
Experiment #3: Basic Analog to Digital Conversion

Basic Analog and Digital Student Guide Version 1.0 • Page 41

Build Your Own Digital DC Voltmeter

A digital DC voltmeter (DC DVM) is a handy tool for measuring
voltage between two contact points. In this experiment, we will
build a DVM for measuring DC voltage in the 0 to 5 Volt range. A
common use for a DC DVM is testing the voltage (potential)

between the two terminals on a battery.

A digital voltmeter is so named because it displays its measurements with digits. The digits 0 through 9 and a
decimal point are used to display the voltage measurements as decimal values. The digits 0 and 1 could be
used. It would still be a "digital" voltmeter, but it would have binary display instead of a decimal display.
Making sense out of each measurement would be time consuming. Since our DVM processes its measurements
in binary, we'll start with a binary display and then modify it to the more conventional and easy to read
decimal display.

In Experiment #1, we used an LED circuit to display changes in
analog voltage level applied to a circuit. As a “continuously
variable value”, analog voltage varies within a continuous range.
We'll use the potentiometer as we did in Experiment #1 to make a
range of voltages that can vary continuously between 0 and 5 volts
on the Board of Education.

Although information about analog voltage can be processed
efficiently with binary devices, the voltage has to be sampled and
described using binary numbers first. The ADC0831 is a common
integrated circuit that does this job. It describes the analog
information with binary numbers for devices that process binary
information, such as the BASIC Stamp.

In this experiment, we will make a DVM using the BASIC Stamp together with the ADC0831 integrated circuit.
A pot will be wired to the Board of Education and adjusted to make analog output voltage. The DVM will then
be used to measure samples from the pot’s continuous range of voltage outputs.

Experiment #3:
Basic Analog to
Digital
Conversion

Continuous range:

A minimum value, a maximum value, and
everything in between.. When a source of
voltage varies over a continuous range, it is
considered an analog voltage.

We will use our DVM to sample voltages
over a continuous range, from 0 to 5 Volts.
So, the voltage we measure might be 1.234
Volts or 3.857564… Volts, or 4.9999… Volts,
etc.

Experiment #3: Basic Analog to Digital Conversion

Page 42 • Basic Analog and Digital Student Guide Version 1.0

Figure 3.1: A Voltage Divider Circuit
shows how the wiper in a potentiometer
makes the single resistive element look like
two resistors in series.

Voutput is the voltage measured at the
wiper terminal.

 (1) ADC0831
(1) 100K potentiometer
(10) Wires, give or take a few

The Potentiometer, a Source of Variable Voltage

There is a reason why the voltage at the wiper terminal of a pot changes.
when you turn the knob. The wiper terminal makes the single resistive
element in the pot work like two resistors in series. Figure 3.1 shows
two resistors in series. When input voltage is applied and output voltage
is measured as shown in Figure 3.1, the circuit is referred to as a voltage
divider. R1 and R2 are the resistances between the wiper and the other
two terminals on the pot, and their values change as the pot is adjusted.
Since the pot causes the R1 and R2 to vary, we can call our wiper
terminal the output of a variable voltage divider.

Parts
Required

 V dd

Voutput
(Taken at
the wiper
terminal)

V ss

 R 1

 R 2

Vinput
 = Vdd

FYI:

Resistor Values
When you know the value of the two
resistors in Figure 1.2, you can
predict the output voltage using this
equation.

21

2
inputoutput

R+R

R
×V=V

Not surprisingly, it’s called the
voltage divider equation, and this
technique for scaling down an input
voltage is commonly referred to as
using a voltage divider.

Resistors in Series:

A chain of resistors connected end
to end. Three resistors in series are
shown below. The three resistors
can be viewed as a single resistance
whose value is:

Rseries = R1 + R2 + R3

R1 R 3R 2

Experiment #3: Basic Analog to Digital Conversion

Basic Analog and Digital Student Guide Version 1.0 • Page 43

The ADC0831 Integrated Circuit - An 8-bit Analog to Digital Converter

The ADC0831 is an integrated circuit referred to as an 8-bit analog to digital converter (A/D converter) with
synchronous serial output. Let's look at what each of these terms mean:

§ An integrated circuit (IC) is a circuit with microscopic components implanted on the surface of a
silicon wafer. The Analog and Digital Parts Kit has three chips used in these experiments. Each chip is
a black casing with eight pins. The black casing houses and protects an integrated circuit.

§ An A/D converter measures an analog voltage sample and returns a binary number that describes the

sample.

