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Mathematical problems arising from the study of complex dynamics in Chua’s circuit are dis-
cussed. An explanation of the extreme complexity of the structure of attractors of Chua’s circuit
is given. This explanation is based upon recent results on systems with homoclinic tangencies.
A number of new dynamical phenomena is predicted for those generalizations of Chua’s circuits
which are described by multidimensional systems of ordinary differential equations.

1. Introduction

One of the most remarkable achievements of sci-
ence in the twentieth century is the discovery of
dynamical chaos. Using this paradigm, many prob-
lems in modern science and engineering which can
be modelled via the language of nonlinear dynam-
ics have obtained an adequate mathematical de-
scription. However, the explanation of a number
of phenomena of dynamical chaos has required the
creation of new mathematical techniques. The rea-
son for this is that the classical theory of nonlinear
oscillations developed by van der Pol, Andronov,
Pontryagin, Krylov, Bogolyubov et al., was based
on Poincaré’s theory of periodic orbits and Lya-
punov’s stability theory, i.e., on methods for study-
ing mainly quasi-linear systems.

Problems associated with systems involving
high energies, powers, velocities, etc., must be mod-
elled by multidimensional and strongly nonlinear
differential equations (ordinary, partial, etc.). The
study of such systems has generated numerous new
concepts and terminologies: hyperbolic sets, sym-
bolic dynamics, homoclinic and heteroclinic orbits,
global bifurcations, entropy (topological and met-
ric), Lyapunov exponents, fractal dimensions, etc.
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We note the possibility of describing dynamical
chaos via statistical tools as well; e.g., correlation
function, power spectrum and so on. They are
widely used in numerical simulations and in
experiments.

Here, we should note the concrete phenomena
and models that have played important roles in
establishing dynamical chaos in different fields of
knowledge. They are the Lorenz model in hydrody-
namics and in the theory of lasers, the Belousov-
Zhabotinsky reaction in chemistry and biophysics,
the Chua circuit in radiophysics and nonlinear elec-
tronics, etc.

Chua’s circuit has become very popular since
the middle of the 80’s (see Chua [1992], Nolta [1993],
Madan [1993a, 1993b], Chua & Hasler [1993]). Be-
ing, in its physical nature, a rather simple electronic
oscillator (in the simplest case it consists of only
four linear elements and one nonlinear element, as
shown in Fig. 1), Chua’s circuit is a very suitable
subject for study by means of both laboratory ex-
periments and computer simulations. This is be-
cause Chua’s circuit admits an adequate modelling
via the language of differential equations. In the
simplest case Chua’s equations are written in the
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following dimensionless form

jfzn(.u—ffh(r))‘
y=z—-y+2 (1)
z=—Py

where v and [ are dimensionless parameters. The
nonlinear function h(z) has the form!

1
h(z) = mz + 5(771“ —my){lz+1| - |z - 1|},

where mg and m, denote the slope of the normalized
piecewise-linear function.

The main reasons why Chua’s circuit is a sub-
ject of not only engineering interest is the following:

1. Chua’s circuit exhibits a number of different
scenarios in the appearance of chaos; namely,
transition to chaos through the period-doubling
cascade, through the breakdown of an invariant
torus, etc. All of these bifurcation phenomena
makes the study of Chua’s circuits a rather uni-
versal problem.

2. Chua’s circuit exhibits a chaotic attractor called
the “double scroll Chua’s attractor” [Madan,
1993a). It appears at the conjunction of a pair
of nonsymmetric spiral attractors. Three equi-
librium states of a saddle-focus type are visible
in this attractor, which indicates that the double
scroll Chua’s attractor is multistructural, which
distinguishes it from other known attractors of
three-dimensional systems.

3. Equations (1) are rather close to the equations
of a three-dimensional normal form (in the sense
that the respective phase portraits of strange at-
tractors are close) for bifurcations of an equi-
librium state with three zero characteristic ex-
ponents (for the case with additional symmetry
[Arneodo et al., 1984]), and that for a periodic
orbit with three multipliers equal to —1.

