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ABSTRACT

In this paper a new overconstrained mechanism is
presented that can be used in many practical applications.
It is a 5 link 4R1P spatial mechanism with two pairs of
revolute joints with parallel axes. Its kinematic properties
are such that it can transfer rotational motion to linear and
vice versa when the revolute joint axis and the linear axis
are any two lines in space. It can also be used to transfer
revolute motion from one input shaft to another revolute
joint whose axis is any line in space arbitrarily located
with respect to the input shaft. A prototype set-up has
been built to verify the mechanism kinematic properties.

1. INTRODUCTION

Mechanisms are mechanical devices composed of
links connected by joints, forming open or closed mobile
chains. Mechanisms are used in almost every machine to
transfer motion or force. Conveyors, part handling
systems, printers and vehicle suspension systems are
some of the mechanisms applications (Chironis, 1991).

The main problem that is addressed when a
mechanical device or linkage is assembled from a set of
links and joints, is to determine its mobility. Is the
linkage mobile and hence a mechanism or is it a structure?
From classical mobility analysis of mechanisms, it is
known that the mobility m of a linkage composed of n
links that are connected with b joints can be determined by
the following equation called Grübler or Kutzbach
mobility criterion (Hunt, 1978, Kutzbach, 1929):

m=6(n-b-1)+Σf (1)

where Σf is the sum of kinematic variables in the
mechanism.

However, there are linkages, that have full range
mobility and therefore they are mechanisms even though
they should be structures according to the mobility
criterion. These linkages are called overconstrained
mechanisms. Their mobility is due to the existence of
special geometric conditions between the mechanism joint
axes that are called overconstraint conditions. The problem
of unveiling in a general and systematic way all the special
geometric conditions that turn a structure into a mechanism
has been an unsolved problem for a long time.

One of the first overconstrained mechanisms was
proposed by Sarrus (1853). Since then, other
overconstrained mechanisms have been proposed by
various researchers. Of special interest are those proposed
by Bennett (1914), Delassus (1922), Bricard (1927),
Myard (1931a,b), Goldberg (1943), Waldron (1967, 1968,
1969), Wohlhart (1987, 1991, 1995) and Dietmaier
(1995). In Baker (1984), Waldron (1973 a, b) and Phillips
(1990) references can be found to almost all known
overconstrained mechanisms. The most detailed studies of
the subject of overconstraint in mechanisms are due to
Baker (for example: Baker, 1980 and 1984.)

Single-loop overconstrained mechanisms with lower
pairs can have two, three, four, five or six links (linkages
with more than six links are mobile.) The question of
overconstraint for two, three and four-bar linkages seems
to be closed. Waldron (1979) asserted that all four-link
overconstrained mechanisms with lower pairs are known.
Hence the two-link and three-link overconstrained
mechanisms are also known, since they are special cases
of the four-link ones (see also Savage, 1972). Some five-
link overconstrained mechanisms are known (Pamidi,
Soni and Dukkipati, 1973; Hunt, 1967), of these the only
ones that have all revolute joints are Goldberg’s
mechanisms (including as a special case the Myard



mechanism.) There are only a few known overconstrained
six-link mechanisms, these are mainly with revolute
joints.

Two basic problems with the study of overconstrained
mechanisms are: a) proof of overconstraint and b)
calculation and solution of the input-output equations.
Most of the time, methods to solve these problems were
specialized to the geometry of the particular mechanism
studied. Mavroidis and Roth (1994, 1995a, 1995b)
proposed a general and systematic method to prove
overconstraint and obtain the input-output equations of
any closed loop overconstrained mechanism.

Overconstrained mechanisms have many appealing
characteristics. Most of them are spatial mechanisms.
Their spatial kinematic characteristics make them good
candidates in modern linkage designs where spatial motion
is needed. Another advantage of overconstrained
mechanisms is that they are mobile using fewer links and
joints than it is expected. For example, in normal closed
loop revolute joint spatial mechanisms, the linkage
should have at least seven links to be mobile.
Overconstrained mechanisms can be mobile with four,
five or six links. Fewer links and joints in a mechanism
means reduction in cost and complexity.

