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Abstract

This paper deals with the problem of synchronization of a class of continuous-time chaotic systems using the drive-

response concept. An adaptive observer-based response system is designed to synchronize with a given chaotic drive

system whose dynamical model is subjected to unknown parameters. Using the Lyapunov stability theory an adap-

tation law is derived to estimate the unknown parameters. We show that synchronization is achieved asymptotically.

The approach is next applied to chaos-based secure communication. To demonstrate the efficiency of the proposed

scheme numerical simulations are presented.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

In recent years, there has been increasing interest in the study of synchronizing chaotic systems [1–4]. In their seminal

paper, Pecora and Carroll [5] addressed the synchronization of chaotic systems using a drive-response conception. The

idea is to use the output of the drive system to control the response system so that they oscillate in a synchronized

manner. Since then, several other synchronization schemes have been developed, such as mutual coupling by Chua et al.

[6] and inverse system approach by Hasler and coworkers [7,8]. More recently, the synchronization has been regarded as

a special case of observer design problem [9–12]. In most of the research done on synchronizing chaotic system, perfect

knowledge of these systems was assumed, yet such perfection is not realistic. Actually a few attempts to synchronize

uncertain chaotic systems have been proposed. In [13] we have considered the presence of unknown disturbances and

achieved synchronization using a reduced-order observer. In [14] a robust sliding observer was suggested to overcome

the effect of parameter uncertainties. In [15,16] adaptive observers were used to synchronize Lur�e type chaotic systems

(i.e., where the nonlinearity is a function of the output).

In this work we suggest an adaptive observer for a larger class of chaotic systems. We use the Lyapunov approach to

derive an updating law for the estimation of the unknown parameters. We show that under mild conditions, syn-

chronization is asymptotically achieved and the parameters are correctly estimated. We also show that this method can

be applied to secure message transmission using parameter modulation. The outline of this paper is as follows. In

Section 2 we present the adaptive observer-based response system design and we prove its synchronization. In Section 3

we present some illustrative examples. In Section 4 we explain how can the proposed synchronization scheme be used

for secure digital message transmission and we give some simulation results. Finally in Section 5 we include some

concluding remarks.
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2. Adaptive synchronization

Chaotic systems are generally described by a set of nonlinear differential equations. It is very common, however, to

be able to separate the dynamics into linear and nonlinear parts. If we furthermore consider that the chaotic system is

subjected to unknown parameters, the chaotic dynamics can therefore be described by the following equations:

_xx ¼ Axþ f ðxÞ þ BUðxÞh ð1aÞ

y ¼ Cx ð1bÞ

where x 2 Rn and y 2 Rm are respectively the state vector and the output of the drive system. h 2 Rp represents a

constant vector of unknown parameter. A and C are two constant matrices of appropriate dimensions and B 2 Rn�q is

the injection map of the unknown dynamics. f : Rn ! Rn and U : Rn ! Rq�p are smooth vector fields. We assume that

the following hypotheses are pertaining to the drive system (1).

(H1) f (respectively U) is Lipschitz in x, with Lipschitz constant kf (respectively kU) i.e., for all x; x̂x 2 Rn

kf ðxÞ 	 f ðx̂xÞk6 kf kx	 x̂xk

kUðxÞ 	 Uðx̂xÞk6 kUkx	 x̂xk

(H2) We can choose a gain matrix L and two positive definite matrices P and Q satisfying

ðA	 LCÞTP þ P ðA	 LCÞ ¼ 	Q ð2Þ

kf þ kUkhkkBk <
kminðQÞ
2kmaxðP Þ

ð3Þ

BTP ¼ HC ð4Þ
for some matrix H . Note that the last equality implies that the span of rows of BTP belongs to the span of rows of C.

Remark 1. Finding a gain matrix L satisfying (H2) is not a trivial task. However, it was shown in [17] using the

Kalman–Yakubovich–Popov lemma that if a matrix L can be chosen such that the transfer function matrix

GðsÞ ¼ CðsI 	 ðA	 LCÞÞ	1B is strictly positive real, then there exist matrices P and Q such that (2) and (4) are satisfied

with H ¼ I .

