Mechanical System Elements

* Three basic mechanical elements:

— Spring (elastic) element

— Damper (frictional) element

— Mass (inertia) element
 Trandational and rotational versions

e These are passive (nhon-energy producing)
devices
* Driving Inputs
— force and motion sources which cause elements
to respond
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* Each of the elements has one of two
possible energy behaviors:
— stores all the energy supplied to it

— dissipates all energy into heat by some kind of
“frictional” effect

* Spring stores energy as potential energy
» Mass stores energy as kinetic energy
e Damper dissipates energy into heat
e Dynamic response of each element is
Important
— step response
— frequency response
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Spring Element

* Real-world design situations

* Real-world spring is neither pure nor ideal

» Real-world spring has inertia and friction

* Pure spring hasonly elasticity - it isa
mathematical model, not areal device

e Some dynamic operation requires that spring
Inertia and/or damping not be neglected

 |deal spring: linear
* Nonlinear behavior may often be preferable and
give significant performance advantages
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Device can be pure without being ideal (e.g.,
nonlinear spring with no inertia or damping)

Device can be ideal without being pure (e.g., device
which exhibits both linear springiness and linear
damping)

Pure and ideal spring element: f =Ko (X %) =KX
T=K(0-a,) =K
K< = spring stiffness (N/m or N-m/rad) x=Cd

1K . = C, = compliance (softness parameter) 9= %57

XK, L fy f c. X
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« Energy stored in a spring _Cf* _ KX’

ES
2 2

« Dynamic Response: Zero-Order Dynamic System
Model
— Step Response
— Frequency Response

« Real springs will not behave exactly like the
pure/ideal element. One of the best waysto
measure this deviation is through freguency
response.
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Spring Element
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Frequency Response
Of
Spring Elements

Amplitude = f, b, £ A ¢

i
. |
f =f,sin(wt) i |
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X = C foSIn( ) “1 :F .-f"u.mprl1tl.1+:|n::-I C,fy inch=A4
|
t
.
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Zero-Order Dynamic System Model
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More Realistic L umped-Parameter Model for a Spring
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Linearization T
for a
Nonlinear Spring ,,;;i
i
y:f(XO)+%x=x (x - xo)+jx_2‘;x_x (X-2>!<o) o 19
of A wfmm} <\f=fw+% (x-%)
P Yord (X %) . °
_ L s
h y-Yo»+—  (X-X,)
§ = KX h
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* Real Springs

— nonlinearity of the
force/deflection curve

— noncoincidence of the
loading and unloading
curves (The 2nd Law of
Thermodynamics
guarantees that the area
under the loading fvs. x
curve must be greater
than that under the
unloading fvs. x curve.
It isimpossible to recover
100% of the energy put
Into any system.)
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o Severa Typesof Practical
Springs.
— coil spring
— hydraulic (oil) spring
— cantilever beam spring
— pneumatic (air) spring
— clamped-end beam spring
— ring spring
— rubber spring (shock mount)
— tension rod spring
— torsion bar spring
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o Spring-like Effectsin
Unfamiliar Forms
— aerodynamic spring
— gravity spring (pendulum)

— gravity spring (liquid
column)

— buoyancy spring

— magnetic spring

— €lectrostatic spring
— centrifugal spring
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Damper Element

A pure damper dissipates all the energy
supplied to It, I.e., converts the mechanical
energy to thermal energy.

 Various physical mechanisms, usually
associated with some form of friction, can
provide this dissipative action, e.g.,
— Coulomb (dry friction) damping
— Material (solid) damping
— Viscous damping
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* Pure/ ideal damper element provides
viscous friction.

* All mechanical elements are defined In
terms of their force/motion relation.
(Electrical elements are defined in terms of
their voltage/current relations.)

* Pure/ |dea Damper

— Damper force or torque is directly proportional
to the relative velocity of itstwo ends.

aedx _dx, o dx aedq1 dg, 6_ dq
f = =B— T=
8 dt dt g ot Sdt dt 5 S
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— Forces or torgues on the two ends of the
damper are exactly equal and opposite at all
times (just like a spring); pure springs and
dampers have no mass or inertia. ThisisNOT
true for real springs and dampers.