4. In their mathematical nature, the attractors
which occur in Chua’s circuits are essentially
more complicated objects than they had seemed

'From a nonlinear circuit perspective the nonlinear function
h(z) in Chua’s equations can be any single-valued function
of z because Chua has pioneered techniques for synthesizing
such nonlinearities using standard electronic components as
building blocks [Chua, 1969; Chua et al., 1987]. For exam-
ple, h(z) is an odd-symmetric polynomial in Khibnik et al.,
[1993], a nonsymmetric piecewise-linear function in Perez-
Munuzuri et al. [1993], Mayer-Kress et al. [1993], a discon-
tinuous function in Mahla & Badan-Palhares [1993], etc.
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before. This conclusion is based on new sub-
tle results on systems with homoclinic tangencies
and homoclinic loops of a saddle-focus [Ovsyan-
nikov & Shil’nikov, 1987; 1993; Gonchenko et al.,
1992; 1993a; 1993c; 1994].

The recent generalization obtained by adding
a linear resistor Ry to Chua’s circuit, as shown in
Fig. 2, is described by the following equations:

dv 1
=t = —[G(vy — 1) - f(w)],
dt (&)
dv 1 . )
T: - (TQ[G(H — v2) + 13, (2)
di 1 .
71—:‘ = *Z(U'z + Roi3) ,
where
a=1
""R
and

1
f(v1) = Gpor + §(Ga - Gp){|v1 + E| — |1 — E|}.

Here, the v—i characteristic f is odd-symmetric, con-
sisting of three linear components, where the two
slopes G, and G}, may assume any sign and value.

Equation (2) is called a global unfolding of
Chua’s circuit [Chua, 1993]. In dimensionless form
it is written as

* = ka(y — z — h(z)),
y=k(z—-y+2), (3)
z=k(-By —vz),

where h is the same as above and k is defined as
if RCy >0,

follows: .
k=
-1 if RCy <.

Let us denote the set of characteristic expo-
nents of the equilibrium state O in the origin as
A = (A1, A2, A3), and the set of characteristic expo-
nents corresponding to z > 1 (or, what is the same,
tox < 1) as v = (11, v, v3). It is well known that
two Chua’s circuits are equivalent if they have equal
sets A and v. Therefore, it is natural to choose these
sets as control parameters. Unfortunately, it can-
not be done for the original Chua’s circuit [Eq. (1)]
since, in this case, a constraint exists among A and
v, but the global unfolding (3) of Chua’s circuit is
free of this defect. Moreover, all of the 12-parameter

1
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Fig. 2. (a) The unfolded Chua’s circuit is obtained by inserting a linear resistor Rp in series with the inductor L in the original
Chua’s circuit. In general, Chua’s diode may be characterized by an arbitrary (not necessarily continuous, piecewise-linear,
or symmetric) function of one variable. However, for the 12-parameter family of odd-symmetric piecewise-linear vector fields,
the topological conjugacy of the unfolded Chua’s circuit applies only to the case when the vg — vs. — ir characteristic is
odd-symmetric with three piecewise-linear segments having an inner slope G, and an outer slope G4, such as those depicted
below: (b) Goa <Gy <0, (c) Gy < Ga <0, (d) Ga <0,G, >0, (e) Gy >Ga 20, (f) Ga >0,G, <0, (g) Ga > Gy > 0.




family of arbitrary odd-symmetric piecewise-linear
three-dimensional systems with three regions of lin-
earity (except for a set of zero measure in the pa-
rameter space) is mapped into the global unfolding
of Chua’s circuit in a natural way. A more detailed
consideration of this question is presented in Sec. 2
where also a number of typical shapes of attractors
taking place at different values of A and v are given
(see Table 1).

The most thorough analysis devoted to a rig-
orous proof of the existence of chaos in Chua’s cir-
cuits was carried out for Eq. (1) [Chua et al., 1986;
Silva, 1993] by establishing the existence of homo-
clinic loops of the saddle-focus at the origin for some
values of parameters. Due to symmetry, there ex-
ist two homoclinic loops simultaneously, forming a
configuration as shown in Fig. 3. After the loops
are found, the Shil’nikov theorem is applied which
guarantees complicated chaotic behavior of orbits.
The bifurcation analysis presented in Chua et al.
[1986] showed that these loops exist in the region
of existence of the double scroll Chua’s attractor
(Fig. 4) which makes it possible to assert that the
double scroll Chua’s attractor is a strange attractor
indeed. Besides, another homoclinic configuration
can take place in the region of existence of the dou-
ble scroll Chua’s attractor; namely, a heteroclinic
contour containing two nontrivial equilibrium states
Pt and P~ of the saddle-focus type and two het-
eroclinic orbits connecting the equilibria (Fig. 5).
These saddle-foci are topologically different from
0: dimW*(P*) = 2, dim W*(P*) = 1. In princi-
ple, homoclinic contours of another type (see Fig. 6)
studied mathematically by Bykov [Bykov, 1977;
1978; 1980; 1988; 1992] (see also Glendinning &
Sparrow [1984] and Bykov & A. Shil’nikov [1989])
are not ruled out in Chua’s circuits.

