MATLAB Tutorials
For

Mechatronics

Dr. Kevin Craig
Associate Professor of Mechanical Engineering
Department of Mechanical Engineering,
Aeronautical Engineering, and Mechanics
Renssel aer Polytechnic Institute
Troy, New York 12180
Phone: (518) 276-6671 E-mail: craigk@rpi.edu

(Written for: Matlab version 5.3, Simulink version 3.0, Control System Toolbox version 4.2)

July 21, 2000

ACKNOWLEDGEMENTS

This document would not have been possible without the assistance of
several of my M.S. and Ph.D. graduate students over the past several years.
They are:

Dale Lombardo
Michadl Chen
Cdd Tufekci
Jeongmin Lee
Shorya Awtar
Kevin Bennion

Sean Russ |

| am very grateful for their assistance. They used the document in classes
and research, offered valuable suggestions for improvement, and helped
revise it as MatL ab was updated.

Thank Y oul

Table of Contents

1. BEFORE YOU BEGIN 1
LIWHAT ISIN THIS TUTORIAL? c.oeeeeeteereeesressesessssesesessss e sse e sesssssssesssessssessssssssessssssssesssssessesssssesssnesssessenssssenne 1
1.2 WHO CAN USE THIS TUTORIAL 2. ..cvtericeerseseesessesesssensesesssnseseesessesesssenes
L3WHY USE MATLAB?. ..o
1A HOW THE TUTORIAL IS STRUCTURED?......ccorteuerreieererresissserseseesessesesssessssessssssssessssssssesssssessesssssesssssssessesssssenns 1
LOWHAT IS MATLAB? ..o bbb bbb b bbb 2

2. BASIC MATLAB TUTORIAL 2
2.1 HOW MATLAB IS STRUCTURED ..ottt sssssss s s sssss s 2
22 FUNDAMENTALS oottt rreeseseeseessse et sse e s et s s s e E et E e ne e E e e R R e ne e s s nn s n e 4
23 MATRIX OPERATIONS.ccutuetreseuererseresssessesesssessesesssessssesssssessessssssssessasssssesssssessssssssessssassessssesssessssessessssensssseses 11
24 ARRAY OPERATIONS
2.5 POLYNOMIALS ..cttteateererseseseseeseseses s sesss e s e se e es s s e s R e s s R e e e et R R e s s e reren s
2.6 CONCLUSION.....c.cutmerteererseessseesesesssessesesssessssesssessesesssesessessssssssesssssessessssssssssesssessssssssessenssssessenesssesessesssesnsnesssesesnes
2.7 SAMPLE PROBLEMS......octttueteeretaere st sssesssessesessse s sssss s sssessesssss e sss et ssssssessssssssessssesssessssenssssssnenssssasnes

3. PLOTTING TUTORIAI 19
3L CREATING SIMPLE X-Y GRAPHS.....ccctttimriererretaerersesessse s sesessssssessse s ssesssssssssssssessssssssessssesssessssenssesssnenses 19
32 TAKING CONTROL OF THE PLOTS....coctiiitierreeererrenessre s ssssss s sssessssesssssssnesssesssnenses 20

3.3 ADVANCED GRAPHING STUFF
BUA EXAMPLES ...ttt tessesesessesessse s s e s et R R AR AR E e R R

4. TRANSFER FUNCTION TUTORIAI 26

4.1 MATLAB AND TRANSFER FUNCTIONS.octtituererreesrrerseseessssesessesessesssssessesesssessessssssssssssssessssessssssssesssesssnenses
A2 LTI MODELS.....oiiniririiniisiie s sssens
4.3 TRANSFER FUNCTION BASICSIN MATLAB
4.4 CONNECTING BLOCK DIAGRAMS OF TF'S...coovicrerrerreeereeeeseseenereeeens
4.5 TRANSFER FUNCTION ANALY SIS PLOTS...ccttitererrereserersmseesessesessessssessssssssesessssssessssssssssesssessssessssssssesssesssnenees
4.6 SSIMULATING TF SYSTEM RESPONSES......coetrutuererrerestrerssresesessesessessssesssssessssssssessesssssessssssssessssessssssssssesssnenses
4.7 CONCLUSION....cteriurreremesesersesesssessssesssssessessssssssssssssssesssssessssesssessessssessssesens
4.8 A COMPLETE EXAMPLE ..ottt en e n s
A O RLTOOL EXAMPLE ..ottt resesss et s e s e n e n e

5. SIMULINK TUTORIALI 40

BAWHAT IS SIMULINK? oo etessssessssesesssssesesssssesssssssesssssssssssssssssssssssssssssessssssesssssssesssssssassssssssnsssssssssssssnseses 40
5.2 SIMULINK'SSTRUCTUREoooumrssseessessssssessssssssssssessssssssssssssssssssssssssssssssssssessssssesssssssassssssssssssssnsssssssnsnseses

53 SIMPLE SIMULINK TASKS
54 RUNNING SIMULATIONS......
5.5 USING THE WORKSPACE
5.6 CREATING SUBSYTEMS.......
5.7 MASKING SUBSYSTEMoomrvvtemnessssssessesssssssssssssssssssssssssssssassssssssssssssssssssssnsnseses
5.8 LINEAR ANALYSISTOOL (LTI VIEWER)
5.9 CREATING LIBRARIES

