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tion) was ~9 times larger than the average count for
LMFE based upon the standard matrix inversion. This is a
conservative estimate, as the computational load of LMFE
is amenable to further improvement using inversion algo-
rithms that exploit the centrosymmetric character [8] of the
regularized modified covariance matrix.
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Synchronizing Chaotic Circuits

Thomas L. Carroll and Louis M. Pecora

Abstract —Although the motions of independent chaotic systems are
uncorrelated with each other, it is possible under some conditions to
synchronize a subsystem of one chaotic system with a separate chaotic
system by sending a signal from the chaotic system to the subsystem. We
describe here the conditions necessary for synchronization and demon-
strate synchronization with a chaotic circuit.

I. INTRODUCTION

Chaos is sometimes described as a situation in which a system
gets out of synchronization with itself [1], resulting in a complex
nonperiodic motion. If two independent chaotic systems are
started with the same initial conditions, any arbitrarily small
difference in these conditions will grow exponentially in time [2].
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Fig. 1. Voltages x, and x4 are from two identical chaotic circuits

running independently of each other.

After some time, the motion of the two systems will be uncorre-
lated. For example, Fig. 1 shows a plot of a voltage from a
chaotic circuit versus a voltage from the same point in another
identical but independent circuit. The trajectory is traced ran-
domly over the screen, whereas if the circuits were synchro-
nized, the trace would be a straight 45° line.

It is, however, possible to have two nonlinear systems synchro-
nized, despite their chaotic motion, provided they are both
driven with the proper signal. We have devised a way to drive a
subsystem of a chaotic system with a signal from a similar
chaotic system so that corresponding signals from the two sub-
systems are identical [3]. We have built a simple circuit based on
chaotic circuits described by Newcomb et al. [4], [S]. We use this
circuit to demonstrate this chaotic synchronization.

II. THEORY

The essentials of the theory have been covered elsewhere [3];
we include enough of these here to understand the application
to a circuit.

The general scheme for creating synchronizing systems is to
take a (nonlinear) system, duplicate some subsystem of this
system and drive the duplicate and the original subsystem with
signals from the unduplicated part. This is a generalization of
“driving” or “forcing” a system. The process can be visualized
with ordinary differential equations.

Let u = f(u) be an n-dimensional dynamical system, so that
u=C(uy,"+,u,). Divide the system into two subsystems, v =
g(v,w) and w=h(v,w), where for a particular value of m,
0=y, ",0,), =08y, ", 8,), w=(wy, *,w,_,), and h=

(hy,*+, h,_,,)- Now, duplicate the w subsystem and use as the
new variables w'. This yields a (2n — m)-dimensional system:
U=g(v,w)
w=nh(v,w)
w'=h(v,w"). (1)

We refer to the v —w subsystem as the drive system since it
runs independently of w' and the v signal is fed to the w’
subsystem to drive it. We call the w’ subsystem the response.
Under the right conditions as time elapses the w'(¢) variables
will converge asymptotically to the w(¢) variables and continue
to remain in step with the w(¢) values. The necessary and
sufficient conditions for this to happen are the signs of the
conditional Lyapunov exponents of the w subsystem. The condi-
tional Lyapunov exponents are defined in the following way. In
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Fig. 2. Circuits used to demonstrate chaotic synchronization. Component values are R1 = R3 = R7=R8=R16=100kQ;
R2 =330 kQ; R4 =220 kQ; R5=R6=150 k; R9=R15=20 kQ; R10=3 kQ; R11=50 k); R12=R13=R14=10
kQ; R0O1=10kQ pot.; CO=C2 =0.001 uF; C1=0.01 wF. The diodes are type 1N4739A. All op amps were type 741 unless
otherwise noted. Points labeled X1, X2, X3, and X4 are where the corresponding voitages were measured.

Fig. 3. Response curve for the hysteretic part of the circuit. Input
voltage x; was supplied by a triangle wave generator operating at 10 Hz.
Output voltage ¥V, was measured at point VA4 with all feedback discon-
nected.

order to have w' converge to w, we want Aw(z) =w'(t)— w(?) to
converge to zero as ¢t — . This leads to the variational equation
for the w subsystem

dAw 2
—dt—=th(u,w)Aw+O((Aw) ) 2)
where D,k is the Jacobian of the w subsystem. In the limit of
small Aw we can ignore the higher order terms and we are left
with a variational equation for the w subsystem.

