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Abstract

The treatment of disease using particle beams requires highly accurate patient positioning. Patients

must be well immobilized and precisely aligned with the treatment beam to take full advantage of

the dose localization potential. Robots can be used as high accuracy patient positioning systems. In

this paper, the first such implementation using robotics techniques for patient positioning will be

discussed. This robot is being developed for the Northeast Proton Therapy Center at the Massa-

chusetts General Hospital. The unique requirements and design characteristics of the patient posi-

tioning system are presented. Of special interest is the system's patient positioning accuracy. A

systematic methodology to perform the error analysis of serial link manipulators and its application

to the PPS is described. Experimental measurements that verified the validity of the method are

shown.

1  INTRODUCTION

The application of robotic technology in clinical medicine has recently been a very active

research area [7]. Robotic systems have been proposed to perform surgical procedures such as

knee arthoplasty, neurosurgery or eye surgery [16, 24]. In most of these surgical operations the

robot will serve as an aid to the doctor or as an extension of the doctor capabilities. Other possible

applications of robotic systems in clinical medicine, include miniature robots for endoscopic diag-

nostic and surgical interventions [22] and robots as rehabilitation or aid systems to people with dis-

abilities [14, 18]. Most of these medical robotic systems are still research devices and very few of
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them have been used in a real medical application where they are in contact with a patient. A major

reason for this is that current medical robots can not solve in a repeatable and reliable way two im-

portant problems: ultra-high positioning robot accuracy and patient safety.

In this paper, a new important medical application of robotic systems is studied: a high ac-

curacy robotic patient positioning system in radiation therapy. The Northeast Proton Therapy Cen-

ter (NPTC) is now being constructed at the Massachusetts General Hospital (MGH) [11, 23]. This

cancer research and treatment facility has a new advanced proton therapy system.  The NPTC is

scheduled to begin operations with patients in 1998.

A major component of the system is its robotic patient positioning system (PPS).  This

system will be used to position a patient in a high energy proton beam delivered from a rotating

gantry structure. The support and alignment of the patient is a crucial element in the overall system.

Patients must be well immobilized and precisely aligned with the treatment beam to take full ad-

vantage of the dose potential of this facility.  A patient positioning system (PPS), when used with a

gantry beam, must permit proton beam entry from any oblique direction, without danger of colli-

sion with the gantry or beam shaping hardware. For the NPTC, the required absolute positioning

accuracy of the PPS is ±0.5 mm. Larger errors may be dangerous to the patient [25]. So, the accu-

racy of the PPS is critical. Further, the ability to predict the accuracy as a function of the system

configuration during the system design was important and this is the subject of this research.

Considerable research has been performed in the area of kinematic error analysis of robotic

manipulators and machine tools [15, 17, 21, 32].  Error models have been developed based on

screw theory, homogeneous matrices, Denavit and Hartenberg coordinates, and Jacobian matrices

[3, 19, 20, 30, 35].  Some studies have considered the effects of manipulator joint errors [1, 29],

while others were focused on the effects of link dimensional errors [9, 31]. Some generalized

methods have been proposed which include non-geometric errors such as thermal effects [8, 27].

Error models have been developed specifically for use in the calibration of manipulators [2, 33].

Researchers have studied methods to predict the error sensitivity of manipulator design [4, 28] and
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others have done work to find the optimal configurations to reduce the manipulator errors by cali-

bration [34]. All these methods, from the theoretical point of view, can solve most of the problems

related to the manipulator error analysis. However, when the goal is to build a generic software

tool to perform the error analysis of any six degree of freedom manipulator in a systematic and uni-

fied way, adjustments to these methods need to be made.

This paper has two objectives. First, to present the clinical requirements of the NPTC ro-

botic patient positioning system. This robot manipulator can serve as a general case study of

mechatronic design of medical manipulators. The second goal of the paper, is to show how based

on existing theories, a generic software tool is built to perform the error analysis of any six degree

of freedom manipulator in a systematic way, incorporating any type of physical error sources that

may exist, such as geometric errors, backlash, joint or link deflections. This tool is applied to the

performance evaluation of the NPTC medical robot and simulation results are presented. Experi-

mental verification of the computer predictions are shown.

2 DESIGN REQUIREMENTS

The general schematic of the system at the treatment room is shown in Figure 1. At the

treatment room the beam delivery system is attached to a large rotating gantry. The patient is placed

on a couch attached at the end effector of the robotic patient positioning system.