5.10 CONCLUSION.......courerreeecrennes

6. M-FILE TUTORIAL 53
6.1 INTRODUCTION TO M-FILES.....ectuerreriutrersmresemessesesesersssesssssessesessssssessssssssesesssessssesssssssnssssessssessssssssessssssssesssssesnes 53
5.2 SCRIPT FILES ... cututrreteererseseseseeseesesessesesssessssesssssseseassesessesssssesssssssssssesssssessesssssesssssssssssnsassesssnesssesessenssesnsnenssesasnes 4

6.3 FUNCTIONS......oceverreeererreenennenes
6.4 MORE M-FILE COMMANDS......
6.5 M-FILES : SOME FINAL NOTES.

6.6 USEFUL M-FILESFOR MECHATRONICS......ctueuiuteeerserestsstessesesssessesssssessesssssessssesssessssssssessssesssssessesssssssessssseses

1. Before you begin
Prior to starting the tutorials contained in this booklet, take a little time o read through this
introductory material.

The author would like to acknowledge that the format and some of the examplesin this tutorial are
based upon those contained in the MATLAB Manual from the Mathworks. The tutorials from the
Mathworks are very well done, but are too long for use in Mechatronics.

1.1 What is in this tutorial?
Five short tutorials are contained in this booklet. They are:
» Basic MATLAB Tutoria

Plotting Tutorial

» Transfer Function Tutorial
e Simulink Tutorial
 M-FileTutorial (optional)

These tutorial sections are in the order that they were intended to be used, (i.e., each tutorial builds
upon the previous ones.)

1.2 Who can use this tutorial?

This tutorial was written for students and engineers in the field of Mechatronics. However, any
college-level student with alevel of understanding of computers and linear algebra should be able
to use sections 2 and 3 of this tutorial. The last three sections of the tutorial are directed toward
control system applicationsin MATLAB, and an understanding of the subject matter is assumed.

1.3 Why use MATLAB?

Many students will find that MATLAB is a very powerful numerical analysistool. It can be used
to evaluate complex functions, simulate dynamic systems, solve equations, and in many other
applications. And now MATLAB version 5.3 can perform symbolic analysis with Symbolic toolbox
(e.g., Mathematica, MathCad, Maple).

1.4 How the tutorial is structured?

This tutorial has, as much as possible, a consistent structure. Each section is intended to be an
interactive tutorial. The reader should go through the tutorial while sitting at acomputer terminal.

* Instructions and explanations are in this font.

« MATLAB Commands and the expected responses are
in this font and are indented.

1.5 What is MATLAB?

MATLAB is a sophisticated mathematics and simulation environment that can be used to model
and analyze dynamic systems. It handles continuous, discrete, linear, or nonlinear systems, and
has extensive features for matrix manipulations. MATLAB is an open environment for which many
specialized toolboxes have been devel oped:

e Control System toolbox

e Optimization toolbox

» System Identification toolbox
* Neural Network toolbox

e Signal Processing toolbox

* Robust Control toolbox

* Fuzzy Logic Toolbox

» and others

These toolboxes are designed to provide the user with a powerful set of analysis toolsin each of
their specific application areas. The success of the Control System toolbox has led to the
development of Simulink. Simulink is graphical environment for modeling and simulating block
diagrams and general nonlinear systems.

2. Basic MATLAB Tutorial

2.1 How MATLAB is structured

The workspace

The workspace iswhere all of the user's variables are stored.

The Command window

This window is a text window that appears once MATLAB is started. All user commands are
issued from this window.

User Variables

The basic entity in MATLAB is the rectangular matrix (with real or complex entries). Each matrix
must have a name, and the naming rules are similar to the rules for variable names in most
computing languages. The exception to this is that unlike some languages, MATLAB is case-
sensitive. In other words, variable names are sensitive to upper case and lower case. For example,
if amatrix existsin the workspace named st uf f , this matrix cannot be referred to asSTUFF.

M-functions and Script files

M-functions and script files are often referred to under the larger category of mfiles. M-files
represent an important aspect of MATLAB that the user should be aware of. The full power and
flexibility of MATLAB is based on these mHiles.

M-files are simply text files with a ".m" extension. These files are written in the MATLAB
programming language. This language is an extension of the same commands that one usesin the
workspace with the addition of some program-flow-control commands.

MATLAB Data Files
MATLAB datafilesare binary files used to store workspace variables for later use.

Diary Files
Diary files save a record of a user's command window session in atext file (graphs are not saved).
This can be extremely useful in tracking down mistakes when along series of commands has been
issued. Diary files aso make it much easier to communicate your problems to a consultant (or
MATLAB expert) when you ask for assistance.

MATLAB's Order of Operations

For mathematical expressions, MATLAB uses the standard order of operations: arithmetic,
relational, and logical. However, when a command is issued, variable/function names have to run
through a mini-gauntlet. First, the names are checked against the variables in the workspace, then
the current disk directory is searched for an mfile of the same name, and finaly, the entire
MATLAB search path (type hel p pat h for more) is run through. MATLAB always uses the
first occurrence. So be careful not to make any variables with the same name as a function you
plan to use!

MATLAB Command Syntax
The general syntax of MATLAB commandsisthe following:

[out put 1, out put?2,...]=comrand_name(inputl,input2,...)

where the command outputs are enclosed with square brackets and inputs within parentheses. If
thereisonly one output, brackets are optional.

