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The Kaplan–Yorke conjecture suggests a simple relationship be-
tween the fractal dimension of a system and its Lyapunov spec-
trum. This relationship has important consequences in the broad
field of nonlinear dynamics where dimension and Lyapunov ex-
ponents are frequently used descriptors of system dynamics. We
develop an experimental system with controllable dimension by
making use of the Kaplan–Yorke conjecture. A rectangular steel
plate is driven with the output of a chaotic oscillator. We controlled
the Lyapunov exponents of the driving and then computed the
fractal dimension of the plate’s response. The Kaplan–Yorke rela-
tionship predicted the system’s dimension extremely well. This
finding strongly suggests that other driven linear systems will
behave similarly. The ability to control the dimension of a struc-
ture’s vibrational response is important in the field of vibration-
based structural health monitoring for the robust extraction of
damage-sensitive features.

Analysis of data collected from nonlinear systems is often
accomplished by viewing the system response as a dynam-

ical attractor in phase space (i.e., the space defined by the
system’s variables). The resulting portrait of the dynamics may be
thought of as a geometric object in this space to which all
trajectories, within a nearby set of initial conditions, will evolve.
Based on this description, a variety of metrics can then be used
to extract information about the underlying process, among them
fractal dimension and Lyapunov exponents (LEs). Measures of
fractal dimension quantify the variation in attractor geometry
over many different length scales. The assumption underlying
such measures is that the distribution of points on an attractor
is the same at both small and large length scales, i.e., the object
is ‘‘self-similar.’’ LEs reflect the stability of a dynamical system
to perturbation in various directions. Positive LEs indicate an
instability or a ‘‘stretching’’ of the phase space, whereas negative
exponents are associated with stable or contracting phase space
directions. These two metrics are arguably the most important
and widely used descriptors of nonlinear system dynamics.
Researchers have used these quantities to describe the dynamics
of animal populations (1–3), human locomotion (4), cardiac
function (5, 6) geological systems (7), climate (8, 9), and me-
chanical systems (10).

This work offers strong experimental evidence of a conjec-
tured relationship between LEs and fractal dimension. The
Kaplan–Yorke conjecture (11) states that a system’s complete
Lyapunov spectrum may be used to give direct estimates of a
system’s fractal dimension (specifically, information dimension),
implying that knowledge of one quantity can lead to estimates of
the other. Although the conjecture has been shown to be false
in certain instances, it remains a useful and widely used tool in
the analysis of nonlinear system dynamics. For numerically
generated data, the relationship is routinely invoked (12–14)
while experimental agreement has been observed for laser data
(15), a mechanical oscillator (16), and in fluid mechanics
(Taylor–Couette flow) (17). In each of the above cited works, the
Kaplan–Yorke conjecture was used as a check between estimates
of LEs and dimension.

Perhaps more importantly, the relationship implies that con-
trol of the LEs can lead to control of a system’s fractal
dimension. Several researchers have shown numerically that
varying a system’s Lyapunov spectrum can produce varied
dimension estimates in accordance with Kaplan–Yorke (18–20).
In each of these studies, the conjecture was tested and found to
hold over a narrow range of dimension. Recent works have
demonstrated the utility of controlling dimension in both esti-
mating system damping (21) and detecting damage in structures
(22, 23). In these works the system’s LEs were fixed such that the
system response was forced to occupy a low-dimensional attrac-
tor. However, to date the ability to adjust a system’s fractal
dimension by controlling LEs has not been observed in an
experimental system. In this work, we control the LEs of a driven
steel plate and produce dimension estimates that show excellent
agreement with those obtained via the Kaplan–Yorke conjecture
over a wide range of fractal dimension.

Dimension, LEs, and Kaplan–Yorke
Attractor-Based Measures. Attractor-based analysis begins by re-
constructing the system’s dynamical attractor. Assuming that
some dynamical variable x(n) n � 1 � � � N has been measured
from the system of interest at discrete, fixed-time intervals, a
delay coordinate embedding (24) may be used to qualitatively
reconstruct the system’s underlying attractor as

x��n� � �x�n�, x�n � T�, . . . , x�n � �m � 1�T��. [1]

Here T is a measure of time delay, chosen to maximize the
information content of x(n), and m is the embedding dimension
that must be large enough to ‘‘unfold’’ the attractor. Choice of
delay is typically accomplished by looking for the first minimum
of the average mutual information function (25), whereas em-
bedding dimension is often selected by using the empirical,
geometric criteria of Kennel et al. (26) The following discussion
assumes a reconstructed attractor x�(n).

