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Controlling chaos in Colpitts oscillator
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Abstract

In this paper, an adaptive backstepping design is proposed to synchronize and control the Colpitts oscillator. The
proposed control approach enables stabilization of chaotic motion to a steady state as well as synchronization by recur-
sively interlacing the choice of a Lyapunov function with the design of feedback control in a systematical way. Numer-
ical simulations verify the effectiveness of the approach.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The classical Colpitts oscillator was originally designed to generate periodic waveforms. However, with special cir-
cuit parameters it can be used to generate noise-like broadband signals [1–5]. Since the chaotic oscillation of the Colpitts
oscillator was reported first by Kennedy [1], there is extensive numerical and experimental evidence of chaotic behavior
[1,3–5]. The first experiment on chaos in the Colpitts oscillator was reported at relatively low fundamental frequency,
i.e., several kilohertz [1]. Chaotic oscillations have been observed experimentally also in the HF range at the fundamen-
tal frequency f = 25 MHz using the 2N2222A type BJT with the threshold frequency of fT = 300 MHz [3]. Later, chaos
has been demonstrated numerically in the UHF range as well as at f = 500 MHz [6], also experimentally at
f = 950 MHz (Russian 2T938A-2 type BJT with f = 5 GHz) [7]. The fundamental frequency can be tuned from several
kilohertz to several gigahertz, i.e., to the microwave range.

In the present paper we propose a novel controller to synchronize and control the chaotic Colpitts oscillator, based
on the backstepping design method. The proposed approach is a powerful and systematic technique that recursively
interlaces the choice of a Lyapunov function with the design of feedback control. Besides, the control scheme can also
be used to suppress chaos in a systematic way. Finally, the effectiveness and feasibility of the proposed control tech-
nique are numerically verified.

This paper is organized as follows. In Section 2, a brief description of the chaotic behavior in the Colpitts oscillator
with an ordinary circuit model is introduced. Section 3 discusses the design of a backstepping controller for synchro-
nization between the chaotic oscillators as well as suppression of chaotic motion. Numerical simulations are carried out
to confirm the validity of the proposed approach in Section 4. Finally, some conclusions are given.
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2. Colpitts oscillator and its chaotic behavior

The classical circuit diagram (Fig. 1) of the Colpitts oscillator contains a bipolar junction transistor (BJT) as the gain
element and a resonant network consisting of an inductor and a pair of capacitors. Dynamics for the schematic in Fig. 1
can be described by the following differential equations [1,6,8]:
dx
dt
¼ y � aF ðzÞ;

dy
dt
¼ c� x� by � z;

dz
dt
¼ y � dz;

ð1Þ

ffiffiffiffiq �

where x¼ V C1

V � ; y¼ qIL
V � ; z¼ V C2

V � ; t¼
ffiffiffiffiffiffiffiffi
LC1

p
; q¼ L

C1
a¼ q

r ; b¼R=q; c¼V 0=V �; d¼q=Re; e¼ R2

R1þR2
c; F ðzÞ¼ e�1�z; z<e�1;

0; zPe�1;
.

Here we adopt ‘‘piecewise-linear’’ of i–v curves of a BJT. More details on physical parameters and their meanings will
Fig. 1. Circuit diagram of the chaotic Colpitts oscillator.
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Fig. 2. Phase portrait of the chaotic Colpitts oscillator.



584 G.H. Li et al. / Chaos, Solitons and Fractals 33 (2007) 582–587
not be given here; we refer the interested reader to [8]. The circuit parameters are as follows: C1 = C2 = 470 nF,
C0 = 47 lF, R = 36 X, Re = 510 X, R1 = R2 = 3 kX, V0 = 15 V. The typical parameters of the Colpitts oscillator are
considered, that is, a = 30, b = 0.8, c = 20, d = 0.08, e = 10. The phase portrait is illustrated in Fig. 2, showing a clear
chaotic oscillation.
3. Backstepping design for the controller

In this section, we will expect to design an appropriate controller to drive the chaotic Colpitts oscillator to a desired
state (including an equilibrium point or a synchronized chaotic state). In fact, it is very useful for actual engineering.