Handle Graphics
Thisisthe MATLAB graphics system. It includes high-level commands for two-dimensional and
three-dimensional data visualization, image processing, animation, and presentation graphics. It
also includes low-level commands that allow you to fully customize the appearance of graphics as
well asto build complete Graphical User Interfaces on your MATLAB applications.

Math Library
Thisisavast collection of computational a gorithms ranging from elementary functions like sum,
sine, cosine, and complex arithmetic, to more sophisticated functions like matrix inverse, matrix
eigenvalues, Bessel functions, and fast Fourier transforms.

MATLAB API

Thisisalibrary that allows you to write C and Fortran programs that interact with MATLAB. It
includes facilitiesfor calling routinesfrom MATLAB (dynamic linking), calling MATLAB asa
computational engine, and for reading and writing MAT-files.

Simulink

Simulink, a companion program to MATLAB, is an interactive system for simulating dynamic
systems. It is a graphical mouse-driven program that allows you to model a system by drawing a
block diagram on the screen and manipulating it dynamically. It can work with linear, nonlinear,
continuous-time, discrete-time, multivariable, and multirate systems.

Editor/Debugger

The Editor/Debugger provides basic text editing operations as well as access to M -file debugging
tools. The Editor/Debugger offers a graphical user interface. It supports automatic indenting and
syntax highlighting; for details see the General Options section under View Menu. You can also
use debugging commands in the Command Window.

2.2 Fundamentals

In this section, you will be introduced to several basic aspects of entering matrices and controlling
the workspace.

Entering Simple Matrices

Matrices can be entered in several ways. Try the following and observe the resulting output.

Delimiters: The brackets [] indicate the beginning and end of a matrix. Spaces or commas are used
to separate elements within arow, and semicolons are used to separate rows.

A=[1,2,3;4 5 6;7 8 9]
Alternatively, the matrix can be typed in as a matrix using the return key at the end of arow. The
entry is not finished until the closed bracket is supplied.

A=[1 2 3

456

7 8 9]
The resulting output should be the same for the two lines above:

A=

~N AR
NG EN
© o w

Enter the following lines and observe MATLAB's response...

A=[1,2,3;4,5;7,8,9]

What happened? Why?
A=[2 4 6;8 10 12;14 16 18];

Notice that on this last example there is a semicolon on the end of the line. This should have
caused MATLAB to "not respond” with any output. Don't worry, MATLAB did record the matrix

4

A. The semicolon at the end of aline of input has the effect of preventing MATLAB from echoing
the results to the screen. Thisis an important feature when very large matrices are being defined.

Matrix elements can be any MATLAB expression. For example:

x=[-1.3 sqrt(3) (1+2+3)*4/5]
resultsin

X=
-1.3000 1.7321 4.8000

To define (or refer to) individual elements of a matrix, use the variable name and parentheses, try
this:

x(5)=abs(x(1))

This produces

X=
-1.3000 1.7321 4.8000 0.0000 1.3000

Note that the vector x has been augmented to 5 elements. Now try

x(4) =1 0g1l0(x(6))

What happened? Why? It is possible to construct big matrices from smaller ones. Enter the
following two lines:

r=[1 2 3 4 5];
y=[x;r]

resultsin

y:
-1.3000 1.7321 4.8000 0.0000 1.3000
1. 0000 2. 0000 3.0000 4.0000 5.0000

Now try:

W=[X, r]

Thisputsx and r side-by-side in the new row vector w.

Little matrices can be extracted from big matrices using the colon delimiter. For example:

z=A(2:3,1:2)
produces
zZ=
8 10
14 16

The statement defining z can be read as follows, "set z equal to the second through third rows and
first and second columns of A." Now try a second example:

z=y(:,2:4)

resultsin

Z=
1.7321 4.8000 0.0000
2.0000 3. 0000 4.0000

The issued command can be interpreted as "z is equal to all rows of y and the second through
fourth columns." Notice that the colon can be used to specify a range of rows and columns or it
can be used to specify all of the rows and columns. This notation can lead to some very exotic
submatrix references and can be used on either side of the equal sign, but it isalways good practice
to hand check the resultsto seeif you're getting the expected submatrices.

More on entering MATLAB expressions

The most common format for issuing commandsto MATLAB isin thisform
variable = expression

However, the left side of that statement can be left out, and the results of the expression are
automatically placed in avariable calledans. For exampletype:

1900/ 81
resultsin

ans=
23. 4568

The question often arises what if the expression to be entered is longer than one line on the
screen? The correct way to do thisisto use ellipses at the end of the current line.

For example

s=1 - 12+ 1/3 - 1/4 +1/5 - 1/6 + 1/7 ...
- 1/8 +1/9 - 1/10 + 1/11 - 1/12

produces the expected result.

Getting workspace information

To get alist of the current variables defined in the workspace type :

who

produces alist of the currently defined variables. Try typing
whos

What is the difference? By typing what , a current list of mfiles in the search path are shown.
(Just for kicks, try why'.)

You can aso edit your workspace variables using a graphical user interface tool called Workspace
Browser. You can access Workspace Browser from Fi | e] Show Wor kspace menu. In addition
to your workspace variables, there are also several permanent variables that MATLAB uses. The
variable eps isan example of such avariable. This variable represents the working precision of the
computer system. Typeeps and look at theresult. Other builtin variablesexist e.g., pi ,i,and]j .

