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Parasitic Effects
• Parasitic effects are present in all real-world 

systems and are troublesome to account for when 
the systems are designed.  They are rarely 
disabling, but are debilitating if not dealt with 
effectively.

• These effects include:
– Coulomb Friction
– Time Delay
– Unmodeled Resonances 
– Saturation
– Backlash
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• Questions:
– Are they significant?
– What to do about them?

• Approaches:
– Ignore them and hope for the best! Murphy’s Law says 

ignore them at your own peril.
– Include the parasitic effects that you think may be 

troublesome in the truth model of the plant and run 
simulations to determine if they are negligible.

– If they are not negligible and can adversely affect your 
system, you need to do something – but what?
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• General remedies include:
– Alter the design to reduce the effective loop gain of the 

controller, especially at high frequencies where the 
effects of parasitics are often predominant.  This 
generally entails sacrifice in performance.

– Techniques specifically intended to enhance robustness 
of the design are also likely to be effective, but may 
entail use of a more complicated control algorithm.
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Coulomb Friction: Modeling and Simulation

• In most control systems, Coulomb friction is a nuisance.
• Coulomb friction is difficult to model and troublesome to 

deal with in control system design.
• It is a nonlinear phenomenon in which a force is produced 

that tends to oppose the motion of bodies in contact in a 
mechanical system.

• Undesirable effects: “hangoff” and limit cycling
• Hangoff (or d-c limit cycle) prevents the steady-state error 

from becoming zero with a step command input.
• Limit Cycling is behavior in which the steady-state error 

oscillates or hunts about zero.
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• What Should the Control Engineer Do?
– Minimize friction as much as possible in the design
– Appraise the effect of friction in a proposed control 

system design by simulation
– If simulation predicts that the effect of friction is 

unacceptable, you must do something about it!
– Remedies can include simply modifying the design 

parameters (gains), using integral control action, or 
using more complex measures such as estimating the 
friction and canceling its effect.

– Modeling and simulation of friction should contribute 
significantly to improving the performance of motion 
control systems.
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Modeling Coulomb Friction

V

Ff

Fslip
Fstick

"Stiction" Coulomb
Friction Model
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Case Study to Evaluate Friction Models

m
k

Ff

V0 V

m = 0.1 kg
k = 100 N/m
Fstick = 0.25 N
Fslip = 0.20 N (assumed independent of velocity)
V0 = step of 0.002 m/sec at t = 0 sec
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Friction Model in Simulink
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Simulink Block Diagram
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Example with Friction Model

Friction Example
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Model Simulation Results
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Time Delay:
Modeling, Simulation, and Compensation

• Time delays or dead-times (DT’s) between inputs and 
outputs are very common in industrial processes, 
engineering systems, economical, and biological systems.

• Transportation and measurement lags, analysis times, 
computation and communication lags all introduce DT’s 
into control loops.

• DT’s are also used to compensate for model reduction 
where high-order systems are represented by low-order 
models with delays.

• Two major consequences: 
– Complicates the analysis and design of feedback control systems
– Makes satisfactory control more difficult to achieve



Sensors & Actuators in  Mechatronics
Parasitic Effects

K. Craig 
16

Qi(s) Qo(s)
e s−τ

−ωτDT

0°

φ

10.

Amplitude
Ratio

Phase
Angle

Dead Time
Frequency
Response

qi(t) qo(t)
τDT



Sensors & Actuators in  Mechatronics
Parasitic Effects

K. Craig 
17

• Systems with Time Delay
– Any delay in measuring, in controller action, in actuator 

operation, in computer computation, and the like, is 
called transport delay or dead time, and it always 
reduces the stability of a system and limits the 
achievable response time of the system.
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• Dead-Time Approximations
– The simplest dead-time approximation can be obtained by taking 

the first two terms of the Taylor series expansion of the Laplace 
transfer function of a dead-time element, τdt.
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– The accuracy of this approximation depends on the dead 
time being sufficiently small relative to the rate of 
change of the slope of qi(t).  If qi(t) were a ramp 
(constant slope), the approximation would be perfect for 
any value of τdt.  When the slope of qi(t) varies rapidly, 
only small τdt's will give a good approximation.