The Lyapunov exponents resulting from the variational equa-
tion can be calculated [3], [6]. They will determine the stability
of the w subsystem and thus the convergence of w' to w. Note
that these exponents will depend on the driving variables, v, and
so are referred to as conditional Lyapunov exponents.

When the exponents are all negative, the w subsystem is
stable, which guarantees that w’ will not diverge from w. This
provides a necessary condition for synchronization. The ques-
tion that naturally arises is whether there exists a nonempty set
of points “nearby” w(z) that will eventually converge to w(¢) as
t - o, The answer is yes and is provided by the linearization
principle [7] used in stability theory. This provides the sufficient
condition for synchronization.

III. ArpLicaTioN TO A CIRCUIT

We have used the system shown in Fig. 2 to demonstrate
these ideas. The chaotic circuit used is based on those described
by Newcomb et al. [4], [S]. At the heart of the circuit is an
unstable second-degree oscillator that oscillates in the range of
several hundred hertz. This oscillator is connected to a hys-
teretic element. The 7—V curve for this element is shown in Fig.
3. The output of the hysteretic element provides a bias that
moves the origin for the unstable oscillations to a positive or
negative value. The amplitude of the unstable oscillations will
increase until the voltage x; passes through the switching region
of the hysteretic element. This changes the sign of the output of
the hysteretic element, shifting the center of oscillation to a new
point and keeping the x; voltage bounded. Once this center
point has been changed, the value of the voltage at x, begins to
increase, continuing the process. The hysteresis adds the third
degree of freedom necessary to produce chaos.

This circuit may be modeled by the set of equations:

X=X, +yx+Cx;
X,=wx;—0,x,
sx3=(1—x§)(le—D+x3)—53x3 3)

where y = R, /R¢, ¢ = R, /Rs, = R,C; /(R,C;), and §, and
8, are damping parameters that model losses in the system. The
equations for x; and x, model the unstable second-degree
oscillator in the top part of the circuit in Fig. 2. The x; equation
is based on a function used by Rossler to model hysteresis [8].
The x; voltage behaves hysteretically depending on the x,;
voltage. The value of e is small, which causes the x; variable to
depend on a “faster” time so that the hysteresis quickly reaches
the saturation value as the x; voltage reaches the trigger point.
The S and D variables are derived from the upper and lower
hysteresis trigger voltages (V,, and V, ) as measured in the lower
part of the circuit in Fig. 2. Thus §=2.0/(V, —V,) and D=
SV, +1.0. For the chaotic regime, y=02, c= 2.2, 8,=10.001,
8;=0.001, =03, w =10, §=1.667, and D =0.0.

Following the theory developed above, the conditional Lya-
punov exponents for a system composed of x, and x; are
—9.98x10~* and —5.01 (ms)~ 1. It should be possible to obtain
synchronization by driving the x,,x; subsystem with the x,
signal. Unfortunately, it is difficult in practice to exactly match
the hysteretic elements in the two systems. Driving with the x;
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Fig. 4. (a) x, versus x, voltages for the drive circuit. (b) x, versus x,
voltages.

signal produces poor synchronization.

One may produce a better subsystem by removing part of the
hysteretic element. In the system shown in Fig. 2, the driving
signal x, used is a linear combination of x; and x,.

4

where a =Ry /Ryy and B=1+ Ry /Ry, + Ry /Ry, In terms of
x4, the new equations of motion for this system are

1
X4 = ;(x3 + Bx;)

Xy =xy+yx;+c(ax,— Bxy)
Xy=~wx;+8,x,

1
Xe= = [(1 —(ax,— Bxl)z)(le“ D+ax,—Bx;)/¢

= 83(ax, —Bx,)/€—Bx,— Byx, ~ cB(ax, _ﬂxl)]' )

In the chaotic regime studied here, a =6.67 and B =7.87.
The sub-Lyapunov exponents for the X,, X, subsystem are
—16.587 ms~! and —0.603 ms~!. The two subcircuits should
synchronize.

Fig. 4(a) shows an oscilliscope trace of the x, versus x,
voltage for the driving circuit. Fig. 4(b) shows the x, versus x,
voltage. We pass the x, signal through a buffer amplifier and
use it to drive a response circuit as shown in Fig. 2. In the
response circuit, we can replace the resistor Ry(r) with several
different resistors. This allows us to make a response circuit that
is identical or not identical to the corresponding part of the
drive circuit.