Numbers in MATLAB
Conventional decimal notation is used by MATLAB; i.e., 3, -99, 0.0001, 1.54e-10, and 3.13E3 are dll

valid ways of entering numbers. In al @culations, regardiess of what is displayed, MATLAB
uses doubl e precision floating point numbers.

The traditional mathematical operators are available (e.g., +, -, *, /, and). In addition to these, the\
operator signifies left division (explained later) and nearly all mathematical functions found on
scientific calculators can be used (e.g., cos, sin, abs, log, and 10g10).

MATLAB will return I nf when a number becomes infinite. Unlike on many other systems,
MATLAB does not halt when a division by zero occurs. Instead, it carries a representation of
infinity through the remaining calculations. Try typing s=1/ 0, and see the answer MATLAB
gives. Another special "number” that is often seen is NaN. This means"Not a Number."” Thisis
produced during calculationslike0/ 0 or | nf / | nf .

Complex Numbers

Complex numbers are allowed in all mathematical expressions. The format for entering them is
shown in the following examples: (Thiswill not work as expected if i & j have been redefined by
the user to something other thansqgrt (- 1) .)

Z=3+4*|
Z=3+4%]
r=1; theta=pi/4; w=r*exp(i*theta)

To enter acomplex matrix :

A=[1 2:3 4] + i*[5 6:7 8]
A=[1+5%] 2+6%i;3+7*i 4+8*i]

Both of theseresult in

A=
1. 0000+5. 0000i 2. 0000+6. 0000i
3. 0000+7. 0000i 4. 0000+8. 0000i

Note: That in the second expression for A, there are no spaces around the plus signs. MATLAB
would take these as separate entries.

Also Note: MATLAB will allow you to redefine the quantitiesi and j . If you do so you can re-
create"i " by enteringi =sqrt (- 1) .

Formatting Output

When displaying matrices, MATLAB will display a matrix of exact integers as such. For example,
type:

x=[-1 0 1]

thisyields

X=
-1 0 1

However, if there is at least one entry that is not an integer, there are several possible display
formats. Try thefollowing

x=[4/ 3 1.234567e- 8]
thisyields

x=[1. 3333 0. 0000]

Notice that the second element of x appearsto be 0.0000. Sincethefirst element isso much larger
than the second, the second element IS zero in the displayed precision! Type each of the format
statements in the table on next page and type x with areturn to see how the display types differ.
Y ou can also set the output format from the Fi | e| Pr ef er ences menu.

format short (default)

format short e

format short g

format | ong

format long e

format long g

format hex

format +

format bank

format rat

With the short and long formats, if the largest element in the matrix is larger than 1000 or smaller
than 0.001, acommon scale factor isused. For example:

Withf ormat | ongorshort,type
y=1. e20*x

Look carefully at the result. A common scale factor of 1.0E+020 is applied to the matrix. Now
change the format to one of the " e" statements, and ook at x again.

The + format is used to look at large matrices. It displaysa+, -, or blank if the element is positive,
negative, or zero.

Using Diary files
Typehel p di ary for afull explanation.
Basically, you issue the statement

diary filenane. dia

This will create a new file if it does not already exist, or start appending to the file if it does exist.

MATLAB will start recording al command window text to the file until one of the following is
typed.

e diary newfile,
e diary,
e diary off,
e oryouleave MATLAB.
Thediary file can bereinstated using di ary on.

MATLAB Search Path

MATLAB uses a search path to find M-files. MATLAB's M-files are organized in directories or
folders on your file system. Many of these directories of Mfiles are provided along with
MATLAB, while others are available separately as toolboxes. You can edit the MATLAB Search
Path using a graphical user interface tool called Path Browser. Y ou can open the Path Browser from

Fi | e|] Set Pat h menu. The Path Browser letsyou view and modify MATLAB's search path and
seeall of itsfiles.

Owhbe ek sn o He 1o
Qg it

Bl Edt A Foth Jook Heb

& ol %
[t .
i L Perrta Lyt lak-5ind ght Ly Lkt Browas . ol -
addpath.»
Path st oh. &
o s L b . it L 5 o L o' oL b y g nELm £ cilm
LVilwvo caleimst LsbTind ght Ly'iccolboxiomt Lub i ape SlEAT . B
Directorie %Dk o 10wk L b Sird phi Ly oo b e et Lsb s Lng CORPACET. &
e e e e iest Leb Tind ght Ly b oo lb e ot Leb e Ima C AREATIEE
tih 1y Dmve calaymac LshSind ght Ly Ecalbor oo Leb el Eun =

D o Ly L ks Sond gl L £ oo 1 o'y cuir L s’ £t 0 it B =oeytile.n
D e ey e L S glee Ly e ey 1 o Yy maire L s e oo

Uy D ey 1y e L S0l ger Ly o oo 1 oy CaE L ey d i i ki
5D oo e Yy e L Sl e Ly a1 oy e L iy p el
sy Dk Ly mae Lok 5o give L £ oo L oo’y caar L ads'y Brta fon

1 WJI!:ulli: :.It:-l\.nl.rl: :.'f:ultwlltbl::uni::.ﬂ;:u !pl::l\f.r: I
1r | "

Toddewrcr Dirfary, Drng 11 e Dl Frlline

Getting HELP

To get help at any time simply type
hel p

If you have a specific topic in mind, e.g., how to use the plot command :

hel p pl ot

If you arereally lost type
hel p hel p

In addition tohel p command there are other useful help commandsin MATLAB.

hel pwi n Provides Windows based help

hel pdesk Provides comprehensive HTML help tools (search, index options). Y ou can
also reach the online PDF manual s from within heldesk.

deno Provides demo for MATLAB and related products by Math Works.

tour Provides atour of all MATLAB products like Toolboxes, Simulink,
Stateflow, Blocksets, etc.

| ookfor Providesasearchfor keywordsin M -files.