§ 8-bit is the number of binary digits the ADC0831 uses to describe the analog voltage it samples. 8-bit
is also the resolution of the A/D converter. You can count from 0 to 255 (decimal) using an 8-bit
binary number. This means that the ADC0831 can approximate the voltage it measures as one of 256
levels. A higher resolution converter, such as 12-bit, would break the same voltage range into 4096
levels because you can count from 0 to 4095 with 12 binary bits.

§ Synchronous and serial are terms we learned about in Experiment #2. We sent serial binary digits

(bits) to the BASIC Stamp using one pushbutton and the bits were synchronized to a second
pushbutton that was used to send a clock signal. The ADC0831 works in a similar way. The difference
is that the ADC0831 depends on a clock signal sent by the BASIC Stamp to time the sending of each
serial output bit.

The BASIC Stamp will be programmed to read and store the 8-serial-bits
transmitted by the ADC0831. We’ll also program the BASIC Stamp to display
the decimal equivalent of the binary output. Next, we’ll use this decimal
equivalent to calculate and displays the measured voltage in decimal form
(our DVM output). The BASIC Stamp must also be programmed to send
binary control signals to make the ADC0831 do its job.

Figure 3.2 shows a pinout map of the ADC0831. Each pin has a number and a
label. The number is important for getting the wires connected to the right
pins when constructing your circuit. The labels indicate the function of each
pin.

Binary control signal:

A voltage signal with two
possible states, low or high,
that is sent to tell a device
how or when to do something.
The ADC0831 requires control
signals to activate it and a
clock signal to synchronize the
sending of each of the it's
output bits.

Experiment #3: Basic Analog to Digital Conversion

Page 44 • Basic Analog and Digital Student Guide Version 1.0

The notation for the ADC0831's inputs and outputs works as follows:
Vin(+) is the analog input, and D0 is the serial output. VREF and Vin(-)
are used to bias the IC. Vcc and GND are used for supplying power to
the IC. Vcc is essentially the same term as Vdd on the Board of
Education, and GND corresponds to Vss. /CS stands for active low chip
select, and CLK stands for clock. Both are inputs for binary control
signals.

To prime the ADC0831 for taking a measurement, the /CS pin has to receive a signal from the BASIC Stamp
that starts high, then goes low. This signal has to stay low for the duration of the conversion. Then the CLK
input must receive a single clock pulse (a term introduced in Experiment #2, Figure 2.8) to signify that the
conversion should start at the next clock pulse. For this IC, a clock pulse starts low, goes high, then goes low
again. It takes 8 more clock pulses to complete the conversion. Each time a clock pulse is received by the CLK
input, another of the serial bits is sent by the D0 output.

Electronics designers use data sheets to find the kind of information just discussed. Each IC manufacturer
publishes data sheets for the integrated circuits they make. The information just covered on the pin map and
control signals was condensed from a data sheet published by National Semiconductor, the maker of the
ADC0831. Of course all of the datasheets are available on the manufacturer's web sites.

Bias:

A method of applying specific voltage
levels at certain places in a circuit to
calibrate or tune it.

Figure 3.2: ADC0831 Circuit
Symbol and Pin Map. The
pin map on the right shows
the pins and labels according
to where they are on the
chip. The circuit symbol on
the left also shows the pins
and their labels, but it's
typically drawn in a way that
most conveniently fits into
the schematic.

/CS

pin #1

1

Index Mark

Vin (+)

Vin (-)

4

3

2

GND

Vcc

CLK

D0

VREF

8

7

6

5

ADC0831
A/D

Converter

ADC0831

2

3

4

58

6

7

1
/CS

CLK

DO

Gnd

 Vin(-)

 Vin(+)

Vdd Vref

Experiment #3: Basic Analog to Digital Conversion

Basic Analog and Digital Student Guide Version 1.0 • Page 45

Figure 3.3 shows the schematic for this experiment. This is a fairly simple
circuit to build, so let's try it without the breadboard example. Hopefully
you're getting the hang of the list of connections described by a schematic.
Remember, when working with the connections to an IC, use the index mark
on the chip along with the pin map to figure out the pin numbers!

Program Listing 3.1 is the first step to a functional DC voltmeter. This
program displays the 8-bit serial output of the ADC0831. Enter the code and
save it as P3_1R0.bs2. There will be three revisions of this program listing, so
it will become important to keep track of your source code versions.

We'll modify the code so that it also displays the decimal conversion of the

8-bit binary number. Next we'll add some more code to adjust the number to a 5 Volt scale. Make sure your
circuit is constructed correctly and your programming cable and power source are connected, then run the
program.

Build It

Program
It

Figure 3.3: Schematic
List of connections made on this schematic:
§ Pin 1 on the ADC0831 is connected to pin P0 on

the BASIC Stamp.
§ The wiper terminal of the pot is connected to pin

2 on the ADC0831.
§ Of the two remaining terminals on the pot, one is

connected to Vdd on the Board of Education, and
the other is connected to Vss.