– A frequency-response viewpoint gives a more general 
accuracy criterion; if the amplitude ratio and the phase of 
the approximation are sufficiently close to the exact 
frequency response curves of    for the range of 
frequencies present in qi(t), then the approximation is 
valid.  

dtse−τ
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– The Pade approximants provide a family of 
approximations of increasing accuracy (and 
complexity):

– In some cases, a very crude approximation given by a 
first-order lag is acceptable:
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• Pade Approximation:
– Transfer function is all pass, i.e., the magnitude of the 

transfer function is 1 for all frequencies.
– Transfer function is non-minimum phase, i.e., it has 

zeros in the right-half plane.
– As the order of the approximation is increased, it 

approximates the low-frequency phase characteristic 
with increasing accuracy.

• Another approximation with the same properties:
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• Observations:
– Instability in feedback control systems results from an 

imbalance between system dynamic lags and the 
strength of the corrective action.

– When DT’s are present in the control loop, controller 
gains have to be reduced to maintain stability. 

– The larger the DT is relative to the time scale of the 
dynamics of the process, the larger the reduction 
required.

– The result is poor performance and sluggish responses.
– Unbounded negative phase angle aggravates stability 

problems in feedback systems with DT’s.
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– The time delay increases the phase shift proportional to 
frequency, with the proportionality constant being 
equal to the time delay.

– The amplitude characteristic of the Bode plot is 
unaffected by a time delay.

– Time delay always decreases the phase margin of a 
system.

– Gain crossover frequency is unaffected by a time delay.
– Frequency-response methods treat dead times exactly.
– Differential equation methods require an approximation 

for the dead time.
– To avoid compromising performance of the closed-loop 

system, one must account for the time delay explicitly, 
e.g., Smith Predictor.
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• D(s) is a suitable compensator for a plant whose transfer 
function, in the absence of time delay, is G(s).

• With the compensator that uses the Smith Predictor, the 
closed-loop transfer function, except for the factor e-τs, is 
the same as the transfer function of the closed-loop system 
for the plant without the time delay and with the 
compensator D(s).

• The time response of the closed-loop system with a 
compensator that uses a Smith Predictor will thus have the 
same shape as the response of the closed-loop system 
without the time delay compensated by D(s); the only 
difference is that the output will be delayed by τ seconds.
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• Implementation Issues
– You must know the plant transfer function and the time 

delay with reasonable accuracy.
– You need a method of realizing the pure time delay that 

appears in the feedback loop, e.g., Pade approximation:
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Basic Feedback Control System with Lead Compensator
BUT with Time Delay τ = 0.05 sec
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• Comments
– The system with the Smith Predictor tracks reference 

variations with a time delay.
– The Smith Predictor minimizes the effect of the DT on 

stability as model mismatching is bound to exist.  This 
however still allows tighter control to be used. 

– What is the effect of a disturbance? If the disturbances 
are measurable, the regulation capabilities of the Smith 
Predictor can be improved by the addition of a 
feedforward controller.
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• Minimum-Phase and Nonminimum-Phase Systems
– Transfer functions having neither poles nor zeros in the 

RHP are minimum-phase transfer functions.
– Transfer functions having either poles or zeros in the 

RHP are nonminimum-phase transfer functions.
– For systems with the same magnitude characteristic, the 

range in phase angle of the minimum-phase transfer 
function is minimum among all such systems, while the 
range in phase angle of any nonminimum-phase transfer 
function is greater than this minimum.

– For a minimum-phase system, the transfer function can 
be uniquely determined from the magnitude curve 
alone.  For a nonminimum-phase system, this is not the 
case.
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– These two systems have the same magnitude 
characteristics, but they have different phase-angle 
characteristics.

– The two systems differ from each other by the factor:

– This factor has a magnitude of unity and a phase angle 
that varies from 0° to -180° as ω is increased from 0 to ∞.

– For the stable minimum-phase system, the magnitude and 
phase-angle characteristics are uniquely related.  This 
means that if the magnitude curve is specified over the 
entire frequency range from zero to infinity, then the 
phase-angle curve is uniquely determined, and vice versa.  
This is called Bode’s Gain-Phase relationship.