Similarly to many different synchronization schemes, the response system is merely a duplicate of the drive system

with the addition of a crucial term depending on the synchronizing signal of the drive system. Herein, we propose an

adaptive observer-based response system in the following form:

_̂xx̂xx ¼ Ax̂xþ f ðx̂xÞ þ BUðx̂xÞĥh þ Lðy 	 Cx̂xÞ ð5Þ
where ĥh is the solution of an adaptation law to be determined in the sequel.

Let e ¼ x	 x̂x be the synchronization error. Then from (1) and (5) the error dynamics are

_ee ¼ ðA	 LCÞeþ f ðxÞ 	 f ðx̂xÞ þ BUðxÞh 	 BUðx̂xÞĥh ð6Þ
The synchronization problem is now reduced to the stability of system (6). Consider the Lyapunov function candidate

V ¼ eTPeþ 1

c
ðh 	 ĥhÞTðh 	 ĥhÞ; c > 0 ð7Þ

The derivative of V along the trajectories of (6) is given by

_VV ¼ eT ðA
�

	 LCÞTP þ PðA	 LCÞ
�
eþ 2eTP f ðxÞ

�
	 f ðx̂xÞ

�
þ 2 BUðxÞh

�
	 BUðx̂xÞĥh

�T

Pe	 2

c
ðh 	 ĥhÞT _̂hĥhh

6 	 eTQeþ 2kf kmaxðP ÞeTeþ 2 BUðxÞh
�

	 BUðx̂xÞh
�T

Peþ 2 BUðx̂xÞðh
�

	 ĥhÞ
�T

Pe	 2

c
ðh 	 ĥhÞT _̂hĥhh

6 	 kminðQÞkek2 þ 2kf kmaxðP Þkek2 þ 2kBkkUkhkkmaxðPÞkek2 þ 2ðh 	 ĥhÞT Uðx̂xÞTBTPe
�

	 1

c
_̂hĥhh

�

6 	 kminðQÞ
�

	 2kf kmaxðP Þ 	 2kBkkUkhkkmaxðP Þ
�
kek2 þ 2ðh 	 ĥhÞT Uðx̂xÞTHCe

�
	 1

c
_̂hĥhh

�
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Should we choose the following adaptation law

_̂hĥhh ¼ cUðx̂xÞTHðy 	 Cx̂xÞ ð8Þ

then

_VV 6 	 lkek2 ð9Þ

where

l ¼ kminðQÞ 	 2kf kmaxðP Þ 	 2kBkkUkhkkmaxðP Þ > 0

as far as (H2) is satisfied. And so the system is Lyapunov stable, whence e 2 L1 and ðh 	 ĥhÞ 2 L1. Therefore using (6)

and (7) we have V ðtÞ 2 L1 and _ee 2 L1.

Integrating (9) we obtainZ t

0

kek2
dt6

V ð0Þ 	 V ðtÞ
l

since V ð0Þ is finite it follows that e 2 L2. Hence using Barbalat�s lemma [18] and the fact that e 2 L1, _ee 2 L1 and e 2 L2

it results that limt!1 eðtÞ ¼ 0.

Moreover, since f and U are Lipschitz, then _ee is uniformly continuous and the integralZ 1

0

_eedt ¼ 	eð0Þ

is finite. Thus by Barbalat�s lemma limt!1 _eeðtÞ ¼ 0. Therefore using (6) we obtain limt!1ðBUðxÞh 	 BUðx̂xÞĥhÞ ¼ 0.

We can now summarize our result in the following theorem

Theorem 1. Consider the drive chaotic system (1) satisfying hypotheses (H1) and (H2). The observer-based response
system (5) associated with the adaptation law (8) globally asymptotically synchronizes with the drive system i.e.,
keðtÞk ¼ kxðtÞ 	 x̂xðtÞk ! 0 as t ! 0.

Remark 2. We note that if dUðxðtÞÞ=dt is bounded and UðxÞ satisfyZ tþT0

t
UðxðsÞÞTUðxðsÞÞds P aI

for some T0, a > 0 and any tP 0, then limt!1 kh 	 ĥhk ¼ 0, [19].