Clearing variables from the workspace

You may want to clear previously used unnecessary variables from the workspace. To clear
variables and functions from memory, typecl ear .

To seeitsvariousoptions, typehel p cl ear.

It isagood practice to put thiscommand in the beginning of m files before any other commands.

Quitting and saving the workspace
WARNING: MATLAB doesnot automatically save your workspace when you guit or exit!

Toleave MATLAB, typequi t orexi t.

To save your workspace variables type

save

thissavesall of your variablesin afile called MATLAB.mat.
Thefull format for saving is

save filename variable_list

seehel p save for afull description.

Toload an old set of workspace variables, type

| oad
By itself, | oad bringsin the file MATLAB.mat, if it exists. By specifying afilename, that file will be
loaded. When loading a file, the variable names used when saving are reinstated. If thereis

10

currently a variable with the same name, it will be overwritten without warning. Any (unique)
variables aready in the workspace are left untouched. More can be done with the | oad
command, seehel p | oad.

2.3 Matrix Operations

L ets perform some basic matrix arithmetic.

Transpose.

The transpose operation is signified by a single apostrophe, '. If the matrix to be transposed is
complex, the result is the complex conjugate transpose. This is sometimes, but not always, the
desired result for complex matrices. To get around thisuseconj (A") or A. ' . Try thefollowing:

A=[1 2 3; 45 6; 7 8 0]

B=A'
resultsin
A=
1 2 3
4 5 6
7 8 0
B=
1 4 7
2 5 8
3 6 0
and
x=[-1 0 2]
produces
X=
-1
0
2

Addition and Subtraction and Multiplication.

These operations are straightforward. Asis expected, the order of multiplication and subtraction
matters while it does not for addition. The matrices must be of compatible size for any operation to
be carried out. The only exception to thisisif one of the quantitiesis ascalar (a 1x1 matrix), as will
be demonstrated below.

Try thefollowing:

C=A+B
D=A+x
b=A* x
Thefirst expression was evaluated, and the second generated an error. Why? Now try these:
y=x-1
W=4; z=wy

1

Note: that the scalar quantities are applied to all elements. Now try a mix of these operations, for
example:

X' *y

y' X
xX*y'
xX*y
C=A*xX+y

Make sure you understand the results of these operations.

Matrix Division.

Matrix division is alittle more complex. Thisisbecause thereisno "division” operation per se. In
actuality, it involves the "best" solution of alinear system. (Scalar division rules are as expected.)
Thereisleft and right division.

Itiseasier to explain by example:
X=A\ B isequivalent toX=i nv(A) * B. It solvesthe problem AX=B.
X=B/ A isequivalent toX=B*i nv(A) . It solvesthe problem XA=B.

If A isrectangular, A\B and B/A automatically find the least squares solution, whereas inv(A) is
only valid for square matrices.

The use of matrix division is NOT recommended for simple operations because it can get
confusing. Your work iseasier to follow if you simply usethe functioni nv() . For example, if you
have the equation, b=A*x, and you wish to know x, type

x=inv(A) *b

Refer to the MATLAB manual tutorial for more information about matrix division.

Matrix Powers.

Raising amatrix to a matrix power, amatrix to a scalar power, a scalar to amatrix power, and a scalar
to ascalar power are all possible. However, raising a matrix to ascalar power is most likely the only
oneyou'll need. Theonly limitation isthat the matrix must be square! Try these for practice:

AN

x"3

Can you explain your results?

Miscellaneous Matrix Operations.

These operations are presented for your use, but their use is either too obvious or too rare to take
up more space here. Seethe help facility or the Reference section of the MATLAB manual for more

detail.
det determinant of a matrix
trace trace
poly characteristic polynomial
kron Kronecker tensor product
expm exponential
[ogm logarithm
sqrtm |squareroot
funm arbitrary function
2.4 Array Operations

Array operations refer to element-by-element arithmetic operations, as opposed to matrix
operations. By preceding the usual operators (e.g., / \ * ~) with aperiod . , the operation is carried
out as an array operation. Many functions and all logical operators are considered array
operations.

Addition and Subtraction.
SAME ASBEFORE.

Multiplication and Division.

For example:
x=[1 2 3]; y=[4 5 6];
Z=X.*y
resultsin
Z=
4 10 18
Now try this:
z=x.\y
resultsin
zZ=

4.0000 2.5000 2.0000

NOTE: The expressionx. \ y isequivalent toy. / x

Array Powers.

Element by element powers are denoted by .. Try these examples:

z=x."y

13

produces

zZ=
1 32 729

If the exponent isascalar :

z=x."2
produces

Z=

1 4 9

Or, the base can be ascalar :

z=2 .M x Y]
zZ=
2 4 8

16 32 64

Relational and Logical Operations and Functions.

