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ABSTRACT
This paper presents robust and optimal control methods to suppress

vibrations of flexible payloads carried by robotic systems.  A new
improved estimator in discrete-time H2 optimal control design based on
the Kalman Filter predictor form is developed here.  Two control design
methods using state-space models, LQR and H2 Optimal Design, in
discrete-time domain are applied and compared.  The manipulator joint
encoders and the wrist-mounted six-degree-of-freedom force/torque
sensor provide the control feedback.  A complete dynamic model of the
robot/payload system is taken into account to synthesize the controllers.
Experimental verifications of both methods are performed using a
Mitsubishi five-degree-of-freedom robot manipulator that carries a
flexible beam.  It is shown that both methods damp out the vibrations of
the payload very effectively.

1. INTRODUCTION
Several industries in the modern world, such as manufacturing and

space, require the execution of high speed and high accuracy tasks using
robotic systems.  In many cases, especially in the automotive, circuit
board layout manufacturing plants or extra-vehicular activities in space
environments, robots are needed to manipulate highly flexible and hence
vibratory objects.  Such payload vibrations decrease accuracy of the
robotic system, create disturbances to the robot controller that may
cause instabilities, and increase execution time of the whole operations
since vibrations of the payloads have to be attenuated before any other
task takes place.  Therefore methods for damping the vibrations of the
flexible payload carried by robotic systems need to be developed.  These
methods should use sensors and actuators placed on the robot rather
then the payload since the payload is usually unknown, has various sizes
and it will be very impractical and expensive to place different sensors
and actuators on all payloads.

Methods to attenuate vibratory motions of flexible payloads in
robotic systems have been studied.  They can be distinguished into two
main categories: passive and active damping control.  Passive
approaches consist of either planning the manipulator motion in advance
to prevent the vibratory motion, or place mechanical dampers at the
gripper of the manipulators to guarantee the performance [1].  The
advantage of such methods is that the robot position and/or force control
strategy does not interfere with the damping process.  The disadvantages

however are that the speeds are reduced, the trajectories are limited due
to the design criteria, and the stability of the operations is not guaranteed.

Active control for damping vibrations of flexible manipulators and
structures has been an active research area for a long time [2]-[5].
These control schemes could also be applied in systems that a rigid
manipulator is handling a flexible payload.  However, in these cases, it
will be required to attach sensors, such as accelerometers and/or strain
gauges, directly on the payload and thus the system and the applications
lose their generality.  Therefore, methods are needed for damping the
payload vibrations using sensors external to the flexible payload.

An external optical camera was used by Alder and Rock to
feedback the displacement and orientation of an unknown payload for an
adaptive control framework [6].  The self-tuning regulator adaptive
scheme was applied for system identification in order to tune the control
gains a priori.  While this method was shown to be effective, its
disadvantage is that the optical sensor has to be mounted on another
platform outside the robotic system.  In unstructured environments such
as space, it will be impractical and challenging to install and calibrate the
optical sensor.

Jain and Khorrami applied a robot wrist-mounted force/torque
sensor to feedback the response of flexible payloads in an adaptive
control scheme [7].  This scheme has been applied without using an
accurate payload and actuator dynamic model in controller design.  The
time-varying transfer function estimation, which is based on Fast Fourier
Transform, of data from the force/torque sensor is performed at longer
sampling period (10 msec. in [7]) to update the control gains while the
system is controlled by shorter sampling period (5 msec. in [7]).  The
disadvantage is that on-line adaptation requires complicated calculations
and a period at the beginning to sample the data.

Handling of flexible payloads has also been performed using two or
more manipulators that form a closed system [8]-[10].  The vibrations of
the payload are constrained by the closed loop kinematic chain formed
by the manipulators and the payload.  The disadvantages of such a
method are the reduced workspace and the complexity of the system
inverse kinematics.

This paper presents robust and optimal control methods to suppress
vibrations of flexible payloads carried by robotic systems.  A new
improved estimator in discrete-time H2 optimal control design based on
the Kalman Filter predictor form is developed here.  Two control design
methods using state-space models, LQR and H2 Optimal Design, in



discrete-time domain are applied and compared.  The manipulator joint
encoders and the wrist-mounted six-degree-of-freedom force/torque
sensor provide control feedback.  A complete dynamic model of the
robot/payload system is taken into account to synthesize the controllers.
Experimental verifications of both methods are performed using a
Mitsubishi five-degree-of-freedom robot manipulator that carries a
flexible beam.  It is shown that both methods damp out the vibrations of
the payload very effectively.