§ Pins 3 and 4 on the ADC0831 are connected to
Vss.

§ Pins 5 and 8 on the ADC0831 are connected to
Vdd.

§ Pins 7 and 6 on the ADC0831 are connected BASIC
Stamp pins P1 and P2 respectively.

P0

P1

P2

ADC0831

100k
POT

2

3

4

58

6

7

1
/CS

CLK

DO

Gnd

 Vin(-)

 Vin(+)

Vdd Vref Vdd

Vdd

Vss

Experiment #3: Basic Analog to Digital Conversion

Page 46 • Basic Analog and Digital Student Guide Version 1.0

‘Program Listing 3.1
‘ADC0831 Binary output display.

'Declarations.
adcbits var byte
v var byte
R var byte
v2 var byte
v3 var byte

CS con 0
CLK con 1
D0 con 2

'Start display.
debug cls

'Main routine.
main:

gosub ADCDATA
gosub CALC_VOLTS
gosub DISPLAY

goto main

ADCDATA:
high CS
low CS
low CLK
pulsout CLK,210
shiftin D0,CLK,msbpost,[adcbits\8]
return

CALC_VOLTS:
return

DISPLAY:
debug home
debug "8-bit binary value: ", bin8 adcbits
return

Experiment #3: Basic Analog to Digital Conversion

Basic Analog and Digital Student Guide Version 1.0 • Page 47

The Output

If the pot is adjusted somewhere in the middle of its range, the output displayed in the Debug window should
look similar to Figure 3.4. As you adjust the pot, the zeros and ones should change rapidly. Each time you stop
adjusting the pot, the output should settle, and a new pattern of eight zeros and ones should display.

 Figure 3.4: Debug Output for
Program Listing 3.1.

8-bit binary value: 10110100

If your debug window responds this way, it’s likely your circuit and program are working right. If it doesn’t do
this, check the wiring on your circuit. Also make sure code is entered correctly. Sometimes just one wrong
letter will cause the program not to work properly. The Debug window could also be hidden from view. It can
be accessed from the menus by selecting Run/Debug/New Terminal in the Windows version of the BASIC
Stamp Editor.

About the Code

The first few lines of text in this program are comments that begin with apostrophes, and they don't have any
function in the program aside from explaining it to someone reading the code.

'Program Listing 3.1
'ADC0831 binary output display.

The next section is called the variable declarations section, and it begins with a comment explaining that this
is the declarations section. This program uses just the adcbits variable at present. We'll add code that will
make use of the other four variables, v, R, v2, and v3.

' Declarations
adcbits var byte
v var byte
R var byte
v2 var byte
v3 var byte

Experiment #3: Basic Analog to Digital Conversion

Page 48 • Basic Analog and Digital Student Guide Version 1.0

Following is a new type of declaration we haven't used before. Three constants are defined using the con
directive. After we define these constants, we can use CS in place of the number 0, CLK in place of the
number 1, and D0 in place of the number 2. The names for the constants were chosen to correspond with the
ADC0831's pin labels. The numbers were chosen based on BASIC Stamp I/O pin numbers.

CS con 0
CLK con 1
D0 con 2

Next there's a loop that contains three gosub commands. The
main:…goto main routine runs 3 different subroutines over and over
again. The subroutines are named ADCDATA:, CALC_VOLTS:, and
DISPLAY:. The label main: is used in the same manner that we used
the loop: label in the first two programs. The label name main: was
chosen because, as the comment preceding this routine indicates, it's
the "main routine" in the program.

'Main routine
main:

gosub ADCDATA
gosub CALC_VOLTS
gosub DISPLAY

goto main

So, how does a gosub command work? As shown in the flow diagram in Figure 3.5, gosub ADCDATA means
go to the subroutine labeled ADCDATA: and come back when finished. The program jumps to the ADCDATA:
label and starts executing commands. As soon as it gets to the return command, the program jumps back to
the command just after gosub ADCDATA. In this case, the next command is another gosub command, gosub
CALC_VOLTS.

Subroutine:

A subroutine is a small program that
does a specific task within a larger
program.

Experiment #3: Basic Analog to Digital Conversion

Basic Analog and Digital Student Guide Version 1.0 • Page 49

The subroutine ADCDATA: sends control signals to and collects output data from the ADC0831. This
subroutine is where the usefulness of the con directive really shows. P0 on the BASIC Stamp is connected to
the /CS pin on the ADC0831. Likewise, pins P1 and P2 are connected to CLK and D0. When sending signals to
the /CS pin, we can enter a command like high CS instead of high 0. It makes more sense when writing the
code, and it makes deciphering the code easier too. It's also easier to change one constant in the top of the
program should you decide to connect the ADC0831 to a different BASIC Stamp I/O pin.