The gantry rotation is required to achieve various angles of beam penetration into the patient

body. The point of intersection of the gantry axis of rotation and of the beam is called “isocenter”

and it is a very important point of the system since, in classical robot terminology, it is the desired

“robot end-effector location.” The PPS should bring the patient into the gantry enclave and place

the patient body in such a position so that the tumor and the isocenter are coincident. Due to the

size of the gantry, it is necessary that the PPS be of a cantilevered design to bring the patient's tar-

get to the isocenter. In Figure 2, the side view of the treatment room with the gantry, nozzle and

patient positioning system is shown. Information on other components of the system can be found

in [10,11].
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There are five basic clinically motivated requirements that have been considered: a) clinical

accuracy requirements, b) minimum patient movement, c) minimum treatment time, d) maximum

patient workspace and e) safety. These requirements lead to the following design specifications for

the PPS:

1. The patient support system must be able to support at least 98% of all potential patients in such

a way that all points in any conceivable target can be accurately and in a repeatable way aligned

to the beam to within ±0.5mm of their intended position.

2. The couch and gantry should have 6 relative degrees of freedom: 3 translations and 3 rotations.

3. The PPS can present any point of a 50cm x 50cm x 40cm (vertical) working volume on the

couch at the gantry isocenter.

4. The PPS should present any point in a supine patient at gantry isocenter with the patient’s ori-

entation in the horizontal plane at any angle within a ±95° range.

5. The couch structure must be larger than the patient and provide the space for the constraints that

hold the patient in accurate position with respect to the couch.

6. Space must be allowed for ancillary equipment, such as necessary life support equipment, that

must be attached to the couch.

7. A buffer zone space between components must be allowed to accommodate the overtravel that

occurs between the time that an interlock violation is detected and the PPS actually decelerates

to a stop.

 3 THE PATIENT POSITIONING SYSTEM

The design requirements described in Section 2 lead to the system shown in Figure 3.  It is

a six degree of freedom manipulator being developed by General Atomics [13].  The first three

joints are prismatic. The maximum travel for these joints is 225.6 cm for the lateral (X) axis, 56 cm

for the vertical (Y) axis, and 147.3 cm for the longitudinal (Z) axis.  The last three joints are revo-

lute joints.  The first revolute joint has an axis of rotation parallel to the Y axis and can rotate ±90°.

The last two joints are used for small corrections around an axis of rotation parallel to the Z (i.e.

roll) and X (i.e. pitch) axes, respectively, and have a maximum rotation angle of ±3°.  All of the

joints are actuated by stepper motors.  The connecting members and supporting structures of the
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PPS are made out of steel.  The manipulator’s "end-effector" is a couch which supports the patient

in a supine position. The design accommodates supine patients up to 188 cm in height and 300lbs

in weight in normal operations.

The overall PPS operating envelope is a major driver of the gantry design in that it sizes the

minimum inner diameter of the front gantry bearing ring.  Since the patient must be rotated 90°

with respect to the gantry axis of rotation, the radius of the gantry ring must be substantially larger

than the height of the patient.  The patient couch assembly mounts directly to a load cell. The load

cell provides a means of measuring a patient’s weight and the center of gravity position of the

couch during treatment.  The load cell will acquire the data necessary for an algorithm to compen-

sate for the deflection caused by the variable weight and location of the patient on the PPS.

4 SYSTEMATIC ERROR ANALYSIS OF MANIPULATORS

The PPS should be an ultra-high accuracy robot manipulator. Even small mechanical or

measurement errors can create substantial end-effector positioning errors compared to the very

small accuracy specifications of the system. A systematic error analysis method has been devel-

oped to analyze the PPS design. The method is general and can be applied to any serial link ma-

nipulator. While it is based on classical concepts used in error analysis of mechanical systems, the

method presented here, is formulated in a very simple and straight forward manner which makes it

a practical solution for commercial applications and software development.

There are many possible sources of errors in a manipulator.  These errors are referred to as

"physical errors", to distinguish them from "generalized errors" which are defined later.  The main

sources of physical errors in a manipulator are:

• Machining errors:  These errors are resulting from machining tolerances of the individual

mechanical components that are assembled to build the robot.

• Assembly:  These errors include linear and angular errors that are produced during the as-

sembly of the various manipulator mechanical components.
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• Deflections:  Link and joint flexibility can cause elastic deformations of the structural mem-

bers of the manipulator, resulting in large end-effector errors, especially in long reach manipulator

systems.  Local material deformations can also be another source of end-effector errors.