1

1

1 T sG(s)
1 T s
−

=
+
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– This does not hold for a nonminimum-phase system.
– Nonminimum-phase systems may arise in two different 

ways:
• When a system includes a nonminimum-phase element or 

elements
• When there is an unstable minor loop

– For a minimum-phase system, the phase angle at ω = ∞
becomes -90°(q – p), where p and q are the degrees of 
the numerator and denominator polynomials of the 
transfer function, respectively.

– For a nonminimum-phase system, the phase angle at ω
= ∞ differs from -90°(q – p).

– In either system, the slope of the log magnitude curve 
at ω = ∞ is equal to –20(q – p) dB/decade.
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– It is therefore possible to detect whether a system is 
minimum phase by examining both the slope of the 
high-frequency asymptote of the log-magnitude curve 
and the phase angle at ω = ∞.  If the slope of the log-
magnitude curve as ω → ∞ is –20(q – p) dB/decade and 
the phase angle at ω = ∞ is equal to -90°(q – p), then 
the system is minimum phase.

– Nonminimum-phase systems are slow in response 
because of their faulty behavior at the start of the 
response.

– In most practical control systems, excessive phase lag 
should be carefully avoided.  A common example of a 
nonminimum-phase element that may be present in a 
control system is transport lag: dts

dte 1−τ = ∠−ωτ
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• Nonminimum-Phase Systems: Root-Locus View
– If all the poles and zeros of a system lie in the LHP, 

then the system is called minimum phase.
– If at least one pole or zero lies in the RHP, then the 

system is called nonminimum phase.
– The term nonminimum phase comes from the phase-

shift characteristics of such a system when subjected to 
sinusoidal inputs.

– Consider the open-loop transfer function:

( )
( )

K 1 2s
G(s)H(s)

s 4s 1
−

=
+
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Unmodeled Resonances

• Accurate modeling of the dynamic behavior of a 
mechanical system will result in a dynamic system 
of higher order than you probably would want to 
use for the design model.

• For example, consider a shaft that connects a drive 
motor to a load.  Possibilities include:
– Shaft has infinite stiffness (rigid)
– Shaft has a stiffness represented by a spring constant 

that leads to a resonance in the model
– Shaft is represented by a PDE that leads to an infinite 

number of resonances
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• In  most situations, the frequencies of these 
resonances will be orders of magnitude above the 
operating bandwidth of the control system and 
there will be enough natural damping present in 
the system to prevent any trouble.

• In applications that require the system to have a 
bandwidth that approaches the lowest resonance 
frequency, difficulties can arise.

• A control system based on a design  model that 
does not account for the resonance may not 
provide enough loop attenuation to prevent 
oscillation and possible instability at or near the 
frequency of the resonance.
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• If the precise nature of the resonances are known, 
they can be modeled and included in the design 
model.

• However, in many applications the frequencies of 
the poles (and neighboring zeros) of the 
resonances are not known with precision or may 
shift during the operation of the system.  A small 
error in a resonance frequency, damping, or 
distance between the pole and zero might result in 
a compensator design that is even worse than a 
compensator that ignores the resonance 
phenomenon.
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• Alternatives to including the resonances in the 
design model:
– Increase the loop attenuation at frequencies above the 

desired operating point by adding one or more stages of 
low-pass filtering to the compensator.  If the cut-off 
frequencies of the low-pass filters are well above the 
loop-gain crossover frequency, the additional phase lag 
introduced by these filters should not seriously 
compromise overall stability.  Since the phase lag due 
to these filters starts to become effective well before 
their crossover frequency, however, it is important that 
the phase margin of the loop without filters be large 
enough to handle the additional phase shift caused by 
the filters.
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– Cover the resonance with narrow-band noise, instead of 
attempting to include an accurate model of the actual 
resonance in the design model.  This is accomplished 
by assuming the presence of a disturbance input d
defined by:
where w is white noise.  The noise bandwidth (which is 
adjusted by the damping factor ζ) is chosen to be broad 
enough to encompass the entire range of possible 
resonance frequencies.  The spectral density of the 
white noise is selected to produce as much an effect as 
that of the resonance.  The differential equation of the 
narrow-band noise is used in the control system design 
model and prevents the compensator from relying upon 
the precise resonance frequency but rather places a 
broad notch in the vicinity of the resonance.

d 2 d d w+ ζω + =



Sensors & Actuators in  Mechatronics
Parasitic Effects

K. Craig 
48

• Whatever method is chosen, it is important to evaluate 
the stability of the resulting design in the presence of 
resonances not included in the design model.

