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Abstract

This paper investigates the chaos synchronization problem for a class of uncertain master–slave unified chaotic sys-
tems. Based on the sliding mode control technique, a robust control scheme is established which guarantees the occur-
rence of a sliding motion of error states even when the parameter uncertainty and external perturbation are present.
Furthermore, a novel proportional–integral (PI) switching surface is introduced for determining the synchronization
performance of systems in the sliding mode motion. Simulation results are proposed to demonstrate the effectiveness
of the method.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

A chaotic system is a highly complex dynamic nonlinear system and its response exhibits a number of specific char-
acteristics, including an excessive sensitivity to the initial conditions, broad Fourier transform spectra, and fractal prop-
erties of the motion in phase space. Since the pioneering work of Pecora and Carroll in 1990 [1], chaos synchronization
has received increasing attention over the last few years. Chaos synchronization can be applied in the vast areas of phys-
ics and engineering systems such as in chemical reactions, power converters, biological systems, information processing,
especially in secure communication [2–5].

In 1963, Lorenz found the first classical chaotic attractor [6]. In 1999, Chen and Ueta found another chaotic attrac-
tor, which is similar, but not topologically equivalent to the Lorenz attractor [7]. In 2002, Lü and Chen also found the
critical attractor between the Lorenz and Chen attractors [8]. To bridge the gap between the Lorenz attractor and Chen
attractor, Lü et al. presented a unified chaotic system [9]. It includes the Lorenz and Chen systems as two extremes,
respectively, and Lü system as a transition system [2,9,14]. Although there are some results reported on the unified cha-
otic systems [10–14], it is very necessary to future explore the synchronization of the uncertain unified chaotic systems.
For designing a robust control of uncertain systems, sliding mode control is frequently adopted due to its inherent
advantages of easy realization, fast response, good transient performance and insensitive to variation in plant param-
eters or external disturbances [15]. In this paper, we examine the problem of synchronization based on sliding mode
control for uncertain unified chaotic systems. To achieve this goal, a novel proportional–integral (PI) switching surface
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is proposed to simplify the task of assigning the performance of the closed-loop error system in sliding motion. Having
established the PI switching surface, a sliding mode controller (SMC) is designed. This controller is robust to the param-
eter uncertainty and external perturbation and guarantees the occurrence of sliding motion and the synchronization of
the master–slave unified chaotic systems.

The organization of this paper is as follows: Section 2 describes the synchronization problem of uncertain master–
slave unified chaotic systems; the PI switching surface and the sliding mode controller are designed in Section 3; a
numerical example to demonstrate the effectiveness of the proposed method is included in Section 4. For simplicity,
in the following section, WT denotes the transpose of W, and ||W|| represents the Euclidean norm when W is a vector
or the induced norm when W is a matrix. ki(W) denotes an eigenvalue of W and kmax(W) represents the eigenvalue of W

with the maximum real part. sign(s(t)) = [sign(s1) � � � sign(sm)]T 2 Rm·1, sign(si) = 1, if si > 0; sign(si) = 0, if si = 0;
sign(si) = �1, if si < 0.
2. Synchronization for uncertain master–slave unified chaotic systems

Consider the unified chaotic system which is described by
_x ¼ ð25aþ 10Þðy � xÞ;
_y ¼ ð28� 35aÞx� xzþ ð29a� 1Þy;

_z ¼ xy � 8þ a
3

� �
z;

8>>><
>>>:

ð1Þ
where x, y, z are state variable and a 2 [0,1].
Obviously, system becomes the original Lorenz system for a = 0 while system becomes the original Chen system for

a = 1. When a = 0.8, system becomes the critical system. In particular, system (1) bridges the gap between Lorenz sys-
tem and Chen system. Moreover, system (1) is always chaotic in the whole interval a 2 [0,1].

It is well know that system (1) plays a very important role in the investigation of the generalized Lorenz system fam-
ily. Therefore, it is very necessary to future investigate the chaos synchronization for the unified chaotic systems.

In this paper, our problem undertaken here is to consider the synchronization problem of system (1) based on the
sliding mode control. For the unified chaotic system (1), the master and slave systems are defined below, respectively,
_xm ¼ ð25aþ 10Þðym � xmÞ;
_ym ¼ ð28� 35aÞxm � xmzm þ ð29a� 1Þym;

_zm ¼ xmym �
8þ a

3

� �
zm

8>>><
>>>:

ð2Þ
and
_xs ¼ ð25aþ 10Þðys � xsÞ;
_ys ¼ ð28� 35aÞxs � xszs þ ð29a� 1Þys þ u1 þ Df1ðxs; ys; zs; pÞ;