• Measurement and Control:  Measurement, actuator, and control errors that occur in the

control systems will create end-effector positioning errors.  The resolution of encoders and stepper

motors are examples of this type of error.

• Joint errors: These errors include bearing run-out errors in rotating joints and rail curvature

errors in linear joints.

• Clearances:  Backlash errors can occur in the motor gear box and in the manipulator joints.

In most cases, the physical errors are usually very small.  However, they can be amplified

by the system to cause large errors at the end-effector.  As a result, it is essential to identify those

errors in the system which significantly influence the end-effector positioning accuracy.

Errors can be distinguished into “repeatable” and “random” errors [26]. Repeatable errors

are errors whose numerical value and sign are constant for each manipulator configuration.  An

example of a repeatable error is an assembly error.  Random errors are errors whose numerical

value or sign changes unpredictably.  At each manipulator configuration, the exact magnitude and

direction of random errors cannot be uniquely determined, but only specified over a range of val-

ues.  An example of a random error is the error that occurs due to backlash of an actuator gear

train.

4.1  Kinematic Model Without Errors

Classical kinematic analysis of a manipulators requires the definition of reference frames at

the manipulator base, end-effector, and at each of the joints [5].  For a six degree of freedom ma-

nipulator, 7 reference frames F
i 
(i ranging from 0 to 6) are defined.  Generally, these frames are

characterized using the Denavit and Hartenberg method [5].  The position and orientation of a ref-

erence frame F
i
 with respect to the previous reference frame F

i-1
 is defined with a 4x4 matrix A

i
 that

has the general form:
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Ai = Ri Ti
0 1

 
 

 
 (1)

The R
i
 term is a 3x3 orientation matrix composed of the direction cosines of frame F

i
 with

respect to frame F
i-1

 and T is a 3x1 vector of the coordinates of center O
i
 of frame F

i 
in F

i-1
. (Bold

lettered variables represent vectors or matrices.)  The elements of matrices A
i
 depend on the geo-

metric parameters of the manipulator and the manipulator configuration parameters q.  For a 6R

manipulator, q is composed of the six manipulator joint angles.

The position and orientation of the end-effector frame F
6
, with respect to the inertial refer-

ence frame F
0
, is represented by the homogeneous matrix A

T
.  The elements of A

T
 depend on the 3

position parameters (i.e. the three coordinates of the origin of F
6
 in F

0
) and 3 orientation parame-

ters which are the euler angles of frame F
6
 with respect to frame F

0
.  These six parameters are also

represented with a 6x1 vector X
T
.

 At this point the superscript i will be added to X
T
 to denote the ideal position of F

6
 with re-

spect to frame F
0
, if no errors exist in the manipulator.  The superscript r, will be used later to de-

note the real or actual position of F
6 
when errors exist.  The matrix A

T
 is formed by multiplying all

of the A
i
 matrices [5]:

A
T
 = A

1
A

2
. . . . . . . A

6
(2)

From Equation (2), known as the "loop closure equation," six scalar equations are obtained

to calculate the end-effector coordinates XT
i when the configuration parameters q are known:

XT
i =f i(q, s ) (3)

The vector f i is a non-linear function of the configuration parameters, q, and a vector of the

manipulator structural parameters s .  Equation (3) represents the relationship between the manipu-

lator's configuration parameters and the position and orientation coordinates of its end-effector.

This is known as the "manipulator direct kinematic model."  This model is often used in a manipu-

lator controller to calculate the end-effector inertial coordinates from system joint displacements.  A
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“manipulator inverse kinematic model” is used to calculate the configuration parameters to achieve

a desired end-effector location and orientation.

If the manipulator has errors, Equation (3) will not accurately represent the system’s direct

kinematics.  Using equation (3) to position the manipulator end-effector, the manipulator would

placed it in a different position then the desired one.  In the following section, equations are for-

mulated to accurately represent the relationship between configuration parameters q and end-

effector coordinates X
T
 when errors exist in the manipulator.

4.2 Generalized Errors

Physical errors change the geometric properties of a manipulator.  As a result, the frames

defined at the manipulator joints are slightly displaced from their expected, ideal locations.  In Fig-

ure 4, frame F
i
 is shown in the ideal location FT

i  and in its real location FT
r  

 
due to errors.