The command high CS sends a high signal to the ADC0831’s /CS pin. To start a conversion, we need to send a
high signal (5 volts). Then we need to send a low signal (0 volts) to the /CS input on the ADC0831 using low CS.
The signal sent to the ADC0831's /CS input needs to stay low for the duration of the conversion.

high CS
low CS

The low CLK command is necessary so that the clock pulses take the right form. Using this command
guarantees that the next command (pulsout) will send a clock pulse that has the right shape, low-high-low.
Sending high and low signals using the high and low commands is an alternative to the out0=1 and out0=0
techniques used in the first experiment.

low CLK

The pulsout CLK,210 command sends a clock pulse to the ADC0831's CLK input. This is the first clock pulse,
and all it does is tell the ADC0831 to start converting on the next clock pulse. Because of this, we don't need
to check for input from D0 after this first clock pulse.

pulsout CLK,210

main:

gosub ADCDATA
gosub CALC_VOLTS
gosub DISPLAY

goto main

ADCDATA:
high CS
low CS
low CLK
pulsout CLK,210
shiftin
D0,CLK,msbpost,[adcbits\8]
return

Figure 3.5: Flow Diagram
A subroutine sends the program to
the specified label. In this case the
label is ADCDATA:. Then the
program continues executing
commands until it encounters the
return command. The return
command sends the program back
to the command immediately after
the gosub command. In this case
it's another gosub command.

Experiment #3: Basic Analog to Digital Conversion

Page 50 • Basic Analog and Digital Student Guide Version 1.0

Since we set the clock low just before this command, pulsout sends the desired low-high-low signal. The
duration of the high segment is twice the number specified in the pulsout command, in microseconds (us). 1
us = 1/1,000,000 of a second. Therefore the duration of this high segment is 2 us × 210 = 420 us.

The command shiftin D0,CLK,msbpost,[adcbits\8] is a powerful instruction that takes care of all the
synchronous serial communication so that we don't have to program it as we did in Experiment #2. In effect,
this command sends clock pulses to the ADC0831’s CLK input and reads output bits from ADC0831’s D0
output. This command also loads each of the ADC 0831’s output bits into the adcbits byte.

shiftin D0,CLK,msbpost,[adcbits\8]

The shiftin command is discussed in more detail in the BASIC Stamp Manual Version 1.9, but the general
format for the command is:

shiftin data pin,clock pin,mode,[variable\bits]

In our case, the data pin is D0, a constant equal to the number 2. This constant is used to reference BASIC
Stamp I/O pin P2 in this program. Likewise, the clock pin is CLK, which is a constant equal to the number 1, and
it references BASIC Stamp I/O pin P1. The mode in this case is msbpost, and it's one of four transmission
modes that can be used in this command. It indicates that the the ADC0831's output bits are ready after the
clock pulse's negative edge, the transition from high to low. It also indicates that the bits are transmitted in
descending order, starting with the MBS. [adcbits\8] means the data is shifted into the adcbits variable, and
8-bits are expected.

The CALC_VOLTS: subroutine is empty right now, but we will develop the code for this subroutine shortly.
The subroutine will calculate the measured voltage to the hundredth’s decimal place.

CALC_VOLTS:
return

At present, the DISPLAY: subroutine just displays the binary output for each analog voltage sample taken by
the ADC0831. It will be modified to display the decimal equivalent of the 8-bit binary value. It will also be
modified to display the voltage measurement.

The command debug home, cr, "8 bit binary value: ", bin8 adcbits sends the cursor to the
top-left "home" position in the Debug window. Then it prints the message in quotes. The modifier bin8 makes
it so the value of the adcbits variable is displayed as 8 binary digits.

debug home, cr, "8 bit binary value: ", bin8 adcbits

Experiment #3: Basic Analog to Digital Conversion

Basic Analog and Digital Student Guide Version 1.0 • Page 51

If the number of digits displayed is likely to vary, when using the debug home command, always specify how
many digits the numeric outputs should have with modifiers like bin8, dec3, etc. When debug cls is used,
it’s OK to skip specifying the number of digits, so modifiers such as bin and dec can be used instead.

The debug home command is better for programs that cycle through loops where the Debug window display
is updated frequently and rapidly. When debug cls is used under these circumstances, the repeated clearing
the Debug window causes a flicker that makes the display difficult to read.

The return command sends the program back to the line immediately following the gosub display
command.