These operations (e.g., greater than, less than, ...) exist, but they are not often used outside of m-
files. Seethe Reference section of the MATLAB manual, or hel p <.

Elementary Math Functions.

Many functions are inherently element by element in MATLAB. These functions are summarized

below.

Trigonometric Functions

Elementary Math Functions

sin sine abs absolute value
cos cosine angl e phase angle
tan tangent sqrt square root
asin arcsine real real part
acos arccosine i mag imaginary part
at an arctangent conj complex conjugate
at an2 four quadrant arctangent |round round to nearest integer
si nh hyperbolic sine fix round towards zero
cosh hyperbolic cosine floor round towards-Inf
t anh hyperbolic tangent ceil round towards +I nf
asi nh hyperbolic arcsine sign signum
acosh hyperbolic arccosine rem remainder or modulus
at anh hyperbolic arctangent exp exponential base e

| og natural logarithm

| 0g10 log base 10

14

Generating Vectors and Matrices.

It is possible to generate vectors using operators and matrices using special functions. (Caution
should be used here. If you are generating a large vector or matrix, be sure to end the statement
with asemicolon. Otherwise, you'll get to see the entire vector (matrix) from beginning to end.)

To generate an evenly spaced vector try typing

t=1:5
this produces

t=
12345

Notice that this produces arow vector by default. Now try an increment other than unity:

y=(0:pi/4:pi)’
gives

y:

. 0000
. 7854
. 5708
. 3562
. 1416

WNPEFk OO

Negative increments are also possible.

Using the functions | i nspace and | ogspace, you can specify the number of points rather
than the increment.

y=l i nspace(-pi, pi, 4)

produces
y:
-3.1416 -1.0472 1.0472 3.1416

The square identity matrix is defined by using the function eye(n) , where n is the number of
columns or rows. The functionsin the table below allow the user to generate special matrices. The
arguments of these functions are either

e (m n), signifying the number of rows and columns
* (m,dsgnifying asquare (m x m) matrix
or

* (A, amatrix whose dimension you want to match

r and random values

zZeros al zeros

ones al ones

15

For example,
» ones(t), wheret isavector generatesthe unit step function.
o y(t)=3+t, fort=0,12, ..., 10iscreated by entering
t=[0:1:10]; y=3*ones(t) +t

One last useful matrix creation function isdi ag. Hereisan example of its use:

x=[1 2 3 4]; X=di ag(x)

produces

QOO
O ONO
O woo
A~ O OO

2.5 Polynomials
Polynomials are represented as vectors containing the polynomal coefficientsin descending order.
T3he v oot s command finds roots of polynomials. For example, the roots of the polynomial
S +2s +3s+4 are found by

p=[1 2 3 4]; roots(p)
produces
ans =
-1. 6506
-0. 1747 + 1.5469i
-0.1747 - 1.5469i
The pol y command is used to form a polynomial from its roots. It returns the coefficients of the
polynomial asarow vector:

p=poly([-1 2])
produces

p:
1 -1 -2

A polynomial can be evaluated at a point using thepol yval command. Itssyntax is

ps=pol yval (p, s)

where p is a polynomial and sis the point at which the polynomial is to be evaluated. The input s
can be avector or amatrix. In such cases, the evaluation is done element by element. For example,
consider the polynomial p(s)=(s+1)(s+2):

p=[1 3 2]; s=[1 2;3 4]; polyval (p,s)
gives

16

ans =
6 12
20 30

Polynomials are multiplied and divided using the conv and deconv commands, respectively. The
residue command performs partial fraction expansion.

2.6 Conclusion

Y ou should now have a basic understanding of how to use MATLAB to perform simple matrix
operations. At this time, it would probably be a good idea for you to try a complete problem on
your own. It is recommended that you select a problem that you know the answer to, so you can
verify that you have solved it correctly. Feel freeto choose one of the problems below.

2.7 Sample Problems

1If

3 1 4 1
A=|-2 0 1l|jandB=|-3 1

1 2 2 2 -4
compute:
(@ 2A (b) A+B (c) 2A-3B
(d) 2A)T-(3B)"T () AB (f) BA
@ATBT (h) BA)T

2. Solve the following system of eguations:
2x,tx, +x, =4
X, - X, +2x, =2

3x,- 2x,- x, =0

3. Calculate the eigenvalues and eigenvectorsfor A and B in#1. (Hint: ei g)

17

Answers:

6
1.(a) |-4

6 3 2 2 3 5 -4
2] (c) [5 -3 -1} (d) [2 -3 16]
3 -4 16 1 2 -1 1

8 -15 11 5 -10 15
(e) [o -4 -3} Q) [0 -1 -9} (g) and (h) [5 -1 4}
-1 -6 6 15

8 -9 6

N

o o
o
©

I
[}

2. x=(1 1)
3. If you used these commands
[Avec,Aval]=eig(A)

[Bvec,Bval]=eig(B)

you got the right answer. Y ou should have used help eig to find out how to do this.

18

3. Plotting Tutorial

MATLAB has a very strong graphic capability that is well suited to scientific and engineering
applications.