The position and orientation of a frame FT
r  with respect to its ideal location FT

i  is repre-

sented by a 4x4 homogeneous matrix E
i
.  The rotation part of matrix E

i
 is the result of the product

of three consecutive rotations e
si
, e

ri
, e

pi
 around the Y, Z and X axes respectively.  (These are the

Euler angles of FT
r  with respect to FT

i .)  The subscripts s, r, and p represent spin (yaw), roll, and

pitch, respectively. The translational part of matrix E
i
 is composed of the 3 coordinates e

xi
, e

yi
 and

e
zi
 of point OT

r  in FT
i .

The 6 parameters e
xi
, e

yi
, e

zi
, e

si
, e

ri
 and e

pi
 are called here "generalized error” parameters.

For a six degree of freedom manipulator, there are 36 generalized errors which can be written in

vector form as ε=[...,.e
xi
, e

yi
, e

zi
, e

si
, e

ri
, e

pi
,..], with i ranging from 1 to 6.  Since the physical er-

rors are small, the generalized errors e
xi
, e

yi
, e

zi
, e

si
, e

ri
 and e

pi
 are also small, so a first order ap-

proximation can be applied to their trigonometric functions and products.  Matrix E
i
, after the first

order approximation, has the form:
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E i =

1 -eri esi exi
eri 1 -epi eyi
-esi epi 1 ezi
0 0 0 1

 

 

 
 

 

 

 
 (4)

The generalized errors can easily be calculated from the physical errors. Consider the sim-

ple example shown in Figure 5.

Two frames, F
1
 and F

2
, are connected by two structural members A and B that should be

aligned.  During the assembly of A and B, a linear error d or an angular error ψ is introduced.  The

linear error will cause a translation of frame F
2
, and the angular error will cause both an angular

displacement and a linear displacement of F
2
.  In Figure 5, the generalized errors are calculated for

this example.  The generalized errors for an entire manipulator can also be calculated from the

physical errors by a similar process.

4.3 Kinematic Model With Errors

The end-effector position and orientation error ∆X is defined as the 6x1 vector that repre-

sents the difference between the real position and orientation of the end-effector and the ideal or

desired one:

∆X  = XT
r - XT

i (5)

Here, XT
r  and XT

i  are the 6x1 vectors that represent the position and orientation of the end-

effector reference frame (F
6
) in the inertial reference system (F

0
) for the real and ideal case, respec-

tively. The vector ∆X  must be calculated for a given set of physical errors. Many physical errors

may not play an important role in end-effector error. The first step in this analysis is to determine

which physical errors significantly influence the end-effector positioning accuracy.  A manipulator

error model, which maps the manipulator’s physical errors into generalized error components, and

then into end-effector errors is used.  If the end-effector error is greater than the desired tolerance,

the identified physical errors can either be corrected or the manipulator controller can be pro-
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grammed to compensate for the errors if the errors are repeatable.  A complete discussion of these

compensation algorithms is beyond the scope of this paper.  In this section, a general method to

obtain the error model is described.

When the generalized errors are considered in the model, the manipulator loop closure

equation takes the form:

A
T
 = A

1
E

1
A

2
E

2
. . . . . . .A

6
E

6
       (6)

As in Section 4.1, the end-effector position and orientation coordinates, XT
r  can be calcu-

lated from Equation (6):

XT
r =fr(q, ε, s ) (7)

Here, f  is a vector non-linear function of the configuration parameters q, the vector of the general-

ized errors ε, and the vector of the structural parameters s .  Equation (7) is called the “direct kine-

matic error model”.

In the error analysis of a manipulator, the end-effector position and orientation errors need

to be calculated as a function of the generalized errors. This is required in order to understand the

effect of the physical errors on the end-effector positioning accuracy of the manipulator.  Since the

generalized errors are small, ∆X  can be calculated by the following linear equation in ε:

∆X  = J
e
 ε (8)

Here, J
e
 is the 6x36 Jacobian matrix of the function fr defined in Equation (7) with respect

to the elements of the generalized error vector ε.  Equation (8) is called the "manipulator error

model".  The elements of J
e
 are defined as:

Je[i,j] =
∂f[i]
∂ε[j]

(9)

where i ranges from 1 to 6 and j ranges from 1 to 36.  Matrix J
e
 is called the "manipulator error

matrix."
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4.4 Symbolic Calculation

A computer program has been developed to calculate the manipulator error model and per-

form the error analysis of any serial link manipulator.  The outline of the software is shown in Fig-

ure 6. The manipulator error matrix is calculated analytically using the symbolic calculation soft-

ware package Maple .  The inputs to the program are homogeneous matrices A
i
 that represent the

manipulator’s nominal geometric properties.  The output of the Maple program is a C script con-

taining the analytical algebraic forms of the error matrix J
e
. Then, a Matlab program reads the input

files that define the numerical values of the configuration parameters q, the generalized errors ε,

and the structural parameters s  and executes the C-script file that contains the numerical value of J
e
.