• Consider the resonance in a belt-driven servo-system.

– For simplicity assume:
• Belt is modeled as an ideal spring
• Both inertias are equal
• No damping

J1

Motor
Load

Resilient Belt
K

Input Torque Tm

1θ 2θJ2
R1 R2

Rigid Belt Case

1 1 2 2

2

1
1 2 1 m

2

R R

RJ J T
R

θ = θ

  
 +  θ = 
   
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2 2
1 m1 1 1 2

2 2
21 2 2 2

TJ s 2KR 2KR R
02KR R J s 2KR

θ + −    
=     θ− +    

– The equations of motion are:

– Take the Laplace transform of the equations:

– Determine the transfer functions:

2
1 1 1 1 1 2 2 m

2
2 2 2 2 1 2 1

J 2KR 2KR R T

J 2KR 2KR R 0

θ + θ − θ =

θ + θ − θ =

( )
2 2

1 2 2
2 2 2 2

m 1 2 1 2 2 1

J s 2KR
T s J J s 2K R J R J
θ +

=
 + +  ( )

2 1 2
2 2 2 2

m 1 2 1 2 2 1

2KR R
T s J J s 2K R J R J
θ

=
 + + 
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Poles and Zeros of Transfer Functions

Definition of Poles and Zeros
– A pole of a transfer function G(s) is a value of s (real, imaginary, 

or complex) that makes the denominator of G(s) equal to zero.
– A zero of a transfer function G(s) is a value of s (real, imaginary, 

or complex) that makes the numerator of G(s) equal to zero.
– For Example:

2

K(s 2)(s 10)G(s)
s(s 1)(s 5)(s 15)

+ +
=

+ + +

Poles: 0, -1, -5, -15 (order 2)

Zeros: -2, -10, ∞ (order 3)
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• Collocated Control System
– All energy storage elements that exist in the system 

exist outside of the control loop.
– For purely mechanical systems, separation between 

sensor and actuator is at most a rigid link.

• Non-Collocated Control System
– At least one storage element exists inside the control 

loop.
– For purely mechanical systems, separating link between 

sensor and actuator is flexible.
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• Physical Interpretation of Poles and Zeros
– Complex Poles of a collocated control system and those 

of a non-collocated control system are identical.
– Complex Poles represent the resonant frequencies 

associated with the energy storage characteristics of the 
entire system.

– Complex Poles, which are the natural frequencies of the 
system, are independent of the locations of sensors and 
actuators.

– At a frequency of a complex pole, even if the system 
input is zero, there can be a nonzero output.
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– Complex Poles represent the frequencies at which 
energy can freely transfer back and forth between the 
various internal energy storage elements of the system 
such that even in the absence of any external input, 
there can be nonzero output.

– Complex Poles correspond to the frequencies where the 
system behaves as an energy reservoir.

– Complex Zeros of the two control systems are quite 
different and they represent the resonant frequencies 
associated with the energy storage characteristics of a 
sub-portion  of the system defined by artificial 
constraints imposed by the sensors and actuators.
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– Complex Zeros correspond to the frequencies where the 
system behaves as an energy sink.

– Complex Zeros represent frequencies at which energy 
being applied by the input is completely trapped in the 
energy storage elements of a sub-portion of the original 
system such that no output can ever be detected at the 
point of measurement. 

– Complex Zeros are the resonant frequencies of a 
subsystem constrained by the sensors and actuators.
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• Collocated Control System

( )
2 2

1 2 2
2 2 2 2

m 1 2 1 2 2 1

J s 2KR
T s J J s 2K R J R J
θ +

=
 + + 

Transfer Function:

Poles: 

Zeros:
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• Non-Collocated Control System

( )
2 1 2

2 2 2 2
m 1 2 1 2 2 1

2KR R
T s J J s 2K R J R J
θ

=
 + + 

Transfer Function:

Poles: 
2 2
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1 2

2K(R J R J )0,0, i
J J

+
±

Zeros: None
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• Reality is not so grim as this analysis would make 
it seem, otherwise one would never be able to 
stabilize systems with belts or flexible shafts.

• There will be friction in the motor and pulleys and 
structural damping in the resilient belt that are 
stabilizing.  