The backstepping strategy [9,10] is a step-by-step design approach and consists of a recursive procedure interlacing
the choice of a Lyapunov function with the design of a virtual control at each step. At the last step, the true control is
obtained. According to the control theory [9,10], the controlled chaotic system can be written in the form
dx
dt
¼ y � aF ðzÞ þ u;

dy
dt
¼ c� x� by � z;

dz
dt
¼ y � dz;

ð2Þ
where u is a controller to be designed later. For brevity, X = (x,y,z)T denotes the state vector. Let the target orbit of the
Colpitts oscillator Xt = (xt,yt,zt)

T, which is a solution of the system (1), namely, it satisfies
dxt

dt
¼ yt � aF ðztÞ;

dyt

dt
¼ c� xt � byt � zt;

dzt

dt
¼ yt � dzt.

ð3Þ
Thus, the problem of controlling chaos under investigation here is to select an appropriate control function u such that
the trajectory of the controlled system (2) asymptotically approaches the target orbit Xt, i.e., limt!1jXt � Xj = 0.

Subtracting Eq. (2) from Eq. (3), we get the error dynamics as follows:
de1

dt
¼ e2 � aF ðztÞ þ aF ðzt þ e3Þ � u;

de2

dt
¼ �e1 � be2 � e3;

de3

dt
¼ e2 � de3;

ð4Þ
where the error vector: e = (e1,e2,e3)T = (xt � x,yt � y,zt � z)T.
Now the objective is to find a control law u for stabilizing the error variables of system (4) at the origin. As long as

the control input can stabilize the system, the error vector e converges to zero as time goes to infinity. This implies that
the trajectory of the controlled system (2) asymptotically approaches the target orbit (2). Now we begin to design the
controller based on the backstepping design method, as follows:

Step 1: Let w1 = e3, then we can obtain its derivative
_w1 ¼ _e3 ¼ �dw1 þ e2; ð5Þ
where e2 = a1(w1) is regarded as a virtual controller. Choose Lyapunov function V 1 ¼ 1
2
w2

1. The derivative of
V1 is as _V ¼ w1ð�dw1 þ a1ðw1ÞÞ. If we choose a1(w1) = 0, _V 1 ¼ �dw2

1 is negative definite. Hence the w1-
subsystem (5) is asymptotically stable. Since the virtual control function a1(w1) is estimative when e2 is
considered as a controller, the error between e2 and a1(w1) is w2 = e2 � a1(w1). We can obtain the following
(w1,w2)-subsystem
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_w1 ¼ �dw1 þ w2;

_w2 ¼ �e1 � bw2 � w1.
ð6Þ
Consider e1 = a2(w1,w2) as a controller in system (6) to make system (6) asymptotically stable.
Step 2: In order to stabilize the (w1,w2)-subsystem (6), we can choose a Lyapunov function V 2 ¼ V 1 þ 1

2
w2

2. Its deriv-
ative is _V 2 ¼ �dw2

1 � bw2
2 � w2a2ðw1;w2Þ. If a2(w1,w2) = 0, then _V 2 ¼ �dw2

1 � bw2
2 < 0 makes the (w1,w2)-sub-

system (6) asymptotically stable.Similarly, assume that w3 = e1 � a2(w1,w2), so _w2 ¼ �w3 � bw2 � w1. Study
the full dimension (w1,w2,w3) system
_w1 ¼ �dw1 þ w2;

_w2 ¼ �w3 � bw2 � w1;

_w3 ¼ w2 � aF ðztÞ þ aF ðzt þ w1Þ � u.

ð7Þ
Step 3: Choose Lyapunov function V 3 ¼ V 2 þ 1
2
w2

3 to make the (w1,w2,w3) system (7) asymptotically stable. The deriv-
ative of V3 is expressed as _V 3 ¼ �dw2

1 � bw2
2 þ w3½�aF ðztÞ þ aF ðzt þ w1Þ � u�. Let u = �aF(zt) + aF(zt + w1) +

w3, and _V 3 can be described as _V 3 ¼ �dw2
1 � bw2

2 � w2
3 < 0, which makes the (w1,w2,w3) system (7) asymptot-

ically stable. Finally, the full (w1,w2,w3) system is
_w1 ¼ �dw1 þ w2;

_w2 ¼ �w3 � bw2 � w1;

_w3 ¼ w2 � w3.

ð8Þ
In the (w1,w2,w3) coordinates, the equilibrium (0,0,0) is global asymptotically stable. In view of w1 = e3, w2 = e2, and
w3 = e1, equilibrium of Eq. (4) is still (0,0,0) and has not been changed. So following above procedure we can conclude
that equilibrium (0,0,0) of system (4) is asymptotically stable. In other words, the trajectory of the controlled system (2)
asymptotically approaches the target.
4. Numerical simulations

In this section, numerical experiments are given to verify the effectiveness of the above control approach. Fourth-
order Runge–Kutta method is used to solve the systems of differential Eqs. (2) and (3) with time step size equal
0:001 in all numerical simulations.