From Equation (8), the treatment point error vector ∆X  is then calculated.

5 PERFORMANCE EVALUATION OF THE PPS

A large set of potential physical error sources has been identified for the PPS design.  The

computer program presented in Section 4.4 has been used. Nominal geometric parameters such as

link lengths, twist angles and offsets were obtained from autocad drawings of the PPS. Values of

the physical errors of the PPS were determined using information provided by the manufacturers

of each component of the PPS and by General Atomics.

5.1 Single Error Analysis

Each physical error is studied separately, in order to determine which physical errors in-

duce large treatment errors.  It was found that the angular treatment point errors resulting from the

physical errors considered were very small from a medical point of view and could therefore be

ignored.  However, the linear displacement error induced by some physical errors was found to be

very significant.  The amplification of small physical errors into large treatment point errors is pri-

marily caused by the long cantilever utilized in the design of this system.  In this section, examples

of these errors are presented.
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• Base Rail Curvature

The first three joints of the PPS are prismatic joints, for which the moving elements slide

on rails.  The base rail is considered in this example (see Figure 3.)  One of the possible physical

errors associated with the base rail is the curvature of the rail.  This is a repeatable error. A repre-

sentation of the rail error is shown in Figure 7. The error is assumed to be a sinusoidal function of

the travel d1 of the prismatic joint. The rail has a maximum angular deviation of 0.000125 radians

and a maximum linear error of 0.2 mm over its total length.

The generalized errors associated with these physical error are found to be:

ez1 = −0.000062 d1 − 0.060706 sin(
π

1600 d1
)

es1 = −0.000062 d1 − 0.000119 cos(
π

1600 d1
)

In Figure 8, the treatment point error for the rail error source is shown for Z and X direc-

tions.  For this particular physical error, there is no error in the Y direction. These treatment point

errors are calculated over the span of the manipulator workspace, which is defined as the range of

motions which will keep the proton beam within the treatment volume. The treatment volume is a

50x50x40 cm volume on the couch within which the treatment point must be located. The maxi-

mum treatment point error due to base rail curvature is 0.22 mm in the X direction and 0.08 mm in

the Z direction.  This error is considered to be significant because, in some configurations, almost

50% of the total accuracy specification is reached by just this error alone. However it is a repeat-

able error, so that the system software can compensate for it if it can be well characterized.

• Encoder Resolution

Encoders are used on each axis of motion.  It has been estimated that the encoder used on

the revolute axis (see Figure 3,) has a resolution of ±0.000063 radians.  This is a random error,

since the value and the sign of the encoder measurement error cannot be exactly determined. Hence

it is important that its effect be well understood and quantified, as it is not possible to compensate

its effect with a simple calibration procedure.
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The treatment point error in X and Z directions due to this physical error on the spin axis is

shown in Figure 9. The maximum error in each direction is 0.074 mm, which is considered to be a

significant error because as it can not be corrected by a compensation algorithm, it will be present

and it will affect the repeatability (relative accuracy) of the system.

• Deflections - Elastic Deformations

Deflections and elastic deformations of various structural members of the PPS are another

significant source of errors.  Deflections of the arm, vertical post, and couch (see Figure 3,) along

with elastic deformations of the bearings, rails, and lead screws can occur.  In this example, the

deflection of the arm is studied.  This is a repeatable error.  The arm was modeled as an elastic

beam.  From classical beam theory [6], the corresponding generalized errors have been calculated

as functions of the configuration parameters.  Using the error model of the PPS, the treatment error

is calculated over the manipulator workspace. The results of this calculation are shown in a three

dimensional diagram in Figure 10.  

The maximum error is 0.12 mm in the X direction, 0.44 mm in the Y direction, and 0.25

mm in the Z direction.

These results show that the deflection of the PPS structural members are major sources of

inaccuracy. Based on these results, the addition of a load cell to the PPS design has been decided.