Many different definitions of dimension exist in dynamical
systems theory. Most of them in some way reflect the number of
variables active in the dynamics. Here, we refer to dimension in
the geometric sense, reflecting how an attractor’s geometry
varies over many orders of the attractor’s length scales. Such
measures collectively quantify fractal dimension, the most pop-
ular among them being the correlation dimension. Given a
hypersphere of radius � centered about some fiducial point f on
the attractor, x�(f), the correlation dimension reflects the way in
which the average number of points within the hypersphere
scales with �. Estimating Dc, therefore, involves computing the
correlation sum
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C��� � lim
N3�

2
N�N � 1�

�
i�1

N�1 �
j�i

N

��� � �x��i� � x��j��� [2]

where

��� � �x��i� � x��j��� � �1 : � � �x��i� � x��j�� � 0
0 : � � �x��i� � x��j�� � 0.

By assuming a power law relationship between C(�) and � the
correlation dimension is given by

Dc � lim
�30

log C���/log �. [3]

Estimates of Dc therefore require the evaluation of 2 and
extracting the slope of the log�log plots of C(�) v. � over a well
defined (more than one decade on the log scale) scaling region.
For practical details regarding the estimation, the reader is
referred to Theiler (27, 28).

LEs are also globally averaged quantities, reflecting the system
stability in each of the principle directions. More specifically,
given some initial separation �i(0) in direction i at time n � 0,
the complete Lyapunov spectrum is written

�i � lim
N3�

1
N

ln
�i�N�

�i�0�
. [4]

Each exponent specifies the average exponential rate at which
the perturbations will grow or decay. The sum of these exponents
therefore represents the long-term evolution of a volume ele-
ment in phase space. For a chaotic system (defined by a positive
LE) such an element will grow in certain directions and shrink
in others. In fact, because an attractor represents steady-state
dynamics, it may be thought of as existing in a balanced state
between the contraction and expansion rates of a volume
element in phase space. It is this general idea that gives rise to
the Kaplan–Yorke conjecture (11).

The Kaplan–Yorke conjecture states that

DL � k �

�
i

k

�i

��k�1
, [5]

where k is the maximum number of exponents, arranged in
decreasing order, which may be added before the sum becomes
negative, and DL is referred to as the Lyapunov dimension, or
Kaplan–Yorke dimension. DL is conjectured to be equal to the
information dimension, DI (another measure of fractal dimen-
sion) and is typically very close, if not equal to, the correlation
dimension. In this study we assume DI 	 Dc. Although counter-
examples to the conjecture have been found (for example the
Feigenbaum attractor, ref. 29), in most cases the relationship
holds. Furthermore, it has been proven by Ledrappier (30) that
DL is an upper bound on the information dimension (DI 	 DL).
Control over a system’s LEs can therefore be used to bound a
system’s dimension, regardless of whether or not the conjecture
holds. The goal here is to vary the �i for a driven, experimental
structure and then compare estimates of DL to the computed
values for Dc. In doing so we are directly testing the ability to
control the dimension of the structure’s response.

Filtering Chaotic Signals. From Eq. 5 it is evident that if the LEs
can be controlled, so, too, can the Lyapunov dimension. In many
instances, the complete Lyapunov spectrum is difficult to esti-
mate, owing primarily to the well known difficulties associated
with computing negative LEs (31). However, it is possible to

construct an experiment in which the some of the LEs are known
to a high degree of certainty. Consider a linear, stable �-degree-
of-freedom system, governed by the constant coefficient matrix
A coupled to the output of a chaotic oscillator, described by the
function F,

dz�
dt

� F�z��

dx�
dt

� Ax� � Bz�.

[6]

The LEs for the linear system are the logarithm of the real parts
of the eigenvalues of A, which are all negative. In the absence of
coupling (B � 0) each system will possess its own set of LEs
denoted �j

F i � 1 � � � � for the chaotic system and �k
A j � 1 � � � �

for the linear system. It has been shown (32) that if the two
systems are coupled through B such that one of the state
variables z� forces the system x�, the complete Lyapunov spectrum
will be the union

�i
S � �j

F � �k
A [7]

arranged in decreasing order in accordance with Kaplan–Yorke.
From Eq. 5 it is evident that changing the LEs associated with
the forcing signal Bz�(n) can alter the dimension of the response,
x�(n). One way to control the LEs is to alter the time scales
(bandwidth) of the forcing system; this does not affect the LEs
of the structure. This is easily accomplished by multiplying the
state equations by a constant. Using the system described by 6
and knowing the state matrix A, the dimension of the output
signal can be controlled, thus providing a test bed for manipu-
lating the Kaplan–Yorke dimension.