We emphasize that the presence of saddle-focus
homoclinic loops implies a number of problems. The
crux of the problems is that if the conditions of
the Shil’nikov theorem are fulfilled and if the diver-
gence of the vector field is negative at the saddle-
focus, then in the bifurcation set of such systems
there are dense systems with infinitely many stable
periodic orbits. This shows that attractors associ-
ated with a saddle-focus loop, including the dou-
ble scroll attractor, cannot be stochastic in a rig-
orous sense. Furthermore, systems with nonrough
Poincaré homoclinic orbits (homoclinic tangencies)
are also dense in the bifurcation set, which indicates
that such attractors are actually quasiattractors in
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the sense of Afraimovich & Shil’'nikov [1983]. The
problems connected with saddle-focus loops are dis-
cussed in Sec. 3, where results obtained by Ovsyan-
nikov and Shil’nikov for the multidimensional case
are also presented.

Attractors (quasi) found in Chua’s circuits have
principal distinctions from, for instance, structurally
stable attractors and Lorenz attractors; therefore,
there are still many problems of dynamical chaos in
Chua’s circuits that should be investigated. First,
we consider the following question in Sec. 4: if a
visible dynamical chaos is observed in a model of
this type, what orbit is it associated with? In our
opinion, the answer is that such orbits are Poisson-
stable orbits whose Poincaré return times are not
bounded.

Even the problem of establishing or searching
for periodic orbits is not simple. It becomes even
more complicated when we have to deal with non-
periodic Poisson-stable orbits. Actually, reasonable

Fig. 3. Two coexisting homoclinic loops originating from
a saddle-focus equilibrium point located at the origin of an
odd-symmetric vector field.
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Double-Scroll
Chua’s Attractor

Fig. 4. (c) Schematic illustration of the “macroscopic” structure of the double-scroll Chua’s attractor. Several typical tra-
jectories are shown in dark blue and in dark red. Two odd-symmetric homoclinic orbits at the origin (a saddle-focus) are
depicted by a pair of white concentric orbits. Each horizontal cross section (perpendicular to the paper) across the attractor
shows, on a macroscopic scale, two concentric spirals. Hence the macroscopic structure of the attractor consists roughly of
two concentric scrolls whose ends are gently shaped into two smooth circular caps. On a finer scale, each concentric layer in
turn looks like infinitely many infinitesimally thin layers typical of a fractal set. The white hole at the upper (respectively,
lower) end cap contains an equilibrium point of the saddle focus type which is generally denoted by P* (respectively, P7) in
the literature.
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Fig. 5. A homoclinic contour consisting of two saddle foci
0, and O,, connected to each other by a pair of heteroclinic
orbits I'; and I';. Each saddle focus is characterized by an
unstable two-dimensional invariant manifold W* and a stable
one-dimensional manifold W*.

Fig. 6.

sufficient conditions for the existence of such orbits
are needed. One such criteria is the Shil'nikov the-
orem. Naturally, this theorem does not resolve all
questions, therefore, we give the most universal cri-
terion for dynamical chaos; namely, the presence of
a rough (i.e., structurally stable) Poincaré homo-
clinic orbit, i.e., an orbit which is homoclinic to a
periodic orbit.

Nonwandering sets lying near the homoclinic
loop of a saddle-focus, or near a Poincaré homo-
clinic orbit, are not attractive. To produce dy-
namical chaos, these sets should be contained in an
attractor. In Sec. 5 we give a classification of at-
tractors known to date. Special attention is paid
to quasiattractors, which are the most complicated
and are very sensitive to variations of parameters.
The reason for this is that either the system itself,
or a nearby system, possesses a homoclinic tangency
within the quasiattractor.

Two other distinct homoclinic contours which may exist in Chua’s circuit.
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Problems associated with homoclinic tangen-
cies are discussed in Sec. 6 for both three-
dimensional and multidimensional cases. Here, of
foremost interest, is the behavior of systems in the
so-called Newhouse regions where structurally un-
stable systems with homoclinic tangencies are
dense. In particular, the results presented in this
section allows us to predict new phenomena which
are possible in Chua’s circuits, or coupled Chua’s
circuits, which are described by equations of di-
mensions three or higher. We assert, for instance,
that in the multidimensional case, together with a
“large” attractor there can exist stability windows
exhibiting not only periodic and quasiperiodic or-
bits, but also “small” strange attractors, e.g., at-
tractors similar to the Lorenz attractor and to the
double scroll Chua’s attractor.