3.1 Creating Simple X-Y Graphs

Create the data.
First you must have some datato plot. Enter the following linesinto the command window:

t=(0:pi/36:2%pi)";
y1=2*sin(6*t); y2=3*cos(2*t);

Plotting a single set of data.
To ploty1, enter the following command:

plot(yl)

Notice that if a vector is presented to the plot command, it plots the values against the index
number of each value. The exception to thisis if the vector contains complex numbers, then the
vector is plotted as the imaginary part versus the real part. To illustrate this, type in the following
command:

plot(t+2*t*i)

The result of this should be a straight line beginning at (0,0) and ending at (2* pi,4* pi).
To plot y1 vs. t, issue the command:

plot(t,yl)

Plotting multiple lines.
To plot multiplelines (e.g., y1 and y2), enter the following command:

plot([yl,y2])

Or to plot these samelines vs. t:

plot(t,[yl y2])

However, for reasons that will become apparent shortly, the following command is often preferable:

plot(t,yl,t,y2)

19

3.2 Taking Control of the Plots
It is OK to be able to create these plots on the screen, but usually, you need a hardcopy of the
graphsaswell. In thissection, you will find out how to print, add titles, gridlines, and axis labelsto
your plots. In addition, you'll see how to control the axis scaling, proportion, and line types and
colors.
Changing line types and colors.

Let's say that you wanted to plot y1 asagreen line, and y2 as a series of blue circles with a dashed
red line through them. Y ou would issue the following command:

plot(t,yl,'g" ,t,y2,"bo" ,t,y2,'r--")

Notice that the format is as below, and that you cannot plot lines and symbols in the same option
string.

pl ot (xdat a, ydata, ' options',...)

Thefull list of optionsis shown in the table below:

Line Types Point Types Colors
- solid . point y yellow
-- dashed |O circle m magenta
dotted X x-mark c cyan
- dashdot |+ plus r red
* star g green
s square b blue
d diamond w white

v triangle (down) |k black

triangle (down)

< triangle (left)

> triangle (right)

p pentagram

h hexagram

Try, on your own, to plot y1 as awhite dotted line and y2 as ared dash-dotted line.

Adding titles, grids, and axis labels.
To add grid lines, type

grid

To add atitle, type

title('Your title information goes here.')

To add axislabels, type

x|l abel (" Tinme (sec)"')
ylabel ("V (volts)')

If you want to add a variable's value to a string, use something like this:

plot(t,yl+y2,'w-")
M=200;
title([' Response @M=" nun2str(M ' Ibs.'])

Seethe MATLAB Reference guide for more about this function and using strings or type:
hel p nungstr

Controlling the plot axis scaling.

If you noticed, MATLAB automatically selected the plot axis scales for you. This may not always
produce the desired result. The command used to change thisistheaxi s command. Theaxi s
command, like many MATLAB commands, is a multi-purpose command. For the first sample of its
use, type:

y3=cos(t); yd=sin(t); plot(y3,y4)

Notice that this should be acircle, but does not look like one. Now issue the following:

axi s('square')

Now it looks more like a circle. The square option of axi s tellsMATLAB to placethegraphina
square box. Try also axi s(' equal '). Toreturnto the default axis scaling with a rectangular
box, type

axi s(' normal ')

The second way to use axi s isto manually specify the x-y ranges to show in the box. Type

axi s([0 2*pi -5 5])
plot(t,yl,t,y2)

Theformat for theaxis-vectoris: [xmi n xmax ym n ymax]
To return to the default mode with automatic ranging, type

Axi s auto

Printing a graph.

Thefirst step isto create the desired graph in the graphics window.

21

The print facility in MATLAB simply dumps the current graph window to the printer. The details
on how to accomplish this vary from system to system.

To print the current contents of the Graphics window :
» Fromaworkstation, type

print

e FromWindows MMATLAB

use the menu bar in the graphics window

3.3 Advanced Graphing Stuff

Not everyone will need the following, but you'll be a better person for knowing that these options
are available to you.

Clearing the graphics window, holding a plot, and adding text.
To clear the graphics window, type

clf

To hold aplot so that other lines can be added, type

hol d on

And to release them so that the next plot command clears the old graph, type

hol d of f

To add text anywhere in the graphics window, usethet ext or gt ext command. To find out how
touseit, typehel p text or hel p gtext.

Creating logarithmic plots.
To create a log-log or semilog plot, first plot the data using the pl ot command, and then type
one of the following:

| ogl og(..)
sem | ogx(..)
sem | ogy(..)

Making subplots.

Thisoneisalittle more complicated, but it is still not too bad. Asalways, refer to the manual or the
help facility for moreinformation. Let's create two separate plots, one above the other.

First, tell MATLAB that you want to divide the graphics window:
subpl ot (211)

This number's digits can be broken down, in order, asfollows:

2 =two "rows" of plotting boxes
1 =one"column" of plotting boxes

1 =makethefirst plot box active, i.e., MATLAB will send the next plot command
to the first box.