• Moreover, the bandwidth of the amplifier that 
furnishes the voltage to the motor is likely to be 
lower than the resonance frequency and will 
provide additional attenuation at this frequency, 
thus further stabilizing the system.
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• If you do not want to rely on the uncertain 
characteristics of the hardware to stabilize the 
system, you must attend to the stabilization in 
your compensator design.  A simple low-pass 
filter between the the control output and the input 
to the motor might do the job.

• Remember, if you want the system to operate with 
a bandwidth near the lowest resonance frequency, 
either you must include the resonance in the 
design model or be prepared to consider other 
measures to avoid the possible unfavorable 
consequences.
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Saturation

• Nonlinear Systems
– Every real control system is nonlinear and we use linear 

approximations to the real models.
– There is one important category of nonlinear systems 

for which some significant analysis can be done: 
systems in which the nonlinearity has no dynamics and 
is well approximated as a gain that varies as the size of 
its input signal varies.

– The behavior of systems containing such a nonlinearity 
can be quantitatively described by considering the 
nonlinear element as a varying, signal-dependent gain.
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Nonlinear Elements with No Dynamics

(a) Saturation
(b) Relay
(c) Relay with Dead Zone
(d) Gain with Dead Zone
(e) Pre-loaded Spring or 

Coulomb plus Viscous 
Friction

(f) Quantization
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– As an example, consider the saturation element. All 
actuators saturate at some level; if they did not, their 
output would increase to infinity, which is physically 
impossible.

– For the saturation element, it is clear that for input 
signals with magnitudes < a, the nonlinearity is linear 
with the gain N/a.  However, for signals > a, the output 
size is bounded by N, while the input size can get much 
larger than a, so once the input exceeds a, the ratio of 
output to input goes down.

Gain K

N/a

a input magnitude

General Shape of the 
Effective Gain of 

Saturation

NK
a

=
NK

input
=
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– An important aspect of control system design is sizing 
the actuator, which means picking the size, weight, 
power required, cost, and saturation level of the device.

– Generally, higher saturation levels require bigger, 
heavier, and more costly actuators.

– The key factor that enters into the sizing is the effect of 
the saturation on the control system’s performance.
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– Observations
• As long as the signal entering the saturation remains 

less than 0.4, the system will be linear and should 
behave according to the roots at ζ = 0.5.  

• However, notice that as the input gets larger, the 
response has more and more overshoot and slower 
and slower recovery.

• This can be explained by noting that larger and 
larger input signals correspond to smaller and 
smaller effective gain K. 

• From the root-locus plot, we see that as K decreases, 
the closed-loop poles move closer to the origin and 
have a smaller damping ζ.  

• This results in the longer rise and settling times, 
increased overshoot, and greater oscillatory 
response.
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– As another example, consider the block diagram below.

Saturation levels: ± 1
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– Observations
• For K = 2, which corresponds to ζ = 0.5 on the root 

locus, the system shows responses consistent with ζ
= 0.5 for small signals.

• As the signal strength is increased, the response 
becomes less well damped.

• As the signal strength is increased even more, the 
response becomes unstable.
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– As a final example, consider the following block 
diagram.

Root-Locus Plot
Without Saturation
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– Observations
• This system is typical of electromechanical control 

problems where the designer perhaps at first is not 
aware of the resonant mode corresponding to the 
denominator term s2 + 0.2s + 1 (ω = 1, ζ = 0.1).

• A gain of K = 0.5 is enough to force the roots of the 
resonant mode into the RHP.  At this gain our 
analysis predicts a system that is initially unstable, 
but becomes stable as the gain decreases. 

• Thus we see that the response of the system with 
saturation builds up due to the instability until the 
magnitude is sufficiently large that the effective gain 
is lowered to K = 0.2 and then stops growing!
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• The error builds up to a fixed amplitude and then 
starts to oscillate.  The oscillations have a frequency 
of 1 rad/sec and hold constant amplitude at any DC 
equilibrium value (for the three different step inputs).

• The response always approaches a periodic solution 
of fixed amplitude known as a limit cycle, so-called 
because the response is cyclic and is approached in 
the limit as time grows large.