While many overconstrained mechanisms have been
discovered, only a few of them have been used in practical
applications. There are many reasons for this. Most of the
engineers are unaware of the existence of spatial
overconstrained mechanisms and their properties. For
example, very few engineers in industry know the four-bar
Bennett or the six-bar Bricard spatial mechanisms and their
properties and hence they can not consider these
mechanisms in their designs. The other reason for not
using overconstrained mechanisms in industrial
applications is that most of the known overconstrained
mechanisms have complex kinematic properties. This is
because these mechanisms have been found using
mobility criteria only and not other criteria as well, such
as to satisfy a desired input-output relationship. For
example, a six-bar Bricard mechanism is shown in
Figure 1a. This mechanism satisfies the special geometric
conditions shown in the Figure (see Section 2 for the
notation on the Denavit and Hartenberg parameters.) If
joint angle θ3 is the input and joint angle θ1 is the output
then their relationship during a mechanism full cycle is
shown in Figure 1b. This curve shows a complex input-
output relationship that can not have an obvious use. A
linear input-output relationship would have been very
useful since in this case the mechanism can be used to
transfer revolute motion from one shaft to another skew
output shaft.
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Figure 1: The Bricard Mechanism and Its
Input-Output Curve

In this paper an overconstrained mechanism is studied
that can be used in many important applications. This
mechanism, that was first introduced in Mavroidis and
Roth (1995b), can be used to transfer rotational motion to
linear and vice versa when the revolute joint axis and the
prismatic joint axis are any skew lines in three
dimensional space. It can also be used to transfer revolute
motion to another revolute joint when the two joint axes
are again any skew lines in space. Such a mechanism can
eliminate the need to use various types of gears such as
conic, spur, bevel or worm gears which are expensive and
heavy when change of direction of the axis of revolute
motion is needed. Computer Aided Design models and an
experimental prototype system were built to validate the
kinematic properties of the proposed mechanism.

2. NOTATION

In this work, revolute and prismatic joints are denoted
with the letters R and P respectively. It is easy to show
(Mavroidis and Roth, 1995a) that studying the six-link
mechanisms with only revolute and prismatic joints
includes all other mechanisms with fewer links and
multiple degree of freedom joints.

The relative position of links and joints is described
using the variant of Denavit and Hartenberg notation
(Denavit and Hartenberg, 1955,) in which the parameters ai,
α i, di and θi are defined so that: ai is the length of link i, α i



is the twist angle between the axes of joints i and i+1, di is
the offset along joint i and θi is the rotation angle about
joint axis i (see Figure 2.)

For a six-link chain there are twenty-four Denavit and
Hartenberg parameters that define its assembly
configuration. In general a six-link chain is immobile.
However, since we are interested in overconstrained six-link
mechanisms, our chains will be mobile and six of these
parameters will be motion variables (for a revolute
(prismatic) joint, θi (di), i=1,...,6). The other eighteen
parameters are constants, called the structural parameters,
and they define the special geometry that makes the chain
mobile. The special  values of the structural Denavit and
Hartenberg parameters, can be considered to be due to
special geometric conditions between the joint axes called
“overconstrained conditions.”

At each link a reference system Ri is attached. The
position and orientation of frame Ri+1 into the previous
frame Ri is described by the 4x4 homogeneous matrix Ai:
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where: si=sin(θi), ci=cos(θi), µi=sin(α i) and λ i=cos(α i).
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Figure 2: Denavit and Hartenberg Parameters

3. THEORY OF OVERCONSTRAINT

In this section, a brief description of a systematic
methodology to prove mobility and obtain the input-output
equations of any overconstrained mechanism is presented
(Mavroidis and Roth, 1994, 1995a, 1995b). The
mechanism that is presented in Section 4 was found using
this method.

The method to prove overconstraint was based on the
solution of inverse kinematics of general six-joint
manipulators. Raghavan and Roth (1993) proposed a
method that solves the inverse kinematics of any general
non-degenerate, six-joint, open loop serial manipulator at
any configuration of its end-effector. The inverse
kinematics problem is the problem of finding the values

of the manipulator’s joint variables that correspond to a
given end-effector position and orientation. Characteristic
polynomial is called a polynomial in one of the joint
variables that gives all the solutions to the inverse
kinematics problem for this joint variable for a specific
configuration.

In order to study overconstrained mechanisms using
the solution of inverse kinematics problem, six-joint
manipulators must be considered in configurations where
the end-effector is reaching its base (i.e. in configurations
where the end-effector reference system R7 coincides with
the base reference frame R1). In these configurations the
manipulator becomes a six-link closed loop structure and
the loop closure equation is written as:

A1 A2 A3 A4 A5 A6 = I ⇔ A3 A4 A5 = A1
-1 A2

-1 A6
-1 (2)

where I is the 4x4 unitary matrix. The elements of the
third column of the matrix equation (2) forms a vector
called l  and those of the fourth column form a vector
called p. Equating the left and right expressions of l  and p
six scalar equations are obtained that are the main
equations in solving the inverse kinematics problem.