Remark 3. If the drive chaotic system is described by the following equations

_xx ¼ Axþ f ðxÞ þ BUðyÞh ð10aÞ

y ¼ Cx ð10bÞ

then (H1) and (H2) are substituted by

(H10) f is Lipschitz in x with Lipschitz constant kf .
(H20) We can choose matrices L, P and Q such that

ðA	 LCÞTP þ P ðA	 LCÞ ¼ 	Q

kf <
kminðQÞ
2kmaxðP Þ

BTP ¼ HC

Remark 4. If the drive chaotic system is described by the following equations

_xx ¼ Axþ f ðyÞ þ BUðyÞh
y ¼ Cx

then the system reduces to that studied in [15,16].
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3. Illustrative examples

In this section, we consider two well-known chaotic systems to which we apply the chaotic synchronization scheme

proposed in the foregoing section.

3.1. Chua’s circuit

Chua�s circuit is a simple electronic circuit that exhibits chaotic behavior for some specified components values. The

circuit dynamics can be described by three differential equations, which in dimensionless form are as follows (see Ref.

[20])

_xx1 ¼ að 	 x1 þ x2 	 f1ðx1ÞÞ

_xx2 ¼ x1 	 x2 þ x3

_xx3 ¼ 	bx2

where f1ðx1Þ ¼ bx1 þ 0:5ða	 bÞðjx1 þ 1j 	 jx1 	 1jÞ. Typical values of the parameters are ða; b; a; bÞ ¼
ð10; 18;	4=3;	3=4Þ. b depends on the inductance value which has an uncertainty resulting in h ¼ Db ¼ 1:25 that is

supposed unknown to the response system. We consider that the current through the inductor is being measured and

sent to the response system to synchronize it. Then the uncertain system in a compact form can be written

_xx1

_xx2

_xx3

2
4

3
5 ¼

	10 10 0
1 	1 1

0 	18 0

2
4

3
5 x1

x2

x3

2
4

3
5þ

f1ðx1Þ
0

0

0
@

1
Aþ

0
0

1

2
4

3
5x2h ð11Þ

y ¼ ½ 0 0 1 �x ¼ x3 ð12Þ

The above system is in the form of (1). By choosing

L ¼
0:5
	29

25

2
4

3
5 and P ¼

0:1 0:05 0

0:05 0:1 0

0 0 0:1

2
4

3
5 then Q ¼

2 	1:1 0

	1:1 2 0:1
0 0:1 2

2
4

3
5

we find that BTP ¼ 0:1C and

2:58 ¼ 1:33 þ 1 � 1:25 � 1 ¼ kf þ kUkhkkBk <
kminðQÞ
2kmaxðP Þ

¼ 2:985

thus (H1) and (H2) are satisfied and therefore an observer-based response system can be designed as follows

_̂xx̂xx1

_̂xx̂xx2

_̂xx̂xx3

2
4

3
5 ¼

	10 10 0
1 	1 1

0 	18 0

2
4

3
5 x̂x1

x̂x2

x̂x3

2
4

3
5þ

f1ðx̂x1Þ
0

0

0
@

1
Aþ LCðx3 	 x̂x3Þ ð13Þ

_̂hĥhh ¼ 2:5x̂x2ðx3 	 x̂x3Þ ð14Þ

The above systems were simulated using a fourth order Runge-Kutta integration algorithm of MATLAB 6 with the

following initial conditions ðx1ð0Þ; x2ð0Þ; x3ð0ÞÞ ¼ ð2;	0:5;	2Þ and ðx̂x1ð0Þ; x̂x2ð0Þ; x̂x3ð0Þ; ĥhð0ÞÞ ¼ ð0; 0; 0; 0Þ. Fig. 1 delin-

eates the synchronization of the drive and the response system and the estimation of the uncertainty.

3.2. Lorenz system

Lorenz system is another typical chaotic system that has been thoroughly studied. It is described by the following

equations

_xx1 ¼ 	r1x1 þ r2x2

_xx2 ¼ rx1 	 x2 	 x1x3

_xx3 ¼ x1x2 	 bx3
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It is well known that the system exhibits chaotic behavior with the following parameters, ðr1; r2; r; bÞ ¼ ð10; 10; 28; 8=3Þ.
We suppose that r1 is known with an uncertainty h ¼ Dr1 ¼ 2:5. Next, we consider that x1 is the signal used for