— Unitsfor B to preserve physical meaning:
* N/(m/sec)
e (N-m)/(rad/sec)

— Transfer Function

Differentia t t2

Operator X 5 - X 5 x. .
Notation o - ot §=(gdx)dtbblt
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e Operationa Transfer Functions

f = BDx . X
T =BDqg iDé_
. X(o)

- f—(D)é BD

 We assume theinitia conditions are zero.

— Damper element dissipates into heat all
mechanical energy supplied to it.

Power = (force)(velocity ) =f

¢ BXO_ o alX &
&dt o gdtz

 Force applied to damper causes avelocity in same

direction.
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* Power input to the device is positive since the force
and velocity have the same sign.

* [tisimpossible for the applied force and resulting
velocity to have opposite signs.

e Thus, adamper can never supply power to another
device; Power is aways positive.

A spring absorbs power and stores energy as aforce
Is applied to it, but if the force is gradually relaxed
back to zero, the external force and the velocity now
have opposite signs, showing that the spring is
delivering power.

* Total Energy Dissipated

&Pt = d%?'f 6 gt - d38—t_dx &ff Jox
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Damper Element

Step Input Force
causes instantly a
Step of dx/dt
and a
Ramp of X
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 Sinusoidal Transfer Function

‘ Db iw ‘ iw) ———ME)f

— M isthe amplitude ratio of output over input

— ] Isthe phase shift of the output sine wave with
respect to the input sine wave (positive if the
output leads the input, negative if the output lags
the Input)

X (iw)=—— =MDf =—p- 90
f IwB Bw
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e Real Dampers

— A damper element is used to model a device
designed into a system (e.g., automotive shock
absorbers) or for unavoidable parasitic effects
(e.g., ar drag).

— To be an energy-dissipating effect, a device
must exert aforce opposite to the velocity;

power Is always negative when the force and
velocity have opposite directions.

— Let’s consider examples of real intentional
dampers.
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Viscous (Piston/Cylinder) Damper | “¥""

Piston
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creating a damping force.
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Simple Shear Damper
And
Viscosity Definition

:2Amv
t
_F_2Am

V t

B

m= fluid viscosity
» Shearing stress _ F/A

F. ¥

~ velocity gradient  V /t
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Examples
of
Rotary Dampers
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! (Data taken with valve shut)
. . o]
Commercial Air Damper
F V
: Ib, inch/sec
7 | PyrexGlass 0.0130 | 0.0104
' :’5 Cylinder 0.0632 | 0.0526
laminar flow — T B Graphite e by
. . ﬁ'.E:E :E:Ei Piston D 1{)46 u 1755
linear damping EE 0.2560 | 0.2170
% Z
Z g turbulent flow
] . .
; 7 /1onl inear damping
. i : Needle Valve
Alr Darnper Damping Adjustment

e much lower viscosity
o |ess temperature dependent
 NO leakage or sealing problem
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e Motion of the conducting cup
In the magnetic field generates
avoltage in the cup.

A current is generated in the
cup’ s circular path.

e A current-carrying conductor
In amagnetic field experiences
aforce proportional to the
current.

e Theresult isaforce
proportional to and opposing
the velocity.

 The dissipated energy shows
up as I°R heating of the cup.
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Temperature Sensitivity
Of
Damping Methods

on Damping
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Temperature Effect
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Other Examples
of
Damper Forms
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* The damper element can also be used to
represent unavoidable parasitic energy
dissipation effects in mechanical systems.

— Frictional effectsin moving parts of machines
— Fluid drag on vehicles (cars, ships, aircraft, etc.)
— Windage losses of rotors in machines

— Hysteresis losses associated with cyclic stresses in
materials

— Structural damping due to riveted joints, welds,
etc.

