Sensors & Actuators
In
Mechatronics

Dr. Kevin Craig
Associate Professor of Mechanical Engineering
Department of Mechanical, Aerospace, and Nuclear Engineering
Rensselaer Polytechnic Institute
Troy, NY 12180
Office: JEC 3018 Phone: 518-276-6626
E-Mail: craigk@rpi.edu Fax: 518-276-4860
Mechatronics Laboratory: JEC 1022 Phone: 518-276-8978
What is Mechatronics?

Mechatronics is the *synergistic* combination of mechanical engineering, electronics, controls engineering, and computers, all *integrated* through the design process.
The Design Challenge

The cost-effective incorporation of electronics, computers, and control elements in mechanical systems requires a new approach to design.

The modern engineer must draw on the synergy of Mechatronics.
Difficulties in Mechatronic Design

- Requires **System Perspective**
- **System Interactions** Are Important
- Requires **System Modeling**
- Control **Systems Go Unstable**
Balance: The Key To Success

The Mechatronic Design Process

Modeling, Analysis, & Control Design

Experimental Validation & Hardware Implementation

Computer Simulation Without Experimental Verification Is At Best Questionable, And At Worst Useless!

Sensors & Actuators in Mechatronics
Course Introduction

K. Craig
5
Dynamic System Investigation

Physical System

Experimental Analysis

Mathematical Model

Physical Model

Comparison

Mathematical Analysis

Design Changes

Sensors & Actuators in Mechatronics
Course Introduction

K. Craig
6
Realm of Mechatronics

- High Speed
- High Precision
- High Efficiency
- Highly Robust
- Micro-Miniature
Mechatronic Design Concepts

- Direct Drive Mechanisms
- Simple Mechanics
- System Complexity
- Accuracy and Speed from Controls
- Efficiency and Reliability from Electronics
- Functionality from Microcomputers

Think System!
Mechatronic Areas of Study

- Mechatronic system design principles
- Modeling, analysis, and control of dynamic physical systems
- Selection and interfacing of sensors, actuators, and microcontrollers
- Analog and digital control electronics
- Real-time programming for control
- Advanced topics, e.g.,
 - fuzzy logic control
 - smart materials as sensors and actuators
 - magnetic bearings
Challenge To Industry

- Control Design and Implementation is still the domain of the specialist.
- Controls and Electronics are still viewed as afterthought add-ons.
- Electronics and Computers are considered costly additions to mechanical designs.
- Few engineers perform any kind of modeling.
- Mathematics is a subject not viewed as enhancing one’s engineering skills but as an obstacle to avoid.
- Few engineers can balance the modeling\analysis and hardware implementation essential for Mechatronics.
Course Topics

- Fundamentals of Electromechanical Motion Devices (2 periods)
- Direct-Current Motors (1 period)
- Stepper Motors (1 period)
- Brushless DC Motors (1 period)
- Fundamentals of Fluid Power: Modeling, Analysis, and Control (1 period)
- Hydraulic Actuators (1 period)
- Pneumatic Actuators (1 period)
- Sensors & Measurement Systems (1 period)
- Analog & Digital Motion Sensors (3 periods)
- Motion Control Systems (1 period)
Course Objectives

• Understand the fundamental concepts of electromechanics and fluid mechanics (hydraulics and pneumatics).
• Apply these fundamental concepts to the modeling, analysis, and control of brushed dc motors, stepper motors, brushless dc motors, solenoids, and hydraulic and pneumatic actuators.
• Understand the key elements of a measurement system.
• Understand the basic performance specifications of analog and digital sensors and actuators.
• Become familiar with the operating principles and physical/mathematical models of a variety of analog and digital motion sensors.
• Understand the key issues in hardware implementation of analog and digital actuators and sensors.
• Become proficient in the use of MatLab/Simulink to model and analyze actuators and sensors for use in mechatronic systems.
• Understand what comprises a mechatronic motion control system and the key elements in its design.
Assessment

• **Homework Assignments**
 – 10 assignments will be given during the course.
 – Students will have 2 weeks to complete each assignment.
 – They are to be *individually* and *professionally* done and handed in. Collaborative discussion (Not Copying!) on homework assignments is permitted and encouraged.
 – MatLab / Simulink (and some Toolboxes) will be used in the solution of some of these assignments.
 – The assignments will be graded and will count 75% (10 @ 7.5% each) of the final grade.
Regarding late assignments, all reasonable excuses will be accepted provided they are discussed with the instructor prior to the due date for the assignment.

• **Final Examination**
 – There will be a closed-book, closed-note, final exam covering the entire course. It is worth 25% of the final grade. It will focus on the fundamental concepts studied in the course.

• **Grade Summary**
 – Homework Assignments (10 @ 7.5%) 75%
 – Final Exam 25%