We will modify the DISPLAY: subroutine to display the decimal equivalent of the binary contents of adcbits
in the Debug window. Code will also be added to make the Debug window display our DVM reading.

Interpreting the Output

The ADC0831 measures an analog voltage at its input. Then it sends the BASIC Stamp a binary number
describing the value it measured. For now, we’ll focus on a voltage scale that starts with 0 volts and ends at 5
volts.

With an 8-bit binary number, you can start counting with 00000000 and count all the way up to 11111111.
Translated to decimal numbers, it's the same as counting from 0 to 255. When applied to a 5 Volt scale that
starts at 0 volts, it’s the same as counting from 0 to 5 volts using 255 voltage steps.

For the 5 Volt scale, when the ADC0831 measures 0 volts, you get 00000000. When it measures 5 volts, the
output is 11111111. It turns out that the Debug window output 10110100 from Figure 3.4 is the same as the
decimal number 180. Decimal-180 in turn corresponds to a measured voltage of 3.53 volts.

Experiment #3: Basic Analog to Digital Conversion

Page 52 • Basic Analog and Digital Student Guide Version 1.0

Binary to Decimal Conversion Revisited

So how do we know that 256 combinations can come from an 8-bit binary number? Remember, you can
always tell how many numbers (combinations of 0s and 1s) can come from a given number of bits by using this
formula from Experiment #2:

combinations =2bits

This means the number of combinations equals two raised to the power of the number of bits. For 8-bits, the
number of combinations is 28 = 256. For 12-bits, the number of combinations is 212 = 4096, and so on.

Let's use the two-step method from Experiment #2 to convert the 8-bit binary number 10100101 to its
decimal equivalent. Here is a repeat of the bit multipliers table to work with:

Table 3.1 – Bit Multipliers for an 8-bit Binary Number

Bit 7 6 5 4 3 2 1 0

Multiplier 128 64 32 16 8 4 2 1

First, multiply each bit by its power of two from Table 3.1

128 X 1 = 128
64 X 0 = 0
32 X 1 = 32
16 X 0 = 0
8 X 0 = 0
4 X 1 = 4
2 X 0 = 0
1 X 1 = 1

Second, add all 8 of the decimal values:

128+0+32+0+0+4+0+1 = 165

Now we know the binary number 10100101 is equal to the decimal number 165. To display this conversion, a
single debug command can be added to the DISPLAY: subroutine. Added lines are shown with a "� ".

Experiment #3: Basic Analog to Digital Conversion

Basic Analog and Digital Student Guide Version 1.0 • Page 53

DISPLAY:
debug home, "8 bit binary value: ", bin8 adcbits
debug CR, CR, "Decimal value: ", dec3 adcbits '
return

The command debug CR, CR, "Decimal value: ", dec3 adcbits tells the Debug window to display
two carriage returns followed by the message in quotes, followed again by the 3-digit decimal value of
adcbits. If the actual number only has one or two digits, the Debug window will automatically display leading
zeros since dec3 was specified. For example, the number 7 will display as 007, and the number 85 as 085, etc.

With some careful adjustment of the pot, we can check our work using output sample shown in Figure 3.6.

 Figure 3.6: Debug Output for
Program Listing 3.1, Revision 1.

8-bit binary value: 10100101

Decimal value: 165

Calculate Voltage

Now that we know the decimal equivalent of the ADC0831’s binary output, we can do a few calculations to get
the measured voltage. To find out what voltage the decimal number corresponds to, we need to calculate
where in the voltage range the number falls. Here is an effective way to think about the problem.

♦ We know that the voltage is on a 0 to 5 Volt scale, and we know that the ADC0831’s output is on a
scale from 0 to 255.

♦ In other words, the measured voltage is to 5 as the A/D output is to 255.

This translates to fractions as:

We can re-arrange this equality to calculate the voltage:

255

OutputD/ADecimal
=

5

Voltage

255

Output)A/D(Decimal×5
Voltage=

Experiment #3: Basic Analog to Digital Conversion

Page 54 • Basic Analog and Digital Student Guide Version 1.0

So, now we know to multiply by 5 and divide by 255 for a 5 Volt scale with 256 levels. We can calculate the
voltage from Figure 3.6 where the ADC0831’s output is 10100101 = 165. The measured voltage is:

To calculate and display this voltage using the BASIC Stamp, we’ll add some code to both the CALC_VOLTS:
and DISPLAY: subroutines. First, the voltage equation needs to be expressed in PBASIC code. Here is an
example of some code that could reasonably be expected to work.

 v = 5*adcbits/255

This PBASIC calculation looks like it will give us the output we want, but it won’t. It’s instructive to try it this
way and see what happens. Modify the CALC_VOLTS: and DISPLAY: subroutines in Program Listing 3.1 as
follows:

CALC_VOLTS:
v = 5*adcbits/255 '
return

DISPLAY:
debug home, "8 bit binary value: ", bin8 adcbits
debug CR, CR, "Decimal value: ", dec3 adcbits
debug CR, CR, “DVM Reading: “, dec3 v, “ Volts” '
return

We calculated that 165 would lead to a measured voltage of 3.24 volts. The 003 volts shown in Figure 3.7 is
only accurate to the nearest volt! What happened?