— Air damping of vibrating structural shapes
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Friction | -

Hydraulic Motor Friction
and its Components

Mechatronics
Physical Modeling - Mechanical

i -~
Torque | A
Linearnized — —
Torque/Speed — = | ~Operating
Characteristic E I Point
i Speed
Hydraulic Motor
Total Friction
{a)
Friction } _Starting Friction
Torque ("Stiction™)
Dry (Coulomb)
Friction Running
Friction
apeed
-\
b}
Friction 4
Torque
Linear
Fluid Friction
Speed
(<l
Friction
Torque
Monlinear
Fluid Friction
Speed
(d}

K. Craig

31



|nertia Element

* A designer rarely inserts a component for
the purpose of adding inertia; the mass or
Inertia element often represents an
undesirable effect which is unavoidable
since all materials have mass.

e There are some applications in which mass
Itself serves a useful function, e.g.,
accelerometers and flywheels.
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Accelerometer

Useful Applications
of
Inertia

Flywheels are used as
energy-storage devices or as
ameans of smoothing out
speed fluctuations in engines
or other machines
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— Newton’'s Law defines the behavior of mass
elements and refers basically to an idealized

“point mass’:
g a forces = (mass)(acceleration)

— The concept of rigid body is introduced to deal
with practical situations. For pure translatory
motion, every point in arigid body has
Identical motion.

— Real physical bodies never display ideal rigid
behavior when being accelerated.

— The pure/ ideal inertia element is a model, not
areal object.
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“Point™ Mass M

- ; - X

f—

Rigid and Flexible
Bodies:
Definitions and Behavior
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— Newton’s Law In rotational form for bodies
undergoing pure rotational motion about asingle
fixed axis:

a torques = (moment of inertia) (angular acceleration)

— The concept of moment of inertia.J also considers
the rotating body to be perfectly rigid.

— Note that to completely describe the inertial
properties of any rigid body requires the
specification of:

* Itstotal mass
* Location of the center of mass
« 3 moments of inertiaand 3 products of inertia

Mechatronics K. Craig
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Homogeneous Body
of Density p

Rotational Inertia -
J (kg_mz) Velocity w

Angular
Acceleration o

o mme

Tangential
Acceleration ro
/ Normal

Acceleration rw?
{Has No Lever Arm
about Axis of
Rotation)

Mechatronics K. Craig
Physical Modeling - Mechanical 37



Moments of Inertia
For
Some Common Shapes
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— How do we determine J for complex shapes
with possibly different materials involved?

 Inthe design stage, where the actual part exists only
on paper, estimate as well as possible!

* Once apart has been constructed, use experimental
methods for measuring inertial properties. How?
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Experimental M easurement
Of
Moment of Inertia

d“q

dt?

a (torques) =Ja =J

g o
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+—=0=0 4,
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A K " 'fi—Hz

w. =,.— radlsec
J
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R e el
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2p

Mechatronics K. Craig
Physical Modeling - Mechanical 40



— Actually the oscillation will gradually die out
due to the bearing friction not being zero.

— If bearing friction were pure Coulomb friction,
It can be shown that the decay envelope of the
oscillationsis a straight line and that friction
has no effect on the frequency.

— If the friction is purely viscous, then the decay
envelope Is an exponential curve, and the
frequency of oscillation does depend on the
friction but the dependence is usually negligible
for the low values of friction in typical
apparatus.
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|nertia Element

Real inertias may be
Impure (have some
springiness and friction)
but are very closeto
Ideal.

(D)=—

X 1
—(D) =
() JD?

q
f MD* T
|nertia Element stores
energy as kinetic energy:
Mv? Iw?
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2 2
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— A step input force applied to amassinitially at
rest causes an instantaneous jump in
acceleration, aramp change in velocity, and a
parabolic change in position.

— The frequency response of the inertia element
IS obtained from the sinusoidal transfer
function:

X 1 1

X (iw) = -1 5180
 (iw) M (W) MW

« At high frequency, the inertia el ement becomes very

difficult to move

* The phase angle shows that the displacement isin a
direction opposite to the applied force
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Useful Frequency Range
for
Rigid Model
of a
Real Flexible Body

A real flexible body
approaches the
behavior of arigid body
If the forcing frequency
Issmall compared to
the body’ s natural
frequency.
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%o (iw)=1.05=—*
X an, . O
1- G

n 0 96200 cycles/min

B ~0.308 |E for a6-1nch
Wi, =0.218, == \ﬁ — o
— W, 1S the highest frequency for which the real
body behaves aimost like an ideal rigid body.