2. Unfolding Chua’s Circuit

Systems (1) and (3) above belong to the following
class of piecewise-linear systems:

Az +b ;> 1, (4a)

t=¢Arz—-b z; < -1, (4b)

Aoz |z1] €1, (4¢)

where ¢ = (z1, T2, 73), A = (aij)ij=123, b =

(b1, b2, b3)T, Ao = (aij)ij=123-

By imposing the condition of continuity of the
right-hand sides, it is easy to show that Eq. (4)
can be récast into the following equivalent but more
compact form

a'::A:c'-F%{I(w, z) + 1| — [{w, z) — 1|}b, (5)

where A and b are as defined above, w = (1, 0, 0)T,
and (-, -) denotes the vector dot product. Observe
that for z; > 1, Eq. (5) reduces to Eq. (4a), and
for z; < —1, Eq. (5) reduces to Eq. (4b). Similarly,
when |z;] < 1, Eq. (5) reduces to Eq. (4c), upon
identifying

by 0 0O
A=A+ | b 0 0
bs 0 0O

The continuous family (5) has twelve independent
parameters. Let us denote it by E'2. The following
theorem is valid [Chua, 1993]:

Theorem 1. Let A and v be the sets of eigenval-

ues of matrices Ay and A respectively for a system
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belonging to E'2\ Ey where Ey is a set of zero mea-
sure in the parameter space of Eq. (5). Then, the
system 1s linearly equivalent to the unfolded Chua’s
circuit (3) with the same sets A and v.

In other words, the unfolding of Chua’s cir-
cuit is a canonical representative of, practically, the
entire twelve-parameter family of piecewise-linear
odd-symmetric systems with three domains of lin-
earity. We must emphasize here that the above as-
sertion is concerned only with linear equivalence
and piecewise-linear systems. This is because if
we consider the smooth analogues of Chua’s cir-
cuits, it would be senseless to try to find a canoni-
cal representative for such systems with respect to
topological equivalence. The reason is that a com-
plete description of systems in the Newhouse re-
gions (see Sec. 6) requires infinitely many invariants
[Gonchenko et al., 1992; 1993a; 1993c|, but these
regions are actually present in the parameter space
of Chua’s circuits, for instance, near the parame-
ter values corresponding to saddle-focus homoclinic
loops (Sec. 3).

The theorem above shows that (A, v) are the
natural control parameters for the unfolded Chua’s
circuit. That is why we display their values in Fig. 7
together with the values of the associated physi-
cal parameters (a rather simple connection between
physical parameters and the sets of eigenvalues is
given in Chua [1993]).

An examination of the strange attractors shown
in Figs. 7(a)-7(i) reveals the following two
properties:

1. The eigenvalues A = (A1, A2, A3) associated with
the attractors shown in Figs. 7(a)-7(i) can be
real or complex numbers. We will see in the next
section that this is not accidental. The equilib-
rium state O may be either a saddle, or a saddle
focus, and either one can be totally unstable.

2. Strange attractors exist in both cases when the
vector field has a negative divergence [Fig. 7(b)],
and when the divergence in the inner and in the
outer regions have opposite signs [the sign of
divergence is determined by (A1 + A2 + A3) for
|z| <1, and by (vy + v +v3) for |z| > 1]. This is
important because in three-dimensional systems
having divergence of nonconstant signs, struc-
turally stable periodic orbits of all three possi-
ble topological types can coexist in an attractor.
Also, variations in the signs of the divergence is
necessary in order for a transition to chaos to oc-
cur through the breakdown of an invariant torus.
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Fig. 7. Some strange attractors observed from the unfolded Chua’s circuit. Each attractor is shown in the three-dimensional
space (Vi, Va, I3), which is equivalent to the (z,y, z)-space of the dimensionless unfolded Chua’s equation. Also shown is a
segment of the time waveform Vi(t) and its power spectrum. The values of the associated circuit parameters are also given,
along with the eigenvalues (A1, A2, A3) at the equilibrium point at the origin, and the eigenvalues (v1,v2,v3) at the equilibrium
points P* and P~ (located in the outer affine region), which are identical due to symmetry.
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