2. DYNAMIC MODEL AND CONTROL DESCRIPTION
In this paper, it is assumed that a p degree-of-freedom robot

manipulator is holding a flexible payload which is modeled with finite
number of modes as shown in Figure 1.  When the manipulator starts to
move from an initial position to a final location where a task has been
defined, vibrations of the payload will be excited and degrade the
precision of the whole system under certain conditions such as high-
speed trajectories or sudden decelerations.

Figure 1: A Robot Manipulator Handles a Flexible Payload

Two types of sensors are used to feedback the system dynamic
response.  The encoders attached to the joint motors provide the
manipulator joint position data, while the force/torque sensor placed at
the manipulator wrist provides measurement of the force/moment
interactions between the payload and the manipulator.

The goal of the active damping control is to keep the displacements
of the flexible modes of the payload at zero all the time.  If the damping
controller is activated at the time that the manipulator end-effector has
reached the final position and vibratory motion of the payload has to be
attenuated, then the desired values for the positions of both the
manipulator and the flexible payload can be initialized at zero so that the
control problem becomes a regulation problem.

2.1. System Dynamic Model
The dynamic model in generalized state space form of the

manipulator/payload system is needed in the controller synthesis.  This
model of the manipulator/payload and their interactions can be
formulated by either Newton-Euler’s or Lagrange’s method [11].  The
dynamic model is written into a global state space form as:
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where: { }int ,
T

erx vθ=  is a (r×1) vector (r=p+6q) includes both the joint

angles θ and flexible-mode vector v; the (r×r) matrices Minter, Dinter, and
Kinter are respectively the inertia, damping and stiffness matrices; the
(p×1) vector τext represents the external inputs from the joint actuators;

Binter is the (r×p) coefficient matrix; the (r×1) vector Cinter represents
the non-linear functions of Corriolis and centripetal forces; the (r×1)
vector Ginter represents gravity forces.  Inside the matrices listed above,
Mrigid and Mflexible are inertia matrices of manipulator and flexible pay-
load; J is Jacobian Matrix from robot manipulator; a and a’ are matrices
describe the interactions between rigid body motion and the relative vi-
bration modes.

2.2. Linearized Dynamic Model
The controller design methods require state space first-order

ordinary differential equations.  By treating all nonlinear terms in
Equation (1) as external disturbances, the linearized state space equation
can be written as:

x Ax Bu= +& (2)
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T

er erx x x= &  is the (2r×1) state space vector; u τ=  is the

(p×1) input vector; the (m×1) vector y represents output from sensors
that provide information of the manipulator and payload motions
(m=p+6).

The controller design requires the relation between the vector y and
the state space vector x.  The (p×1) vector y1, the first part of the vector
y, represents the manipulator joint angles which are measured directly
from the joint encoders.  The (6×1) vector y2, the second part of the
vector y, provides the information of vibration from the wrist-mounted
force/torque sensor and is equal to the negative interaction
forces/torques τpayload expressed in the end-effector coordinate frame.
By neglecting nonlinear terms (because they are considered
disturbances), the linearized model equation is written as:
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Since the manipulator/payload system is controlled by a computer
which is treated as a discrete-time system, Equations (2) and (3) are
discretized with a specified sampling period based on the zero-order-hold
method described in [13] using the MATLAB command ‘c2d.m’[14].
Hence, the state space model in discrete time domain has the form:

1n d n d nx A x B u+ = + , n d n d ny C x D u= + (4)

where n represents the current state and n+1 represents the state after
the sampling period.

2.3. Discrete-Time Robust and Optimal Control De-
sign

In this paper, the Linear Quadratic Regulator (LQR) [13] and the
H2 robust optimal control [15] design techniques will be used for damping
the payload vibration.  In this section, both methods are presented briefly.
In addition, the new proposed discrete time Kalman estimator used in H2

robust optimal control design is discussed in detail.



Both LQR and H2 methods are using the separation theory to
determine the state feedback control gain (p×2r) matrix K and estimator
gain (2r×m) matrix L independently.  The discrete-time feedback control
loop is shown in Figure 2 based on the dynamical system in Equation (4)
and the actual system plant P.