 Figure 3.7: Debug Output for
Program Listing 3.1, Revision 2.

8-bit binary value: 10100101

Decimal value: 165

DVM Reading: 003 Volts

The PBASIC command set for the BASIC Stamp does arithmetic using integer values. Integers are the counting
numbers: …-2, -1, 0, 1, 2, 3, etc. The largest integer the BASIC Stamp can process is 65535. When using integer
arithmetic, the fractional part of any answer is discarded. Fortunately, we can still use integer arithmetic to
find the fractional values we are trying to display.

.places decimal two to roundedVolts3.24=
255

165×5
=Voltage

Experiment #3: Basic Analog to Digital Conversion

Basic Analog and Digital Student Guide Version 1.0 • Page 55

Before dividing, the A/D output is multiplied by 5. This doesn’t cause any problems.

Output)A/D(Decimal×5 is essentially the same as adcbits×5 .

In our voltage calculation example, that’s 825.1655 =× Since 825 is an integer that is less than 65535, this
part of the calculation goes without a hitch. The problem occurs when we try to divide 825 by 255. The answer
has a fractional component that never gets calculated with integer math.

Doing “long division” with a pencil and a piece of paper takes several steps, and it relies solely on integer
arithmetic. Let's look at how to calculate the answer for this division problem.

 60ofremaindera+3=
255

Output)A/D(Decimal×5
=Voltage

In long division, calculating the part of the answer to the right of the decimal point is repetitive. We multiply
the remainder by 10, then divide by 255 again, then take another remainder, multiply it by 10, and divide by
255 again, etc. A shortcut to this procedure is to take the remainder, and multiply it by 100, then divide by
255. This gives us two decimal places. Let's try it.

Remember: the BASIC Stamp cuts off everything to the right of the decimal point without rounding. This is
called truncating. The result we get is 23. This result should have been rounded up to 24 because 23.5294 is
more than half way to the next integer value, 24. For now, let's stick with 23 to the right of the decimal point.

Our answer using this algorithm is the integer 3 to the left of the decimal point,
and the integer value 23 to the right of the decimal point. Since we used only
integers in our arithmetic, it should work using PBASIC and the BASIC Stamp.

Since the BASIC Stamp works with integers, it's not surprising that there is a
PBASIC command to calculate the integer remainder of a division problem. The
operator for division is / and the operator for getting the remainder is //. Let's
try converting this algorithm into PBASIC code to do the work for us. The steps
for long division below show the PBASIC commands corresponding to the steps in
the algorithm.

2323.5924...2556000255100)(60
MathInteger
 →=÷=÷×

Algorithm:

A procedure for solving a
problem. The procedure is
broken down into
repeatable steps.

Experiment #3: Basic Analog to Digital Conversion

Page 56 • Basic Analog and Digital Student Guide Version 1.0

v=5*adcbits/255

Rv

adcbits5255

+
× R=(5*adcbits//255)

v2=(100*R)/255

2v
R100255 ×

This gives us our 3 PBASIC commands for calculating the values to the left and right of the decimal point. To
reconstruct the fractional value on the display, we’ll print a period "." in-between the two values.

The first of the three commands is already in our CALC_VOLTS: subroutine. Just add the other two
instructions to complete the algorithm.

CALC_VOLTS:
v=5*adcbits/255
R=5*adcbits//255 '
v2=100*R/255 '
return

The DISPLAY: subroutine also needs to be updated to print the two variable values with a period in between
them. Make sure to update the line in the display: subroutine exactly as shown below.

DISPLAY:
debug home, "8 bit binary value: ", bin8 adcbits
debug CR, CR, "Decimal value: ", dec3 adcbits
debug CR, CR, “DVM Reading: "
debug dec1 v, ".", dec2 v2, “ Volts” '
return

Now run the program again, and see what happens. Figure 3.8 shows an output sample, which is now almost
ready to display to the nearest hundredth of a Volt. All that needs to be corrected is a rounding error in the
hundredths decimal place.

 Figure 3.8: Debug Output for
Program Listing 3.1, Revision 3.