Fig. 5 shows the result of driving the response circuit with a
chaotic signal. Fig. 5(a) is a plot showing x, for the driving
circuit versus x, for the response circuit (x3) with Ry(r)= Ry =

©)

Fig. 5. One of the drive circuit signals x, is plotted on the x axis,
while the corresponding signal x4 from the response circuit is plotted on
the y axis. (a) R9(r)= R9 =20 kQ, and the circuits are synchronized.
(b) RX(r)=22 kQ, and the response circuit no longer follows the drive
circuit exactly. (¢) R9(r)=30 k{2, and the difference between the two
signals is even greater.

20 k. In this case, the two circuits are synchronized, so the x,
signals for the two circuits are the same.

Fig. 5(b) shows x,(drive) versus x,(response) when Rgy(r) =22
k(. The two circuits are not quite synchronized, so x,(drive) is
no longer equal to x,(response). Fig. 5(c) shows x,(drive) versus
x,(response) when Ry(r)=30 kQ. The differences between
signals in the two circuits are now even larger now that the two
systems arc even farther from being identical.

One may describe the signals present in each circuit by a
trajectory in a phase space, a space in which each axis corre-
sponds to the value of a variable in the circuit, such as x, x,, x,
or a similar combination. When two circuits are synchronized,
corresponding signals in the two circuits are identical. The two
systems are at the same point on the same trajectory at the same
time. If the two systems are started with different initial condi-
tions, the trajectory of the response system will approach the
trajectory of the drive system at an exponential rate in time.
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Fig. 6. (a) Drive (solid line) and response (dotted line) signals immedi-

ately after synchronization starts. (b) Log base 10 of the difference
between these two signals.

This is a consequence of the fact that all the Lyapunov expo-
nents for the response system are negative. Fig. 6 demonstrates
this for the circuit described here. To produce this figure, we
multiply the drive signal by a +1 using a square wave gencrator
and an AD 632 analog multipliet chip. As the square wave
switches from —1 to +1, we capture the difference signal
x,(drive) — x,(response) with a transient digitizer. Fig. 6(a) shows
the two signals starting at the point at which synchronization
begins. Fig. 6(b) shows the log base 10 of the difference Ax,
between these two signals. The difference signal has two differ-
ent exponential decay time constants. The initial decay rate seen
is 0.667 ms~!, while after about 4 ms the decay rate is 0.069
ms~'. One expects two decay rates because this is a two-dimen-
sional system. The difference between trajectories is decaying
along two different directions in phase space, each with its own
rate.

The two decay time constants (1.4 ms and 14.5 ms) are each
about a factor of 14 greater than the integrator time constants.
Decay rates, integrator time constants, and Lyapunov exponents
are all related, but so far we can only find an explicit relation for
the latter two.

IV. ConcLUsION

Computer simulations on the Lorenz and Rossler systems
have confirmed that this circuit is not a special case. There are
many other circuits that we could have studied [9]; we chose this
one for its insensitivity to external influences.

The type of synchronization that we describe above would be
trivial for nonchaotic systems, but it is not trivial for chaotic
systems. We have built circuits, such as one described by
Mitschke and Fluggen [10], in which no synchronization was
possible. We could not build a subsystem of this circuit for
which all Lyapunov exponents were less than zero.
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The Single CCII Biquads with High-Input
Impedance

Shen-Iuan Liu and Hen-Wai Tsao

Abstract —Two new configurations for the design of single-CCII-
biquad filters with high-input i are pr ted. They can syn-
thesize low-pass, bandpass, high-pass, all-pass, and notch filtering func-
tions with a single CCII connected to five passive one-port RC elements.
The active and passive sensitivities have been calculated in order to
determiie the suitable domain for filtering applications. The quality
factor Q and natural frequency wg of the proposed SCB’s are insensi-
tive to the voltage tracking error of the CCII. Experimental results that
confirm theoretical analysis are obtained. The circuits studied here are
illustrative of the versatilities of the CCID’s.

I. INTRODUCTION

The use of the second generation current conveyors (CCII’s)
in many applications has been found beneficial [1]-[4]. The
advantages of this current mode active element (CCII) have
been demonstrated to provide wider bandwidth and better accu-
racy compared with the conventional op amps [S]-[7]. There-
fore, it is desirable to develop various analog signal processing
circuits, such as analog filtering circuits, amplifiers, and oscilla-
tors using CCII with respect to the counterparts of the op amps.
The application and advantage in the synthesis of various active
filter transfer functions using CCII’s have received considerable
attention [8]-[13]. There are many filtering applications that
require only a second-order filter in practice, or utilize biquad
filters as basic building blocks to synthesize various high-order
active filters [14]. Since a high-order filter requires a large
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