At each time step n, the control input u is calculated based on the
full state vector xn and the control matrix K:

n nu Kx= − (5)

Because the full state space vector xn cannot be measured directly
from the sensors, instead at each time step the estimated state space
vector ˆnx  is calculated using the measured data y and the estimator

matrix L:
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Thus the transfer function F of this feedback controller in discrete z
domain is written as [15]:
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In most of the cases, there are saturation limits for the input
resources.  The realization of the control algorithm using the Equations
(5) and (6) is better than using the transfer function in Equation (7).  The
reason is that the estimated states are based on the saturated inputs
rather than the designated 'unlimited' ones.  The algorithm is shown in
Figure 3.

2.3.1 Linear Quadratic Regulator and Kalman Estimator
Method

Both LQR and Kalman estimator require optimization for which the
Discrete-time Algebraic Ricatti equations are composed.  The derivation
is omitted due to the limit of the space.  Full description can be found in
[13].  If the system in Equation (4) (Ad,Bd) is controllable and the system
(Ad,Cd) is observable, the design criterion for the best control gain K and
observer gain L are set up accordingly:
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where both Q and R are weighting matrices; Wn is also a weighting ma-
trix consisting with noise covariances.  The boundary N for the summa-
tion is the stopping time step for the cost function, and most of the time it
is set to approach infinity (N → ∞ ).  MATLAB has standard control
tool box that helps to solve for both gains of K and L.

Figure 2: Discrete-Time LQR/H2 Control Loop

x_new = Ax+Bu+L*(y_new-C*(A*x+B*u)-D*u);
u_new = -K*x_new;
if (u_new > u_saturate) u = u_saturate;
elseif (u_new< - u_saturate) u = -u_saturate;
else u = u_new ;
x=x_new;

Figure 3: Algorithm for Computer Implemented LQR/H2 Control

2.3.2 H2 Optimal Robust Control Design Method
While H2 optimal robust control design in continuous time system

has been used frequently, its implementation in discrete time systems has
been given less attention.  The implementation of H2 control of discrete
time system is presented in this subsection.

The robustness of the controller is determined by taking into
account the disturbances of the system.  The disturbances of inputs wd

and/or outputs v are weighted and integrated into the system of
Equations (2) and (3) in continuous-time domain.  The system is
schematically presented in Figure 4, where Wu, Wwd, Wy, and Wv are
user-defined weighting matrices; F is the controller designed by this
method.  The discrete time system is calculated using the MATLAB
command ‘c2d.m’ and is written as:

1 1 2n d n d n d nx A x B w B u+ = + + , 1 11 12n d n d n d nz C x D w D u= + + ,

2 21 22n d n d n d ny C x D w D u= + + (10)

{ }T

dw w v=

where z is the output criterion defined by users and vector w represents
all the weighted disturbances.

For H2 optimal robust control method, the H2 norm (norm in Hardy
space) is used to form the cost function for optimization.  The H2 norm
of Linear Time Invariant systems in discrete time domain is defined as
[15]:
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where Lo and Lc are the controllability and observability Gramians re-
spectively.

Similarly to the LQR/Kalman Estimator method described in
Section 2.3.1, the separation theory is applied so that optimal gains based
on full-state feedback and optimal gains based on Kalman state
estimation are calculated separately and then combined together without
losing stability.  Without losing generality, D22 is assumed zero since it
can be recovered after the control gains are calculated [15].  The
objective functions for both gain matrices K and L are formulated using
the H2 norm from disturbance w to state vector output z shown in Figure
5.

Figure 4: Feedback Loop with Weighting Consideration



Figure 5: System Linear Fractional Transformation
Representation [15]

In order to find the control gain matrix K of full-state feedback, the
system matrices (Ad,Bd2) have to be controllable.  The objective is to

minimize the H2 norm 
2

2
min zwK
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The corresponding Discrete-time Algebraic Ricatti Equation is
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After solving for matrix XK using the MATLAB command ‘dare.m’,
the control gain matrix K is:
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Finding the gain matrix L, the method of Kalman Filtering is applied
instead of the regular format described in [15].  If the system (Ad,Cd2) is
observable,  the system (Ad,Cd2Ad) is also observable thus the solution of
the estimator is guaranteed [13].  Assuming that no external input
applied, then Equation (10) becomes:
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The estimated states ˆnx  are established as:
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Then the error is set as:
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It has the Linear-Time-Invariant (LTI) form with the user-defined
criterion variable zn:
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The design objective of the estimator gains is to minimize the H2

norm 
2
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T .  The associated Algebraic Ricatti Equation is:
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After solving for matrix XL, the gain matrix L is calculated as:
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3. EXPERIMENTAL PROCEDURES