8-bit binary value: 10100101

Decimal value: 165

DVM Reading: 3.23 Volts

Experiment #3: Basic Analog to Digital Conversion

Basic Analog and Digital Student Guide Version 1.0 • Page 57

All that remains to be done is to correct the rounding error in the hundredth’s place. This rounding problem
can be corrected by adding the segment of code shown below to the CALC_VOLTS: subroutine.

CALC_VOLTS:
v=5*adcbits/255
R=5*adcbits//255
v2=100*R/255
v3=100*R//255 '� new line
v3=10*v3/255 '
if v3<5 then skip_a_line '
v2=v2+1 '
skip_a_line: '
if v2<100 then skip_out '
v=v+1 '
v2=0 '
skip_out: '
return

The Output

The output sample from Figure 3.9 indicates that the DVM is now calculating to the hundredth’s decimal place
correctly.

 Figure 3.9: Debug Output for
Program Listing 3.1, Revision 4.

8-bit binary value: 10100101

Decimal value: 165

DVM Reading: 3.24 Volts

IMPORTANT: As soon as you're sure your program works right, save it as P3_1R4.bs2. We will add to both the
code and circuit in the next experiment.

Experiment #3: Basic Analog to Digital Conversion

Page 58 • Basic Analog and Digital Student Guide Version 1.0

About the Code

To round off to the nearest hundredth, we need to know the digit in the thousandth’s place. Using the rules of
long division, we can simply set a new variable, v3 equal to the remainder from the calculation for v2, and
divide by 255 again.

v3=100*R//255
v3=10*v3/255

Instead of using another variable, v3 is simply redefined in the second line. The value of v3 to the right of the
equals sign is the one calculated in the first line. The value of v3 to the left of the equals sign is the redefined
value, which is ten times the old v3, divided by 255.

This process could be repeated over and over again to get the digit in the ten-thousandth’s place, the
hundred-thousandth’s place, and so on.

Once the digit in the thousandth’s place is known, the rules for rounding apply as follows:

• If the digit in the thousandth’s decimal place is less than 5, skip adding 1 to the hundredth’s
decimal place.

• Otherwise, add 1 to the hundredth’s decimal place.
• In either case, truncate everything after the hundredth’s place.

Since the value v2 is already truncated, we just need code for deciding whether or not to add 1 to the
hundredth’s place. It turns out to be a decision on whether or not to add 1 to v2 as shown below.

if v3<5 then skip_a_line
v2=v2+1
skip_a_line:

Since the value in the ones place is stored in a different value, we need to check and see if adding one to the
hundredth’s place increments that value. Without this code, 3.996 would round to 3.00 instead of 4.00.

if v2<100 then skip_out
v=v+1
v2=0
skip_out:

Experiment #3: Basic Analog to Digital Conversion

Basic Analog and Digital Student Guide Version 1.0 • Page 59

Save this code, and if possible, leave the circuit as it is because we can use this DVM to take measurements on
the circuit we build in Experiment #4.

Resolution

The BASIC Stamp is now programmed to accurately calculate the voltage associated with the ADC0831's
binary output, and the calculation is accurate to the hundredth’s decimal place. Although sources of
calculation error have been been eliminated, there is another source of error that caused by the resolution
limitation of the A/D converter.

The A/D converter chip we are using is capable of 256 binary values. This means that each measured voltage
gets rounded to one of 256 discrete values. The step size is the amount of the voltage range covered between
each of these discrete values. Since the first value is zero, there are 255 voltage steps. The step size is given
by :

With this in mind, each time you adjust the pot, the converter comes close to approximating the analog value,
but it's not exact because of the resolution constraints. So, there is still some uncertainty at the hundredth’s
decimal place. In some applications, the uncertainty is stated along with the measurement. Assuming the
ADC0831 rounds at the half way point, we can use this convention to read the voltage from Output Sample 1.5
as: "3.24 volts plus or minus 0.01 volts."

Higher resolution converters are available, such as 12 and 16 bit (and higher), but because of their higher
resolutions, they come with a higher cost as well. The improvement in resolution is significant. As mentioned
before, a 12-bit converter will give you a resolution of 4095 steps. This results in 5 volts / 4095 steps, or one
step for every 0.0012 volts. A 12-bit converter typically costs more money than an 8-bit converter. There is
also a cost in terms of the amount of memory the measurement takes, (12 as opposed to 8-bits) and the
amount of processing it takes to get each measurement (13 clock pulses instead of 9).