* Freguency response is unmatched as a
technique for defining the useful range of
application for all kinds of dynamic

systems.
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Motion Transformers

« Mechanical systems often include mechanisms
such as levers, gears, linkages, cams, chains, and
belts.

e They all serve a common basic function, the
transformation of the motion of an input member
Into the kinematically-related motion of an output
member.

* The actual system may be simplified in many
cases to afictitious but dynamically equivalent
one.
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* Thisisaccomplished by “referring” all the
elements (masses, springs, dampers) and driving
Inputs to asingle location, which could be the
Input, the output, or some selected interior point of
the system.

A single equation can then be written for this
equivalent system, rather than having to write
several equations for the actual system.

e This processis not necessary, but often speeds the
work and reduces errors.
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Motion Transformers
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Trandlational Equivalent
for
A Complex System ;

I—l’x'lT I_f:'xz
M, I%é)ﬂ +/T:-(ﬂ M,

Refer all dements and K’é igl | x,é Elg 5,
Inputs to the X, location 3 i R 3

and define afictitious s

equivalent system

whose motion will be small Motions S LhrpT

t_he same as X, but will (H%ﬁ) m X1, X5, Q

Include all the effects g s are

in the original system. é [\i ‘ kinematically related

Equivalent System Referred to x,

(b)
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— Define asingle equivalent spring element
which will have the same effect as the three
actual springs.

— Mentally apply astatic force f, at location x,
and write a torgue balance equation:

e 0 X, K
fily = (Kgxy) Ly + o2 XK +L, + ===
eLl 7] L1
flszexl
L€ @0 1 U
Kse:éKsl +9—2+ K 2+—2K U
g ¢élig L1 7§
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— The equivalent spring constant K, refersto a
fictitious spring which, if installed at location
X, would have exactly the same effect as all the
springs together in the actual system.

— To find the equivalent damper, mentally
remove the inertias and springs and again apply
aforcef, at x;:  fL,=(x,B,)L,+(x,B,)L,+Bq

: X
=x,B,L, +—=x,B,+—*B

L L

1 1
fl = Be).(l
7 2 N
€ & ,0 1 .Y
B, = 6B, +c.—2%+ B, +=BU
é g 19 L g
Mechatronics K. Craig
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— Finally, consider only the inertias present.
fiL, » (M1L21)_1+ (M 2|—22)L_1+ (‘])_1

Ll 1 Ll
f, » M X,
' 2
u
M, eM +2EL M, +iJu
@ el—lﬂ 1 [:]

— While the definitions of equivalent spring and
damping constants are approximate due to the
assumption of small motions, the equivalent
mass has an additional assumption which may
be |less accurate; we have treated the masses as
point masses, i.e., J= ML>2,
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— To refer the driving inputs to the x, location we
note that atorque T Is equivalent to aforce
T/L, at the x, location, and aforcef, Is
equivalent to aforce (L ,/L )f.

— If we set up the differential equation of motion
for this system and solve for its unknown Xy,
we are guaranteed that this solution will be
Identical to that for x, in the actual system.

— Once we have x,, we can get X, and/or q
Immediately since they are related to x, by
simple proportions.
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— Rulesfor calculating the equivalent el ements
without deriving them from scratch:

* When referring atrandlational element (spring,
damper, mass) from location A to location B, where
A’smotionisN times B’s, multiply the element’s
value by N2. Thisisalso true for rotational
elements coupled by motion transformers such as
gears, belts, and chains.

* When referring arotational element to a
trandlational location, multiply the rotational
element by 1/R?, where the relation between
tranglation x and rotation g (in radians) isx = R q.
For the reverse procedure (referring atrandlational
element to arotational location) multiply the
trandational e ement by R2.
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 When referring aforce at A to get an equivalent
force at B, multiply by N (holds for torques).