3.1. Description of the Experimental System
The Dell® OptiPlex Gxa™ PC system with INTEL® Pentium II™

333 MHz CPU and 128 MRAM is used in this work.  It is augmented
with two US Digital® PC7166™ PC to incremental encoder interface
cards, two Datel® PC-412C™ Analog I/O boards and the force/torque
sensor receiver that features an on-board digital signal processor (DSP).
An amplifier was built with 6 high current, high power operational
amplifiers Burr-Brown® OPA502.  The PC collects the sensor readings
either through the data acquisition boards, the encoder interface cards
and the DSP receiver of force/torque sensor, does the feedback control
calculation, and then sends out the signal to the actuators of the robotic
systems through the D/A converter and laboratory built amplifiers.

A five-degree-of-freedom Mitsubishi RV-M2 manipulator is used in
this research.  Figure 6 shows schematically all mechanical and electrical
components of this experimental system. The maximum payload capacity
is 2kgf.  The Mitsubishi manipulator is holding a thin aluminum beam that
serves the purpose of a flexible payload.  The beam is 0.610m long,
0.159m wide, 1.321×10-3m thick, and is described in detail in Section 3.2.

A JR3® 67M25 6-axis force/torque sensor is placed at the
manipulator wrist before the gripper as shown in Figure 6.  It is capable
of measuring a maximum force of 15lb in both x and y directions (shear
forces) and 30lb in z direction (axial force) as well as a maximum torque
of 39 in-lbs in all three directions. An Entran Accelerometer (Model
EGE-732B-2000D-/RS), which is a strain gauge type sensor, is attached
at the free-end of the flexible beam to record the oscillation and verify
the relation between vibratory motion of the beam and data of the
force/torque sensor.  This sensor is used only for data acquisition
purpose and not for the feedback signals of the controller in the
experiment. WinRec v.1, a software developed in Robotics Laboratory,
Rutgers University, provides deterministic fast timers based on MSDN
library under Windows NT platforms. The timer in this experiment is set
at 200Hz that is fast enough for the cut-off frequency to cover the first
few modes of flexible specimen [18].



Figure 6: the Picture and Schematic of the Experimental System

3.2. Dynamic Model of the Flexible Beam
As it is described in Section 2.1, the dynamic model of the flexible

beam in the end-effector coordinate frame is needed to be used in the
control synthesis.  The assumed modes method [11] is applied to form
the dynamic model.  For the derivation of the model, a long thin flat beam
is considered, as it is shown in Figure 6, which has constant density µ
and vibrates only in the vertical direction.  The displacement v(x,t) of the
flexible beam in the vertical direction is a function of both the longitudinal
distance x and time t.  Based on the theory of separation of variables, v
can be written as:
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=

= ∑ (21)

where ϕl(x) are the mode shape normal functions, ql(t) are the ampli-
tudes and n is the number of vibratory modes.  Thus, when one-degree
joint actuation is used, the dynamic model of the beam, whose longitudi-
nal length is L and cross-section area is A, can be written in the following
form:
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The damping coefficient D of the vibratory modes can be
determined by the experimental data from the impulse disturbance at the
free tip end;

ωz is the angular velocity along the z direction in Figure 6; Izz is the
sum of the second moment of inertia of the beam, the force/torque
sensor and the gripper in z direction; τz is the torque applied onto the

beam the force/torque sensor and the gripper; both disτ  and disτ ′  are the

non-linear forces that are described as disturbances.
The characteristic equation of ϕk, with the fix-end boundary

conditions, and its partial derivatives are [11]:
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where bk is the solution of the function: cos( )cosh( ) 1 0n nb b + = .

In order to simplify the experimental procedure, only one out of the
manipulator 5 DC servomotors is used to damp the payload vibrations
(see also Section 3.3).  With this simplification, the manipulator dynamic
model becomes the motor dynamic model.  Under the assumption that
the motor inductance is negligible compared to the motor resistance R,
the relation between the motor torque τ and the DC-voltage V is written
as [12]:
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where Im is moment of inertia of the shaft, Km is constant of back emf ;
Ki is the torque constant; parameter η is the gear ratio of the motor.

The dimensions and density of the flexible beam are shown in Table
1.  The mass moments of inertia in all three directions with respect both
to the center of mass and the manipulator end-effector are shown in
Table 2.  Table 3 shows the moments of inertia of the other components
attached between the beam and the motor.  The motor characteristics
are shown in Table 4.  The damping ratio of the first-mode has been
determined experimentally as 0.045ξ =  (see Section 4.1).  The beam’s

natural frequencies Ω (Hz) for the first four-modes have been calculated
and are shown in Table 5.