Experiment
The structure studied herein is a thin rectangular steel plate
measuring 664 
 408 
 3 mm. (Fig. 1) and clamped along the
two shorter edges. For small amplitude excitation the plate will
obey the linear model described by Eq. 6, where the state matrix
A contains the mass, stiffness, and damping properties associated
with the plate. Forcing for the structure is provided by a MB
Dynamics (Cleveland) shaker, attached to the plate at the
location shown in Fig. 1. Response data were recorded at three
different locations on the structure by using fiber Bragg grating
strain sensors (33) and at the forcing location by means of a force
transducer.

To determine the LEs for the plate the structure was excited
with broadband white noise. Impulse response time histories for
each force�response pair were then obtained via the inverse
Fourier transform of the corresponding transfer function esti-
mates. The Eigensystem realization algorithm (34) was then used
to extract estimates of the state matrix A from which the
logarithms of the real parts of the eigenvalues were obtained as
the LEs. The procedure was repeated for 60 different records,
each of length 8,192 points. Based on these 60 values, the

Fig. 1. Experimental setup.
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confidence intervals were set to span the interquartile range, i.e.
the middle 50% of the values. Assigning confidence based on the
interquartile range is one approach commonly used when the
underlying distribution is unknown. The mean values for each of
the first five plate LEs were taken as estimates for the �k

A and are
shown in Table 1. Based on these estimates, a driving signal could
be designed to generate a structural response of varying dimen-
sion. The excitation signal was chosen as the first state variable,
z1, of the chaotic Lorenz oscillator,


�1
dz1

dt
� 10�z2 � z1�


�1
dz2

dt
� 28z1 � z2 � z1z3


�1
dz3

dt
� ��8�3�z3 � z1z2,

[8]

where the tuning parameter 
 is used to control the bandwidth
of the oscillator to produce the desired spectrum of the driving
LEs. Because the driving equations of motion are known, the
exponents may be computed directly by using the method
described in Wolf et al. (35). Fourteen different forcing scenarios
(bandwidths) were used for the excitation. The coefficients used
and the resulting values for the �j

F are listed in Table 2. Note that
the Lorenz system is a continuous time ‘‘f low’’ and therefore will
always possess one exponent that is zero (perturbations in time
will neither grow or decay), i.e., �2

F � 0.0 regardless of 
. The
various forcing scenarios were designed to cover a large spread
of dimension values (2 	 DL 	 7) while giving insight into the
way dimension transitions from one integer value to the next
(five cases were run for 3 	 DL 	 4).

As an example of how the excitation is designed, assume we
want to construct a forcing signal such that the plate’s response
has a dimension of DL � 3.5. According to the Kaplan–Yorke
formula (see Eq. 5) this requires k (the maximum number of
exponents that can be added before the sum becomes negative)
to be 3. We therefore must choose �1

F such that �1
F � 0.0 � 8.11 �

0.0. However, we must also maintain that �1
F � 0.0 � 8.11 �

8.42 � 0.0 so that k � 4. If these two inequalities hold, and �3
F

� �8.42 (so that the negative exponent associated with the
driving doesn’t factor into the computation), then �k�1 � �8.42
in the Kaplan–Yorke formula. The next step is to then consider
the fractional part of Eq. 5. Forcing the fractional part of the
dimension to be 0.5 simply requires that 0.5 � (�1

F � 0.0 �
8.11)/8.42 or �1

F � 12.32. We may therefore adjust 
 to produce
a driving signal with precisely this value for the dominant LE.

One interesting implication of the Kaplan–Yorke formula is
that all exponents greater in magnitude than �k�1 do not play a
role in the computation, regardless of the number of degrees of
freedom associated with the system. It should therefore be noted

that the dominant exponent �1
F is the key to influencing dimen-

sion in this case. The negative exponent associated with the
driving is of such a large magnitude compared with the plate LEs
that it plays no role in computing DL (see Tables 1 and 2).
Because �2

F � 0.0 for all cases, and �3
F does not affect DL we may

describe the results in terms of �1
F only.

Results
Select results from the computation of Dc are displayed in Fig.
2. Computations of the correlation dimension were performed
by using the algorithm of Grassberger and Proccacia (36). Each
response time history consisted of N � 50,000 points. It was
determined through average mutual information that the ap-
propriate delay was T � 12; the sampling rate was continually
adjusted to match the excitation speed so the delay was the same
in each of the 14 cases. The correlation dimension algorithm
was applied, evaluating the integral in Eq. 2 over a subset of
M � 5,000 points as the embedding was varied from m � 1 � � � 15.
A scaling region of 1.5 decades was used in each of the
computations.