Case 1 Now consider synchronization between two identical Colpitts Oscillators. In this case, the initial values are
arbitrarily chosen as follows: Xt(0) = [8,2,3] and X(0) = [5,10.5,8.5], respectively, for the system (2) and the system (3).
After 20 s, the motion trajectories have entered into the chaotic attractor. From then on we activate the foregoing con-
trolleru. The simulation results are shown in Fig. 3. Fig. 3 displays the time waveforms of the error state variables before
and after the controller is activated. One can see that as the controller is activated, the controlled system eventually
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Fig. 3. Temporal evolution of the synchronization error: e1 (solid), e2 (dash), and e3 (dash dot).
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Fig. 4. Controlling chaotic behavior to a stable state. Time waveform of the state vector x (solid), y (dash), and z (dash dot).
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tracks the chaotic target orbit. We observe in numerical simulations that after several seconds there is synchronization
between two chaotic systems in spite of different initial conditions.

Case 2 (Controlling chaotic behavior to a stable state). It is well known that the equilibrium point of the chaotic

system is c� aðbdþ1Þðe�1Þ
aþd ; adðe�1Þ

aþd ; aðe�1Þ
aþd

� �
¼ ð10:45; 0:718; 8:98Þ. Our purpose is to design a backstepping controller to

make trajectory of the controlled chaotic system asymptotically approach the desired equilibrium point.

Similarly, let the initial conditions be X(0) = [5,10.5,8.5]. After 20 s, the motion trajectories have entered into
the chaotic attractor. From then on the active controller is activated. The numerical results are illustrated in Fig. 4.
As expected, one can observe that the system orbit eventually converges to the desired equilibrium point
(10.45,0.718,8.98). With the above controller, chaos is suppressed.
5. Conclusions

In this paper, we firstly present the circuit model and its chaotic behavior in Colpitts oscillator. Secondly, based on
backstepping design method, synchronization and suppression of chaotic motion are reported by using only one con-
troller. The method here to use is a systematic design approach and consists of a recursive procedure interlacing the
choice of a Lyapunov function with the design of a controller. Finally, numerical simulations are provided to show
the effectiveness and feasibility of the proposed approach.
Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 60371033) and partly sup-
ported by the Shanghai Leading Academic Disciplines (No. T0102).
References

[1] Kennedy MP. Chaos in Colpitts oscillator. IEEE Trans Circuits Syst I 1994;41:771–4.
[2] Kennedy MP. On the relationship between the chaotic Colpitts oscillator and Chua’s oscillator. IEEE Trans Circuits Syst I

1995;42:376–9.
[3] Wegener C, Kennedy MP, RF chaotic Colpitts oscillator. In: Proc 3rd Workshop NDES’95, Dublin, Ireland, July 1995; p. 255–8.
[4] Tamasevicius A, Mykolaitis G, Bumeliene S, et al. Two-stage chaotic Colpitts oscillator. Electron Lett 2001;37:549–51.
[5] Mykolaitis G, Tamasevicius A, Bumeliene S. Experimental demonstration of chaos from Colpitts oscillator in VHF and UHF

ranges. Electron Lett 2004;40:91–2.
[6] Maggio GM, Feo OD, Kennedy MP. Nonlinear analysis of the Colpitts oscillator and applications to design. IEEE Trans Circuits

Syst I 1999;46:1118–30.



G.H. Li et al. / Chaos, Solitons and Fractals 33 (2007) 582–587 587
[7] Panas A, Kyarginsky B, Maximov N. Single transistor microwave chaotic oscillator. In: Proc int conf on nonlinear theory and its
applications, NOLTA’2000, Dresden, Germany, September 2000; p. 445–8.

[8] Cenys A, Tamasevicius A, Baziliauskas A, et al. Hyperchaos in coupled Colpitts oscillators. Chaos, Solitons & Fractals
2003;17:349–53.

[9] Lu JG, Wei R, Wang XF, et al. Backstepping control of discrete-time chaotic systems with application to the Henon systems.
IEEE Trans Circ Syst 2001;48:1359–63.

[10] Tan XH, Zhang JY, Yang YR. Synchronization chaotic systems using backstepping design. Chaos, Solitons & Fractals
2003;16:37–45.


	Controlling chaos in Colpitts oscillator
	Introduction
	Colpitts oscillator and its chaotic behavior
	Backstepping design for the controller
	Numerical simulations
	Conclusions
	Acknowledgements
	References