Table 1: Characteristics of the Aluminum Beam
Density Weight Length in x Length in y Length in z

2.8×103 Kg/m3 0.358 Kg 0.6096 m 1.321×103 m 0.1588 m

Table 2: Mass Moments of Inertia (Kg-m2) of the Beam
Mass Mom. of Inertia Ixx Iyy Izz

About Center of Mass 7.52×10-4 0.0118 0.0111
about the Fixed End 7.52×10-4 0.0118 0.226

Table 3: Mass Moments of Inertia (Kg-m2) of Components
Force Sensor Gripper

1.14×10-3 0.0132

Table 4: Properties of the Motor
Torque Const. (Kg-m/A) 4.1×10-4

Volt. Const. (V/(rad/sec.)) 0.0401
Resist.(Ω) 3.4

Rotor Inertia (Kg*m/(rad/sec.)) 4.3×10-7

Static Fric. Torque(Kg-m) 1.2×10-3

Gear Ratio 110
Amplifier gains 4.32

Table 5: First 4 Calculated Natural Frequencies
1st Mode (Hz) 2nd Mode (Hz) 3rd Mode (Hz) 4th Mode (Hz)

2.912 18.249 51.097 100.130
The system state space model takes a form equivalent to Equation

(2):
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where [ ]  
int int

T
er erx x x= & ; 

  

int

TT
er zx qθ =   ; and u is the voltage

V.
The system measured outputs are the rotational angle θz from the

encoder of the manipulator pitch wrist motor and the reaction torque
τpayload from the force/wrist sensor.  Hence, the output vector

{ }T

z payloady θ τ= is written as:

y Cx Du= + , 1

2

C
C

C
 =  
 

, 1

2

D
D

D
 =  
 

{ }1 11 0 nC ×= , { } [ ]2 21 22 
T

zz extC I I a A A = − +  , 1 0D = ,

{ }2 2  
T

zz extD I I a B = − +  (28)

3.3. Several Experimental Conditions
Only the first mode of the payload vibration is taken into account in

the controller design because it has the most significant effect in the
payload motion.  Since the payload vibrations are in one direction and the
goal is to attenuate the first mode, only one of the 5 manipulator motors
will be used.  This also simplifies the experiments without losing
generality.  The motor used is the one in the pitch of the wrist (Sanyo
Denki® model R-402) and has rated armature voltage of 23 volt and
peak maximum torque of 4.3 kgf-cm.

Static friction of the motor exists and cannot be neglected.
Therefore a very simple friction compensation algorithm is needed.
Since the direction of the friction is the same as that of the motor
velocity which is the second element of the estimated state variables in
Equation (27), a constant voltage equal to 0.5 volt is opposed following
the direction of the velocity [17].  This value has been determined
experimentally for the robot wrist motor.

The weighting parameters needed in LQR and H2 controllers
syntheses are chosen using trial and error methods.  The weighting filters
needed in H2 are chosen as all-pass (constants).

4. RESULTS FROM CONTROL EXPERIMENTS
In the experiments of this research, the wrist joint moves the beam

from initial horizontal position to final vertical position using joint PD
control as shown in Figure 7.  This 40° angular motion is performed in 0.3
second.  The vibration is excited due to the fast start and stop of the
motion.  Once the final position is reached, either LQR or H2 controller is
switched on to damp the payload vibrations.

4.1. PD Joint Control without Damping Control
A set of experiments has been performed without any damping

controllers to demonstrate the high amplitude and long settling time of the
payload vibrations.  A representative response is shown in Figure 8.  The
dashed line represents the torque measurement in z direction from the
wrist-mounted force/torque sensor and the solid line represents the
measurement of the free-end position of the flexible beam using double
integration of the data from the accelerometer.