_zs ¼ xsys � ð
8þ a

3
Þzs þ u2 þ Df2ðxs; ys; zs; pÞ;

8>><
>>: ð3Þ
where the lower scripts ‘m’ and ‘s’ stand for the master (or drive) system and the slave (or response) one, respectively. u1

and u2 are the sliding mode controllers such that the two chaotic systems can be synchronized. p 2 R is the external
perturbation. Df1 and Df2 are the uncertainties including parameter uncertainty and external perturbation applied to
the slave system. In general it is assumed that Df1 and Df2 are bounded by
kDf k ¼
Df1

Df2

� �����
���� 6 b1

xs

ys

zs

2
64

3
75

�������
�������þ b2 ¼ b1kX sk þ b2; ð4Þ
where b1,b2 > 0 are given.
Define the error signal as
e1ðtÞ ¼ xsðtÞ � xmðtÞ;
e2ðtÞ ¼ ysðtÞ � ymðtÞ;
e3ðtÞ ¼ zsðtÞ � zmðtÞ;

8><
>: ð5Þ
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which gives that
xmzm � xszs ¼ �zme1 � xse3;

�xmym þ xsys ¼ yme1 þ xse2:

�
ð6Þ
From Eqs. (5) and (6), we have the following error dynamics:
_e1 ¼ �ð25aþ 10Þe1 þ ð25aþ 10Þe2;

_e2 ¼ ð28� 35aÞe1 þ ð29a� 1Þe2 � zme1 � xse3 þ u1 þ Df1;

_e3 ¼ � ð8þaÞ
3

e3 þ yme1 þ xse2 þ u2 þ Df2;

8><
>: ð7Þ
or in the form of matrix as
_e ¼ Aeþ Bf þ Buþ BDf ; ð8Þ
where
A ¼

�ð25aþ 10Þ ð25aþ 10Þ 0

ð28� 35aÞ ð29a� 1Þ 0

0 0 � ð8þaÞ
3

2
664

3
775; e ¼

e1

e2

e3

2
64

3
75; B ¼

0 0

1 0

0 1

2
64

3
75;

f ¼
�zme1 � xse3

yme1 þ xse2

" #
; u ¼

u1

u2

" #
; Df ¼

Df1

Df2

" #
:

The control goal considered in this paper is that the two unified chaotic systems can be synchronized such that the
resulting error vector satisfies
lim
t!1
keðtÞk ¼ lim

t!1
kxsðtÞ � xmðtÞk ! 0: ð9Þ
3. Switching surface and controller design

Using a sliding mode control method to synchronize the coupled unified chaotic systems with perturbations involves
two basic steps: (1) selecting an appropriate switching surface such that the sliding motion on the sliding manifold is
stable and ensures limt!1ke(t)k = 0; and (2) establishing a robust control law which guarantees the existence of the
sliding manifold s(t) = 0 even in the event of parameter uncertainty and external perturbation.

Now, the proportional–integral switching surface is defined as
s ¼ Ce�
Z t

0

ðCAþ CBKÞeðsÞds; ð10Þ
where s 2 R2·1, C 2 R2·3 and K 2 R2·3. C is chosen to satisfy CB 5 0 (i.e., CB is nonsingular) and K is chosen such that
kmax(A + BK) < 0 (i.e., (A + BK) is stable).

It is well known that when the system operates in the sliding mode, it satisfies the following equations [16,17]:
s ¼ Ce�
Z t

0

ðCAþ CBKÞeðsÞds ¼ 0 ð11aÞ
and
_s ¼ C _e� ðCAþ CBKÞe ¼ 0: ð11bÞ
Therefore, we can obtain the equivalent control ueq(t) in the sliding manifold by differentiating (10) with respect to time
and substituting form (8):
_s ¼ C _e� ðCAþ CBKÞe ¼ CAeþ CBf þ CBueq þ CBDf � CAe� CBKe ¼ CBðueq þ f þ Df � KeÞ ¼ 0: ð12Þ
Since CB is nonsingular, the equivalent control ueq(t) in the sliding mode is given by
ueq ¼ Ke� f � Df : ð13Þ
Substituting ueq(t) into (8), the following sliding mode equation is obtained as
_e ¼ Aeþ Bf þ BKe� Bf � BDf þ BDf ¼ ðAþ BKÞe: ð14Þ
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By (14), it is interesting to note that when the error dynamics between master–slave unified chaotic systems is in the
sliding mode, the system is insensitive to parameter uncertainty and external perturbation. In other words, the con-
trolled system is robust. Furthermore, we can easily assign the performance of error dynamics (14) in the sliding mode
just by selecting an appropriate matrix K using any pole assignment method.

Before stating the scheme of the controller, the reaching condition of the sliding mode is given below.

