the header labelled CTC0 will cause an interrupt from CLOCK 0 to occur at the line to which
the jumper is attached. ie if the jumper is attached between CTC0 and the pin labelled '5', an interrupt number 5 will
occur at the frequency at which CLOCK 0 is operating.

3) Placing a jumper at the header labelled CTC1 will cause an interrupt from CLOCK 1 to occur at the line to which
the jumper is attached. ie if the jumper is attached between CTC1 and the pin labelled '5', an interrupt number 5 will
occur at the frequency at which CLOCK 1 is operating. THIS IS FACTORY CONFIGURATION.

4) Placing a jumper at the header labelled CTC2 will cause an interrupt from CLOCK 2 OR FROM Digital Input #0
to occur at the line to which the jumper is attached. The source depends on the jumper labelled CTC2INT. If the
jumper is between pins (12) then the source is clock 2, if the jumper is between (23) then the source is DIN0. With
the CTC2INT jumper located at (12) and one jumper at (CTC2,5) an interrupt number 5 is generated at the speed
of CLOCK2. With the CTC2INT jumper located at (23) and one jumper at (CTC2,5) an interrupt number 5 is
generated every time the digital input number 0 is pulsed from LOW to HIGH to LOW