Figure 7: the Angular Motion of the Flexible Payload

From these data it can be determined that the under-damped
frequency of the first mode from the experimental data is 2.55Hz, 15%
off from the calculated natural frequency shown in Table 5.  Both
force/torque sensor and accelerometer data show a settling time of
approximately 2.18 seconds (Note: In this paper, the settling time is
defined as the time interval between the beginning of vibrations and the
time instant that the vibrations are within 25% of the highest magnitude).
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Figure 8: PD Control

4.2. LQR/Kalman Damping Control Method
The weighting matrices Q and R in control gain K, and the

disturbance covariances T
w wp wB R B and Rwm in observer gain L have been

chosen to be equal to:
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0 1
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The calculated gain matrices are:

4150.2883 1.092580 10 38.76203 78.30190K  = − × − 
, 5

3 3

3

3

1.001055 1.084389 10

2.276218 10 3.312610 10

0.2096913 3.938525 10

0.3414154 4.132174 10
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−

− −

−

−

 − ×
 − × × =  − ×
 ×  

Results from the LQR damping control experiments are shown in
Figure 9.  It is clearly seen that the vibration setting time drops to 1.51
seconds, which is 69% of that with no damping control.  Figure 10 shows
a comparison between the experimental data from the joint motor
encoder and from the force/torque sensor and the corresponding
estimates using the Kalman estimator, which are almost identical. It is
seen that the Kalman estimator calculated very accurately the state
space vector.  Also shown in Figure 10 is the control input.
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Figure 9: LQR Control
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Figure 10: Input voltage and Outputs from Encoder and Force
Sensor with LQR Controller

4.3. H2 Damping Control Method
The values for the weightings and the control and estimator gains K

and L are:
Wm Wb We Wf Wze Wzf Wu

900 800 0.3 1.2 3.5×103 1.75×103 35

[ ]93.09737 5282.966 31.21973 47.30177K = − − , 
4

3

0.2996878 5.292280 10

0.1114448 1.544166 10

10.92155 0.07311073
1.442574 0.1994574

L

−

−

 ×
 − − × =
 −
 − −  

The displacement of the flexible beam tip and the direct
measurement of the force/torque sensor are shown in Figure 11 when H2

damping control is used.  The settling time is 1.18 sec., which is 54% of
that with no damping control, and is less than the LQR method.  The
comparisons between the experimental data of the joint motor encoder
and force sensor and the estimates with the Kalman estimator are shown
in Figure 12.  As with the LQR method, the estimates are very good.
Figure 12 also shows the control input.
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Figure 11: The Experiment with H2 Controller
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Figure 12: Input voltage and Outputs from Encoder and Force
Sensor with H2 Controller

4.4. Robustness of LQR and H2 Controllers
In order to test the robustness of the controllers, three different

weights, 30g (8.4% of the original beam weight,) 60g (16.8%) and 100g
(28%) are attached at the free-end of the flexible beam thus changing
the dynamic properties of the system.  Changes of the frequencies of the
first mode of the beam are listed in Table 6.  The comparisons of the
different controllers are shown in Figure 13, Figure 14 and Figure 15.
Table 7 lists the settling times as defined in Section 4.2.  Both LQR and
H2 controllers have good performances when no extra weight was
attached at the beam.  With 8.4% increase of the weight both controllers
still provide good results; but the performance of the LQR controller
degrades with 16.8% increase of the weight.  With 28% change of the
weight, LQR is still stable but requires even more time then the controller
without force feedback to damp out, while H2 controller still has a good
performance.  Therefore the H2 design shows superior robustness
because the method takes into account the effects of the unstructured
disturbances (uncertainty).

5. CONCLUSIONS
In this paper, the discrete-time LQR and H2 control synthesis

methods with a new scheme for the observer have been applied to damp
the vibrations of payloads handled by rigid manipulators.  The
manipulator joint encoders and a wrist-mounted six-degree-of-freedom
force/torque sensor provided the control feedback.  The real-time control
experiments at 200Hz sampling rate with a single joint of an industrial
manipulator handling a flexible beam demonstrated good performances
for both controllers.  The controller designed using the H2 method
showed very good performance in robustness tests.  In the future, the
same observer scheme will be integrated into a robust/optimal discrete-
time H∞ controller.
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Table 6: Frequencies of the Beam with Weights
Without W W = 30 g W = 60 g W = 100 g

2.55Hz 2.34Hz 2.09Hz 1.95Hz
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Figure 13: with 30g weight attached on the flexible beam
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Figure 14: with 60g weight attached on the flexible beam
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Figure 15: with 100g weight attached on the flexible beam

Table 7: Settling Times of 75% Vibration Attenuations
(sec.) No Extra W W = 30 g W = 60 g W = 100 g

PD Control (w/out
force feedback)

2.18 2.79 3.45 4.54

LQR Control 1.51 2.47 4.05 >6.0
H2 Control 1.18 1.57 2.15 2.58
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