The load cell will be mounted at the end of the PPS arm. The measurements from the load cell will

be used in a deflection compensation algorithm.

5.2 Combined Error Analysis

Figure 11 shows the treatment point error calculation where the identified physical errors

are assumed to be present.  Repeatable errors have been summed arithmetically, assuming that the

sign of the errors is known.  A root mean square sum (RMS) has been used for random errors.  It

was found that an uncalibrated PPS will have a maximum positioning error of 5.48 mm, as defined

by the radius of the sphere that includes all of the treatment point errors shown in Figure 11.  This

error is significantly greater than the maximum allowable tolerance of ±0.5 mm.  However, many
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repeatable errors can be corrected by using a compensation algorithm.  It is assumed that a correc-

tion algorithm can be developed which will largely correct for repeatable errors. Based on some

calculations, it has been estimated that due to uncomplete compensation of repeatable errors the re-

sidual accuracy of the PPS becomes ±0.25 mm.  Random errors cannot be corrected.  The RMS

sum of all random was calculated to be ±0.1 mm. Total prediction of the system absolute accuracy

when a calibration algorithm is used is ±0.35 mm.

6 EXPERIMENTAL VERIFICATION

The accuracy and repeatability of the PPS were measured experimentally using a Leica 3D

Laser Tracking System. Three targets were placed on the couch at the positions P1,  P 2 and P3,

shown in Figure 12.  The targets are located about 10mm above the couch.  The position accuracy

of the measurements is approximately 0.04mm.

A reference frame FT is fixed to the couch (see Figure 12).  The intersection point of the

plane (P1 P2 P3) with the Y axis of the fixed reference frame is called OT.  A fixed reference frame,

Fo, is used to express the coordinates of all points.  When the PPS is at its home configuration (all

joint variables set equal to zero) the reference frames FT and Fo are coincident.

The location of a tumor on a patient, defined as the Nominal Treatment Point (NTP), is

specified in the frame coordinate FT.  For the results presented below, the NTP coordinates in FT

are taken as (0, 840, -90) mm.

For more than 700 cases (at different configurations of the PPS and using different

weights) the location of points P1, P2 and P3 in frame Fo is measured and the NTP coordinates in

frame Fo calculated.  From the system kinematic model with no errors (see Section 4.1), the ideal

coordinates of NTP were calculated and subtracted from the experimentally measured values to

yield the vector ∆X .
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In this work, 450 measurements were used to evaluate the basic accuracy of the PPS. Two

different payloads were considered: one with no weight and another with a 154 lbs weight at the

center of the treatment area.  The PPS configurations used were grouped into two sets:

Set a) Treatment Volume.  The 8 vertices of the treatment volume (see Figure 3) are reached with

the NTP with the angle of the rotary joint taking values from -90° to 90° with a step of 30°, for a

total of 112 configurations.

Set b) Independent Motion of Each Axis.  Each axis is moved independently while all other axes

are held at the home (zero) values.  The step of motion for the first axis is 50 mm, for the second

20 mm, for the third 25mm and for the rotary joint 5°, resulting in 338 configurations.

The PPS positioning accuracy combining the two sets is shown in Figure 13.  It is clearly

seen that in spite of the high quality of the PPS physical system, its accuracy is of the order of

±5mm.  These measurements verified very accurately the computer error predictions.

The repeatability error of the PPS was also calculated. A total of 270 measurements were

taken with zero payload weight.  Figure 14 shows the distributions of the repeatability error for

each axis.  The repeatability error can be seen to be less than 0.15mm (3σ) which is very close to

the ±0.1 mm repeatability prediction obtained by the computer simulation program.

7 CONCLUSIONS

In this paper, the design and error analysis of a new ultra-high accuracy medical robot has

been presented. This robot manipulator is part of a proton therapy system for the treatment of can-

cer that is now being installed at the Northeast Proton Therapy Center of the Massachusetts Gen-

eral Hospital. Currently, the Patient Positioning System is assembled and initial performance tests

are being held. It is expected that the NPTC will start treating patients at the end of 1998.
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Figure 1: Schematic of the PPS, the Nozzle and the Gantry
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Figure 2: Side View of the Treatment Room [12, 13]
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Figure 3: Close View of the Patient Positioning System [13]
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Figure 3: Close View of the Patient Positioning System [13]
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Figure 13: Accuracy of the PPS Based on Experimental Measurements
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Figure 14: Repeatability Distribution Based on Experimental Measurements