In each of the three cases presented, the progression of Dc with
embedding shows a clear plateau with the horizontal lines
indicating the estimated value of Dc. Also shown is the progres-
sion for the associated phase-randomized surrogate data sets
(see ref. 15 for details). Each time series was transformed into
the frequency domain via the fast Fourier transform (FFT). A
random phase on the interval [0, 2�) is then introduced, and the
data are transformed back into the time domain by using the
inverse FFT. The resulting signal matches the mean, variance,
and autocorrelation (hence the power spectrum) of the original
data, yet is stochastic. In theory, stochastic signals should not
exhibit a plateau, but rather fill the size of the space in which they
are embedded. Estimating dimension for both a signal and its
surrogate is therefore a convenient check against indications of
‘‘false determinism,’’ which can sometimes arise because of

Table 1. Estimates of the first five LEs for the steel plate

�1
A �2

A �3
A �4

A �5
A

�8.11 �8.42 �9.04 �9.47 �11.82

Table 2. Coefficients � and the resulting LEs for Lorenz excitation

��
 5.54 11.08 13.29 15.51 16.61 17.72 19.94 22.15 27.69 33.23 38.76 44.30 49.84 55.38

�1
F 5.00 10.00 12.00 14.00 15.00 16.00 18.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00

�2
F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

��3
F 80.5 161.0 193.2 225.4 241.5 257.6 289.8 322.0 402.0 483.0 563.5 644.0 724.5 805.0

Fig. 2. Progression of Dc with embedding dimension for data taken at select
values of �1

F and the corresponding surrogate data.
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limited amounts of data (28). Fig. 3 displays the progression of
correlation dimension with the dominant forcing exponent along
with the calculated Kaplan–Yorke estimate. The estimates of DL
are computed directly from Eq. 5 by using the known values of
the driving exponents in combination with the estimated values
of �k

A. For example, examining forcing scenario 5 we have �1
F �

15.0, �2
F � 0.0, �1

A � �8.11, �2
A � �8.42, giving DL � 3 �

(15.0 � 0.0 � 8.11)�(8.42) � 3.82. The uncertainty associated
with this estimate results from the uncertainty in the estimates
of �k

A. To account for experimental variability, the process was
repeated for five different time series at each speed, resulting in
five values of Dc at each speed. Each of these estimates are shown
in Fig. 3. Estimates of the Kaplan–Yorke dimension clearly
follow the same trend as do estimates of the correlation dimen-
sion. In fact, using the mean values of the estimates of DL yield
values that are extremely close to those obtained by direct
estimates of Dc. Agreement between predicted and observed
data provides strong evidence that this system obeys the Kaplan–
Yorke conjecture across a broad spectrum of phase space
dimension. Differences in the two trends are most likely a
combination of error in estimating A and in the numerical
difficulties associated with computing Dc. Because LEs are
intimately tied to the way a system dissipates energy their
estimation suffers the same well known difficulties associated
with obtaining damping estimates (37). In addition, although it

is difficult to assess confidence in Dc, the quality of estimates will
(for a fixed amount of data) necessarily decrease for higher
dimensions.

Discussion
This study illustrates experimental evidence supporting the
Kaplan–Yorke conjecture over a wide range of dimension.
Estimates of a system’s LEs may be used to infer the dimen-
sionality of the process. Conversely, knowledge of a system’s
fractal dimension may be used to gain insight into the relative
magnitudes of a chaotic system’s positive and negative LEs. In
confirming this relationship we have also provided a mechanism
for controlling (in the worst case bounding) the dimension of
driven linear systems. The result holds broad implications for
problems of nonlinear system identification where one has
control or knowledge of the system’s LEs, including autonomous
systems (although it may be more difficult to experimentally
manipulate the LEs of an autonomous system). The ability to
control the dimensionality of a structure’s response has already
proven valuable in the use of nonlinear time-series analysis
techniques in vibration-based structural health monitoring. The
vibration-based paradigm involves exciting the structure with
some prescribed input and then analyzing the structural response
for damage-induced changes. Attractor-based analysis has
proven extremely effective in detecting the presence and mag-
nitude of structural degradation but is predicated on a response
that is (i) low dimensional, yet (ii) sufficiently influenced by the
structure’s dynamics so that changes can be clearly identified.
Interrogating a structure with a sinusoid, for example, produces
a low-dimensional (Dc � 1) attractor but is unable to sufficiently
resolve dynamic change. At the other extreme, the current
practice of exciting structures with broadband Gaussian noise
produces response attractors that are too high dimensional for
performing attractor-based analysis. By using the technique
described in this work, the dimension of the response can be
maintained at an appropriate level, allowing for robust feature
extraction. This approach also allows the practitioner the free-
dom to adjust the time scales of the excitation. Certain kinds of
damage are visible only at higher frequencies (shorter time
scales). One can therefore use this approach to interrogate the
desired time scales without altering the dimension of the re-
sponse provided, of course, that the relative magnitudes of the
LEs are not changed.
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