Multiply atorqueat g by 1/Rtoreferittox asa
force. A forceat x ismultiplied by Rto refer it asa

torque to Q.
— These rules apply to any mechanism, no matter
what its form, as long as the motions at the two
locations are linearly related.
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Mechanical |mpedance

* When trying to predict the behavior of an
assemblage of subsystems from their calculated or
measured individual behavior, Impedance methods
have advantages.

e Mechanical impedance is defined as the transfer
function (either operational or sinusoidal) in
which force is the numerator and velocity the
denominator. The inverse of impedance is called
mobility.

Mechatronics K. Craig
Physical Modeling - Mechanical 57




Mechanical Impedance for the Basic Elements

4 14 4
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* Measurement of impedances of subsystems can be
used to analytically predict the behavior of the
compl ete system formed when the subsystems are
connected. We can thus discover and correct
potential design problems before the subsystems
are actually connected.

« |mpedance methods also provide “shortcut”
analysis techniques.

— When two elements carry the same force they are said
to be connected in parallel and their combined
Impedance is the product of the individual impedances
over thelr sum.
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— For impedances which have the same velocity, we say

they are connected in series and their combined

Impedance is the sum of the individual ones.
— Consider the following systems:

[l S S

/S S S

[ S

A

f,v

Series Connection

]

) ; Tx1,v1

A

f,v

Parallel Connection
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— Parallel Connection

K
f(o)= 2= KB
Vv 5+B BD + K

D

— Series Connection
+

f—(D):B+5:BD K
V D D
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Force and Motion Sources

* The ultimate driving agency of any mechanical
system is always aforce not a motion; force causes
acceleration, acceleration does not cause force.

« Motion does not occur without a force occurring
firdt.

e At theinput of asystem, what is known, force or
motion? If motion is known, then this motion was
caused by some (perhaps unknown) force and
postulating a problem with a motion input is
acceptable.
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There are only two classes of forces:

— Forces associated with physical contact between two
bodies

— Action-at-a-distance forces, I.e., gravitational, magnetic,
and electrostatic forces.

There are no other kinds of forces! (Inertiaforceisa
fictitiousforce.)

The choice of an input form to be applied to a system
requires careful consideration, just asthe choice of a
suitable model to represent a component or system.

Here are some examples of force and motion
SOUrces.
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A Mechanica Vibration
Shaker:
Rotating Unbalance %
asa
Force | nput
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Mechanical System
To Be
Force Driven
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Mechanical System
To Be
Force Driven

Force Source X <<R Q 1 [ = K,(R sin wt = x) = KR sin wt
Constructed from a
Motion Source § Ks
and a I_ x =R sin wt

Soft Spring % %

Constant Speed Drive
of Angular Velocity w

Mechatronics K. Craig
Physical Modeling - Mechanical 67



* Energy Considerations

— A system can be caused to respond only by the source
supplying some energy to it; an interchange of energy
must occur between source and system.

— |f we postulate a force source, there will be an
associated motion occurring at the force input point.

— The instantaneous power being transmitted through this
energy port is the product of instantaneous force and
velocity.

— If the force applied by the source and the velocity
caused by it are in the same direction, power is supplied
by the source to the system. If force and velocity are
opposed, the system is returning power to the source.
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— The concept of mechanical impedance is of some help
here.

— Thetransfer function relating force and velocity at the
Input port of asystem is called the driving-point

impedance Z . Z. (D) :f—(D)
p
Vv

2y (i) = (i)

— We can write an expression for power:

2
p=fy=f_ =
Z, Z

P dp
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— |f we apply aforce source to a system with a high value
of driving-point impedance, not much power will be
taken from the source, since the force produces only a
small velocity. The extreme case of this would the
application of aforceto aperfectly rigid wall (driving-
point Impedance isinfinite, since no motion is
produced no matter how large aforceis applied). In
this case the source would not supply any energy.

— The higher the driving-point impedance, the more areal
force source behaves like an ideal force source.

— The lower the driving-point impedance, the more areal
motion source behaves like an ideal motion source.
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— Real sources may be described accurately as
combinations of ideal sources and an output impedance
characteristic of the physical device.

— A complete description of the situation thus requires
knowledge of two impedances:

* The output impedance of the real source
 The driving-point impedance of the driven system
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