Volts/step0.02Volts/step0.0196
steps255

Volts5
SizeStep ≅==

Experiment #3: Basic Analog to Digital Conversion

Page 60 • Basic Analog and Digital Student Guide Version 1.0

Calibration

What if the power supply on the Board of Education only supplies 4.963 volts instead of 5.000 volts? The BASIC
Stamp voltmeter can be calibrated using a second voltmeter known to be highly accurate. The difference
between Vdd and Vss can be measured using the accurate voltmeter. Developing the code to correct for this
error requires more representation of fractional values using integer math and is best left as a challenge
problem.

Another item to consider if you're shooting for a high degree of precision is that different current draws on
the power supply can also cause variations in power supply output voltage. This is an experiment unto itself
that would also require additional equipment. As you probably guess, designing for a high degree of precision
involves a number of design challenges. For the remaining experiments, the present degree of accuracy of our
DVM is sufficient.

Experiment #3: Basic Analog to Digital Conversion

Basic Analog and Digital Student Guide Version 1.0 • Page 61

On the lines below, insert the appropriate words from the list on the left.

binary

resolution

analog

serial

input

8-bit

Using the A/D converter makes it possible to process __________ information with the
BASIC Stamp, a digital (__________) device. The converter used in this experiment is
the ADC0831 integrated circuit, an 8-bit, __________ A/D converter.

For a given analog __________ , the A/D converter outputs an __________ binary
number. The BASIC Stamp can be used to control and collect data from the A/D
converter. Various programming techniques can be used to read, remember, and display
this data.

The digital representation of the converted analog signal is very good, but not perfect
due to inherent __________ limitations of the A/D converter. A second source of error
for the Stamp DC DVM can result from the fact that the power supply on the Board of
Eductaion does not necessarily supply exactly 5 volts.

What
have I
learned?

Experiment #3: Basic Analog to Digital Conversion

Page 62 • Basic Analog and Digital Student Guide Version 1.0

1. In your own words, explain the function of an A/D converter.

2. What would be the resolution if you were to use a 16-bit A/D converter in this experiment?

3. How does the voltage divider equation relate to the wiper terminal of the pot? What would you expect

the output to be if the resistors are equal? Can you prove this?

4. How do the measurements taken at the wiper terminal of the pot in this experiment differ from those

taken in Experiment #1? What is gained by using the ADC0831 for measurements instead of just using a
BASIC Stamp I/O pin to check the voltage?

5. Given the resolution of our 8 bit A/D converter, when the voltage on the pot is set to 3.6 volts, what

decimal value will be displayed? What’s the binary value?

1. Use another jumper wire to connect the wiper terminal of the pot to an unused BASIC Stamp I/O pin.
Add a subroutine to the DVM program that monitors the state of the I/O pin set to input. Determine if
the threshold voltage you were working with in Experiment #1 is indeed 1.4 volts.

2. Write a program that will monitor the analog value of the 100 kΩ potentiometer, and alert you to the

fact that it has gone beyond a certain pre-set limit.

3. Write a program and build a circuit that creates a “safety zone” between 1.0 volts and 2.0 volts. If the

analog voltage goes outside of these boundaries, an LED blinks.

Questions

Challenge!

Experiment #3: Basic Analog to Digital Conversion

Basic Analog and Digital Student Guide Version 1.0 • Page 63

4. Draw the complete schematic for Challenge #3, and modify the program so that the LED is only on when
the voltage (as set on the pot) is set on exactly 2.0 volts.

5. Assume the power supply on your board of education supplies 4.960 volts. Develop a subroutine to adjust

the voltage measurements to this scale.

There is a wide variety of electronic applications where analog signals are
measured and digital devices are used to process the analog signal data. In
this experiment, we used a BASIC Stamp and A/D converter combination to
construct a digital DC voltmeter. We'll be using the BASIC Stamp DC-DVM in
several of the remaining experiments. There is a surprising variety of uses
for such a device as you will discover with each new experiment.

In developing the digital voltmeter, the process of sampling voltage,
converting it, and processing it in digital form was introduced. An example
of another use for an A/D interface is the digital sampling of the analog
signal from a microphone for digital recording purposes. Another example
that could make use of the circuit we built is a door sensor. Our
potentiometer could be attached to a door hinge, and the analog

information could be used to monitor how far the door is open. This circuit could in turn be incorporated into
a larger system that controls how far open the door swings.

The field of analog to digital conversion is an industry in itself. There are semi-conductor manufacturing
companies that specialize solely in creating A/D conversion chips and systems. Whether you’d like to design at
the component level, or at the integrated circuit level, there will always be a need for creative analog
interfacing – simply because the world isn’t black and white (binary), it’s all the colors in-between as well
(analog).

Why did I
learn it?

How can I
apply
this?

Experiment #3: Basic Analog to Digital Conversion

Page 64 • Basic Analog and Digital Student Guide Version 1.0