synchronization. The uncertain system in a compact form can be written

_xx1

_xx2

_xx3

2
4

3
5 ¼

	10 10 0

28 	1 0
0 0 	 8

3

2
4

3
5 x1

x2

x3

2
4

3
5þ

0
	x1x3

x1x2

0
@

1
Aþ

1
0

0

2
4

3
5ð	yÞh ð15Þ

y ¼ ½ 1 0 0 �x ¼ x1 ð16Þ

The above system is in the form of (10). Let us choose

L ¼
0

38

0

2
4

3
5 and P ¼

0:1 0 0

0 0:1 0

0 0 0:1

2
4

3
5 then Q ¼

2 0 0

0 0:2 0

0 0 0:53

2
4

3
5

we can check that ðH10Þ and ðH20Þ are satisfied and therefore an observer-based response system can be designed as

follows

_̂xx̂xx1

_̂xx̂xx2

_̂xx̂xx3

2
4

3
5 ¼

	10 10 0

28 	1 0
0 0 8

3

2
4

3
5 x̂x1

x̂x2

x̂x3

2
4

3
5þ

0
	x̂x1x̂x3

x̂x1x̂x2

0
@

1
Aþ LCðx1 	 x̂x1Þ ð17Þ

_̂hĥhh ¼ 	5yðx1 	 x̂x1Þ ð18Þ

The above systems were simulated using a fourth order Runge-Kutta integration algorithm of MATLAB 6 with the

following initial conditions ðx1ð0Þ; x2ð0Þ; x3ð0ÞÞ ¼ ð10; 15; 10Þ and ðx̂x1ð0Þ; x̂x2ð0Þ; x̂x3ð0Þ; ĥhð0ÞÞ ¼ ð0; 0; 0; 0Þ. Fig. 2 delineates

the synchronization of the drive and the response system and the estimation of the uncertainty. We note that the

synchronization is rapidly achieved despite the very different initial conditions, and the unknown uncertainty is also

quickly estimated to the right value.

Fig. 1. Adaptive observer-based synchronization of Chua�s circuit.
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4. Secure communication using parameter modulation

Secure communication has been an interesting field of application of chaotic synchronization since the last decade

[21–23]. Due to their unpredictability and broad band spectrum, chaotic signals have been used to encode information

by simple masking (addition) or using modulation. As a matter of fact, since the synchronization scheme proposed in

the previous section can correctly estimate the unknown constant uncertainty of the drive system parameter, one can

expect that it can also estimate slow varying changes such that _hh � 0 or piecewise constant uncertainty such that _hh ¼ 0

Fig. 2. Adaptive observer-based synchronization of Lorenz system.

Fig. 3. Secure communication using Lorenz system via noiseless channel.
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everywhere except at some discrete instants of time. Therefore if a drive system parameter changes its value from the

nominal one according to the level of a digital information signal, the response system can estimate these variations and

hence the modulating information signal. As an example, we present the Lorenz system with r1 being modulated by a

digital information signal, so that we have r1 ¼ rn
1 þ 2:5 if the modulating bit is ‘‘1’’ and r1 ¼ rn

1 	 2:5 if the modulating

bit is ‘‘0’’. It is important that the bit duration Tb be much larger than the convergence time of the adaptation law, hence

the unknown uncertainty can be assumed to be piecewise constant. Fig. 3 shows that the information is not perceived in

the sent signal x1. The drive-response synchronization is well obtained and the sent message is retrieved with a good

quality. Moreover, since the synchronization is asymptotically achieved, we can expect to have some robustness with

respect to low noise level. The same simulations were carried with a zero mean channel noise representing 2.5% of the

sent signal level. The obtained results are depicted in Fig. 4. It is shown that synchronization is obtained and the re-

trieved message can be filtered using a threshold detector set at zero.

5. Conclusion

In this paper we showed that given a single driving signal of a drive chaotic system, we can concurrently obtain

synchronization and estimation of a constant unknown parameter at the response system side. The result is obtained

using an adaptive observer. We demonstrated that information about the parameters of a chaotic system is embedded in

the time series data of a state variable and can be extracted under mild conditions. Consequently, a parameter of the

drive system can be stirred to vary in a piecewise constant manner according to an information modulating signal. The

estimation of the parameter variations leads to information reconstruction at the response system side. Hence the drive-

response systems are used as transmitter–receiver systems for secure communication.
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