• In order to prevent the limit cycle, the root locus has 
to be modified by compensation so that no branches 
cross into the RHP.  One common method to do this 
for a lightly-damped oscillatory mode is to place 
compensation zeros near the poles, but at a slightly 
lower frequency.
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Backlash

• Gears and similar drive systems generally exhibit 
an effect called backlash.

• The two key phenomena associated with backlash 
are:
– Hysteresis which occurs because the relative positions 

of the two halves of the backlash mechanism depend on 
the direction of motion.

– Bounce which occurs when the two halves of the 
backlash mechanism impact after they have separated 
due to a change in direction.  The amount of bounce 
depends on the coefficient of restitution of the two 
surfaces and the speed at which they impact.
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• As an example, consider a motor connected to a 
drive gear and that the driven gear is connected to 
an inertial load.  The equations of motion are:

– τ is the torque transmitted through the gears

1 1 in

2 2

J T

J 0

θ + τ =

θ − τ =

Gear Train Relations:
θ

θ
m

m

m

m

N
N

N

T
T

N
N N

′
= ≡

′
= ≡

2

1

1

2

1

Tm

N1

N2

θ m

′Tm ′θ m
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– When the gears are not engaged, the torque τ is zero 
and the two equations of motion are uncoupled.  

– When the gears are engaged, however, the motion is 
constrained such that θ1 = θ2 and the torque τ is 
whatever it must be to maintain the constraint.

– Once the teeth are in contact, they will remain in 
contact until the relative motion of the gears changes in 
direction.

– The order of the system depends on whether or not the 
gears are engaged: if they are not engaged the system 
has two degrees of freedom and the system is 4th order; 
if they are engaged, the system has only one degree of 
freedom and the system is 2nd order.
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– This paradox can be resolved by representing the effect 
of the gears by a highly nonlinear spring, in which the 
torque is zero for small angular displacements and 
becomes very large when the relative displacement 
exceeds the backlash level b.

Nonlinear Function
Used for Backlash

β

S( )β

backlash angleβ =
+b

-b

( ) ( )
( )

0, b
f S b , b

S b , b

 β <
 τ = β = β− β > 
 β+ β < − 

1 2β = θ −θ



Sensors & Actuators in  Mechatronics
Parasitic Effects

K. Craig 
77

– The differential equations can now be written as:

– The differential equation for β is obtained from the 
above equations noting that 

– This equation defines the dynamics of a nonlinear 
oscillator.

1 1 in

2 2

J T

J 0

θ + τ =

θ − τ =

( )

( )

in
1

1 1

2
2

1 Tf
J J

1 f
J

θ = − β +

θ = β

1 2β = θ −θ

( ) ( )in in

1 2 1 1

1 1 T 1 Tf f
J J J J J

 − −
β = + β + = − β + 

 
1 2

1 1

J JJ
J J

=
+
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Backlash Model

Torque In

gear_torque

theta_1

theta_21/s

Integrator   

1/s
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1/s

Integrator 

1/s

Integrator

1/J_1
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1/J_2

K_gear

Dead Zone

( ) ( )in in
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J J J J J
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• MatLab Simulation of Backlash
– The backlash block implements a system in which a 

change in input causes an equal change in output.  
However, when the input changes direction, an initial 
change in input has no effect on the output.  The 
amount of side-to-side play in the system is referred to 
as the deadband.  The deadband is centered about the 
output.

– A system with play can be in one of three modes:
• Disengaged: In this mode, the input does not drive the output 

and the output remains constant.
• Engaged in a positive direction: In this mode, the input is 

increasing (has a positive slope) and the output is equal to the
input minus half the deadband width.
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• Engaged in a negative direction: In this mode, the input is 
decreasing (has a negative slope) and the output is equal to the
input plus half the deadband width.

– If the initial input is outside the deadband, the initial 
output parameter value determines if the block is engaged 
in a positive or negative direction and the output at the 
start of the simulation is the input plus or minus half the 
deadband width.

– This block can be used to model the meshing of two 
gears.  The input and output are both shafts with a gear 
on one end, and the output shaft is driven by the input 
shaft.  Extra space between the gear teeth introduces play.  
The width of this spacing is the deadband width 
parameter.  If the system is disengaged initially, the 
output is defined by the initial output parameter.
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– Consider the following example.

deadband width = 1
initial output = 0

input

output
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