Lemma 1. The motion of the sliding mode is asymptotically stable, if the following reaching condition is held:
sTðtÞ_sðtÞ < 0: ð15Þ
Proof. Let V(t) = 0.5sT(t)s(t) be the Lyapunov function. Differentiating V(t) with respect to time yields
_V ðtÞ ¼ sTðtÞ_sðtÞ: ð16Þ
Therefore, according to the Lyapunov stability theorem, we known that if sTðtÞ_sðtÞ < 0, then equilibrium at the origin is
asymptotically stable; i.e., the vector s(t) will decay to zero. h

To achieve the reaching condition indicated in Lemma 1, a control law is proposed as
u ¼ Ke� cðCBÞ�1 kCBk kf k þ b1kX sk þ b2ð Þ½ � signðsÞ; ð17Þ
where c is an arbitrarily constant larger than 1.
In the following, the proposed scheme (17) will be proved to be able to derive the error dynamics (8) onto the sliding

mode s(t) = 0.

Theorem 1. The reaching condition of expression (15) of the sliding mode is satisfied, if the control u(t) is given by (17).

Proof. Substituting (8) and (17) into the derivative sTðtÞ_sðtÞ, we get the following result:
sT _s ¼ sT CBf þ CBuþ CBDf � CBKe½ �
¼ sT CBf þ CBKe� c kCBk kf k þ b1kX sk þ b2ð Þ½ � � signðsÞ þ CBDf � CBKe½ �
6 �c kCBk kf k þ b1kX sk þ b2ð Þ½ � � sT signðsÞ þ kCBk kf k þ kDf kð Þksk: ð18Þ
Furthermore, sT signðsÞ ¼ js1j þ js2jP ksk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1 þ s2
2

p
, we have
sT _s 6 ð1� cÞ kCBk kf k þ b1kX sk þ b2ð Þ½ �ksk: ð19Þ
Since c > 1 has been selected in (17), one can conclude that reaching condition (sTðtÞ_sðtÞ < 0) is always satisfied. Thus
the proof is achieved completely. h
4. A numerical example

In this section, to verify and demonstrate the effectiveness of the proposed method, we discuss the simulation results
for Lorenz and Chen system. In simulation experiments, values of uncertain parameters are chosen as follows:
Df1ðxs; ys; zs; pÞ ¼ Df2ðxs; ys; zs; pÞ ¼ 0:5 cosðtÞkX sk þ 0:3 sinð2tÞ: ð20Þ
Based on (4), b1 = 0.5 and b2 = 0.3 can be obtained. We choose c = 1.5 > 1, C ¼ 0 1 0
0 0 1

� �
such that CB ¼ 1 0

0 1

� �
is

nonsingular.

Case I: Lorenz system. When a = 0, Eqs. (2) and (3) is Lorenz’s system. First, we choose K ¼ �32:2 4 0
0 0 0:6667

� �
such that kmax(Aa=0 + BK) = �2 < 0. For this numerical simulation, we assume that the initial conditions
(xm(0),ym(0),zm(0)) = (1.5,2,1) and (xs(0), ys(0),zs(0)) = (�1,�5,�10) are employed. The simulation results
are shown in Figs. 1–3. Figs. 1 and 2 show, respectively, the corresponding s(t) and the state responses of
systems (2) and (3). Fig. 3 shows the synchronization error. It can be seen that the synchronization errors
converge to zero rapidly.



Fig. 1. Time response of s(t) for Lorenz’s systems (a = 0).

Fig. 2. State trajectories of driver system with a = 0.

J.-J. Yan et al. / Chaos, Solitons and Fractals xxx (2006) xxx–xxx 5

ARTICLE IN PRESS
Case II: Chen system. When a = 1, Eqs. (2) and (3) is Chen’s system. We choose K ¼ �21:34 0 0
0 0 1

� �
such that

kmax(Aa = 1 + BK) = �2 < 0. Under the same simulation condition of Case I, the simulation results are given
in Figs. 4–6.



Fig. 3. Synchronization errors between master and slave chaotic systems (a = 0).
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Fig. 4. Time response of s(t) for Chen’s system (a = 1).



Fig. 5. State trajectories of driver system with a = 1.

Fig. 6. Synchronization errors between master and slave chaotic systems (a = 1).
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5. Conclusions

In this paper, we investigate the synchronization problem of the uncertain unified chaotic systems. By the new PI
switching surface, it is found the stability of the error dynamics in the sliding mode is easily ensured. A novel sliding
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mode controller has also been proposed to guarantee the occurrence of the sliding motion even when parameter uncer-
tainty and external perturbation are present. Finally, a numerical simulation is provided to show the effectiveness of our
method.
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