The overconstraint criterion can be stated as: calculate
the roots of the characteristic polynomial of the
corresponding open loop manipulator when the end-
effector frame is coincident to the base frame. If the
characteristic polynomial has no real roots then the
linkage can not be assembled. If the characteristic
polynomial has a finite number of roots, then the linkage
can be assembled in a finite number of configurations but
it is not mobile. It is a structure. If the characteristic
polynomial coefficients are all zero then the linkage is
mobile.

The solution of the inverse kinematics problem,
starting from the equations of l  and p, after an
elimination procedure, reaches a point where a
homogeneous linear system of equations is obtained. This
linear system, for a 6R manipulator, can have the
following form:

Σ(θ
3
)X=0 (3)

where Σ is a 12x12 matrix, whose elements depend on the
manipulator structural parameters, the end-effector
coordinates and only one of the kinematic joint variables
which in the case of Equation 2 is joint angle θ3. The
vector X is a 12x1 vector whose elements are power
products of the other joint variables.

The characteristic polynomial of the manipulator at
any configuration is equal to the determinant of Σ. In
cases where the manipulator forms a mobile six-joint
closed loop chain, the characteristic polynomial



coefficients are zero because the lines of Σ become
linearly dependent. Since the closed loop chain is mobile,
one of the joint variables is the mechanism input and
therefore it is known. For example, in Equation 2, θ3 can
be the mechanism input, and one of the other joint
variables can be the mechanism output, let’s say θ4. Then
Equation (2) can be written as:

Σ'(θ
4
)X'=0 (4)

where Σ' is a 3x3 matrix. The determinant of Σ' will
result in a polynomial in θ4 with roots that give the
values of the output that correspond to a certain value of
the input.

A detailed description of the method to prove
overconstraint and obtain the input-output equations can
be found in Mavroidis and Roth (1994b, 1995a and b.)

4. A NEW MECHANISM

In this section an overconstrained mechanism is
presented that can be used in important practical
applications. This mechanism was first presented briefly
in Mavroidis and Roth (1995b).

This is a 5 link mechanism with four revolute and
one prismatic joints. Its Denavit and Hartenberg
parameters and the special conditions they satisfy are
shown in Table 1. This mechanism is shown in Figure 3
in an open configuration and in Figure 4 in a closed
assembly configuration. Both Figures are captions from
the mechanism drawings generated by an automated
program using the computer aided design software
I-DEAS (Integrated Design and Engineering Analysis
Software, Structural Design and Research Corp., 1994).

α a d,θ

1 α1 a1 θ1

2 0 a2 d2

3 α3 = α1+ α5 a3 = a1+ a5 d3

4 0 a4 = a2 d4

5 α5 = α1 a5 d5=d2+d3-d4

Table 1:  Denavit and Hartenberg Coordinates
of the New Mechanism

The mechanism has two pairs of revolute joints with
parallel joint axes. The link that connects the two parallel
joints in a pair is called “parallel pair link”. Both pairs
have equal length links. The two parallel pairs are
connected with each other with a link called in this paper

the “coupler link.” Each pair of parallel joints is connected
with the prismatic joint with a link called the “crank”.
Both cranks are of equal length and form equal angles with
the prismatic joint axis. The coupler link has twice the
length of each crank and its twist angle is two times the
twist angle of each of the cranks. The sum of the offsets
in each pair of revolute joints is equal. Using the theory
of Section 3 it can be shown that the mobility of this
mechanism is one.
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Pair of Parallel
Revolute Joints

z5
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Parallel Pair Link

Parallel Pair Link
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Figure 3: The New Mechanism in an Open
Configuration

Figure 4: The New Mechanism in a Closed
Configuration

A prototype of the new mechanism has been built in
our laboratory that demonstrates the mechanism mobility.
This prototype is shown in Figures 5a and b, in two
different configurations. The dimensions of the
experimental set-up are shown in Table 2. The mechanism
links are 1/4” steel rods. The mechanism has full cycle
mobility with no intersection between its members. The
range of motion of the prismatic joint is approximately
14”.



(a)

(b)
Figure 5: The Prototype System in Two

Configurations

α (deg) a (in) di (in),  θ2 (deg)

1 45° 6 θ2=0

2 0° 5 5

3 90° 12 5

4 0° 5 5

5 45° 6 5

Table 2: Parameters of the Prototype System

It can easily be shown, using vectors l  and p, that the
kinematic variables of this mechanism satisfy Equations
(5)-(8) where, θ2 is chosen as the mechanism input and the
other variables are considered to be the mechanism
outputs:

θ3 = -θ2 (5)

θ4 = θ2 (6)

θ5 = -θ2 (7)

d1 = -2[ a2µ1s2 + λ1(d4+d5)] (8)

Using Equation (5) to (8) the input-output curves of
the mechanism prototype are drawn in Figure 6. The same
curves were also obtained using the method described in
Section 3 and verified experimentally.
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Mechanism



From equations (5)-(8) it is obvious that a linear, one
to one relationship, exists between the joint angles of any
two revolute joints. Hence, if the coupler link is
grounded, then any one of the two revolute joints
connected with this link, can be the input and the other
one can be the output. For example, for the mechanism
shown in Figure 3, θ3 can be the input and θ4 can be the
output. As the relative position of the two revolute joint
axes connected by the coupler is a design parameter, any
two lines in space can be selected. Therefore this
mechanism can be used to transfer revolute motion from
one input shaft to another output shaft, that has any
position with respect to the input shaft. This is an
important result since this mechanism can substitute
various types of special geared mechanisms that are used
to change the direction of the revolute motion and which
are very expensive and their fabrication is very
complicated.

From Equation (8), it can also be seen that a
sinusoidal relationship exists between the kinematic
variable of the slider and the joint angle of any one of the
revolute joints. Therefore, if anyone of the cranks is
grounded then this mechanism can be used to change
revolute motion to linear motion and vice versa when the
axis of the slider and the axis of the revolute joint are any
two lines in space. This mechanism is the exact
equivalent of the planar 4-bar slider crank. In the planar
slider crank the axes of the revolute and prismatic joint are
always perpendicular. In the new mechanism, these axes
can have any distance and any orientation with each other.
The experimental prototype shown in Figure 5 was built
having one of the cranks grounded.

If the mechanism is used to transfer revolute motion
to revolute, then the input-output relationships are not
affected by the mechanism dimensions and any values will
result in the desired function. If the mechanism is used to
change revolute motion to linear and vice versa, then a
desired specification is the range of motion of the slider.
This specification affects the mechanism dimensions.
From Equation (8) it can be seen that larger length of the
parallel pair link or larger crank twist angle increase the
range of motion of the slider. Also the offsets in the
parallel pairs affect the mean position of the travel of the
slider.

Theoretically the mechanism has full cycle mobility.
However, in practice there is a possibility of link
intersection that will impede the mechanism to complete
its cycle. In both applications mentioned above, link
intersection must be avoided. There are three types of
possible link intersections. The first type is intersection
of two adjacent links connected by a revolute joint. This
intersection is due to small offset between the two links

and can easily be corrected. The second type of link
intersection can occur between the two cranks that are
connected by the prismatic joint. Assume for example that
one of the cranks is grounded and that the end of the other
crank slides on the prismatic joints. There are mechanisms
where the range of motion of the moving crank will
require that it gets the other side of the fixed crank and this
is impossible. This type of link intersection can be
predicted and avoided using Equation (8). From this
equation, the mechanism dimensions can be found for
which the variable d1 does not change sign during a full
cycle of the mechanism. The third type of link
intersection is very difficult to predict analytically. In this
case the coupler link intersects with the prismatic joint. In
this work, a graphical approach has been developed to
predict and avoid this type of link intersection. A program
has been written using the computer aided design package
I-DEAS to detect this type of link intersection.

This mechanism belongs to the large class of 6-link
linkages with revolute and prismatic joints that have three
pairs of parallel joint axes. The mechanism studied in this
paper which is a 5 link, can be seen as a 5R1P 6 link
mechanism with one prismatic and one revolute joint axes
coincident. We did an extensive search to find which other
linkages with three pairs of parallel joint axes can be
mobile, and it can be shown that this is the only mobile
linkage of this class. All other 6R, 4R2P and 3R3P
linkages with three pairs of parallel joint axes are
structures.

5. CONCLUSIONS

In this paper a new overconstrained mechanism has
been presented that can be used in many practical
applications. It is a 5 link 4R1P spatial mechanism with
two pairs of revolute joints that have parallel joint axes.
Its kinematic properties are such that it can transfer
rotational motion to linear and vice versa when the
revolute joint axis and the linear axis are any two lines in
space. It can also be used to transfer a revolute motion to
another revolute joint whose axis has any general location
with respect to the input shaft. This mechanism shows
that overconstrained linkages can not only be important
from a theoretical point of view but they can find some
useful applications as well.
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