Windows are numbered from left to right and top to bottom.
Type

plot(t,yl), grid

ylabel ("y1'), xlabel ("t'), title('Gaph 1')
subpl ot (212), plot(t,y2), grid

ylabel ('y2'), xlabel ("t"'), title('Gaph 2')

Watch the results carefully. The subpl ot command advances to the next graph box. Now type
this

plot(t,y3)
Did you notice that the second graph was replaced when the third pl ot statement wasissued? If
you had wanted to make four separate boxes, you could have used

subpl ot (221)

3.4 Examples

(1) The equations for Mercury's orbit about the Earth are given by the following parametric
equations:

x(¢) = 9300s¢ +360054.15
Wt) =93ant +369M1y

After 7-1/3 revolutions we get the following curve called an epitrochoid. Compute the vectors x
andy and plot them against each other:

t=[0: pi / 360: 2*pi *22/ 3] ;

x=93*cos(t)+36*cos(t*4.15);

y=93*si n(t) +36*si n(t*4. 15);

pl ot (x,y),axis('square')
produces

150y

100

50

-100}

-150l s . L L L
-150 -100 -50 0 50 100 150

(2) The equation of afour-leaf figurein polar coordinatesis r=cos(2q). The angle must be in radians
for thepol ar command.

t h=[pi / 200: pi / 200: 2*pi] " ;
r=cos(2*th);
polar(th,r)

produces

(3) The equation for the Archimedes spiral is given by r=Kq, K>0.

t h=[pi / 200: pi / 200: 2*pi] ' ;
sa=th/ (2*pi);
pol ar(th, sa)

produces

24

(4) The parametric equations of acircle with radiusr and center at (a,b) are given by
x(t) =rcog(t) +a
y(@) =rdn(t)+b
ie, (x-a)y+(y- b} =r
t=[0:0.1:2*pi];
a=2; b=1;
x=cos(t) +a;

y=sin(t) +b;
pl ot (x,y),axis('square')

T

produces

4. Transfer Function Tutorial

4.1 MATLAB and Transfer Functions

MATLAB, with the addition of the Control System Toolbox, can do quite a lot with respect to
system analysis and simulation with transfer functions. This toolbox was written to handle the
most general cases possible and can even accommodate MIMO (Multi-Input, Multi-Output)
systems. This tutorial will only describe how to use MATLAB with SISO (Single-Input, Single-
Output) systems. Keep this in mind when using the help facility for functions described here
because some of the explanationsinclude MIMO information.

MATLAB has very few limitations regarding transfer functions, the main one however is that the
transfer function must be in polynomial form. There are, as will be discussed later, ways that
MATLAB will help you get polynomia form from say pole-zero format; but nonlinear terms, like the
exponential time-delay, are not valid.

Inthistutorial, you will:
e learn how to manipulate TF's,
* learn how to generate Root L ocus, Bode, Nyquist, and Nichols plots,
* learn how to simulate the responses of TF's,
» and be shown acomplete analysis example.

This tutorial, however, makes no attempt to describe the development or "teach” these topics to
thereader. Itisassumed that the reader already has that knowledge.

4.2 LTI Models

Y ou can specify linear time-invariant (LTI) systems as transfer function (TF) models, zero/pole/gain
(ZPK) models, state-space (SS) models, or frequency response data (FRD) model. You can
construct the corresponding model s using the constructor functions.

sys = tf(num den) % transfer function
sys = zpk(z,p, k) % zer o/ pol e/ gai n
sys = ss(a,b,c,d) % st ate space

Sys frd(response, frequencies) % frequency response data
To find out information about LTI models, type

| ti nodel s

The output sys is a model-specific data structure caled a TF, ZPK, SS, or FRD object,
respectively. These objects store the model data and enable you to manipulate the LTI model as a
single entity. For example, type

h = tf(1,[1 1])

26

Thisresultsin :

Transfer function:

4.3 Transfer Function Basics in MATLAB

Transfer function representation

In order to handle TF's, MATLAB has a specific format that must be followed. If G(s) is your
transfer function in thisform (a system with m zeros and n poles) :

_B(s) _bs"+bs"+..4b s+b,
A(s) a,s"+as+.ta, sta,

G(s)

In MATLAB, the same system would be represented by two vectors containing the coefficients of
the numerator and denominator in descending powers of s:

B=[b b .. b b]
A=[a, a, .. a_, a]
. . ‘41
For example, lets say that G(s) is to be used in MATLAB where, G(s) =27 The

$ 4252 +3s5+4 "
numerator and denominator polynomials would be as follows, type:

gnume[1 0 1]
gden=[1 2 3 4]

Notice that the "missing” power of sis shown as a zero in the numerator. Similarly, if you want to
represent H(s)=s, hnum=[1 0] andhden=[1] .

Finding poles and zeros.

Since the poles and zeros are simply the roots of the denominator and numerator, respectively, the
r oot s commandisused. For example, what are the poles and zeros of G(s) above? Type:

pol es=r oot s(gden)
zer os=root s(gnum

Thisresultsin :

pol es=
-1. 6506
-0.1747 + 1.5469
-0.1747 - 1.5469

zeros=
0 + 1.0000i
0 - 1.0000i

27

(In case you were wondering, this command works with any polynomial, as long as the powers of
the independent variable are in descending order.)

If you have defined a system as, for example, sys = tf(gnum gden), then the following
commands give the same results as the above.

pol e(sys)

zero(sys)

Multiplying TF's.

To multiply two polynomials together, you use the command conv. For example, if you have

H(s) = %1 and you want to multiply G(s) and H(s) simply issue the following commands:
S

hnume[1 0]; hden=[1 1];
ghnumeconv(gnum hnum)
ghden=conv(gden, hden)

Thisresultsin:

ghnunr

1 0 1 0
ghden=

1 3 5 7 4

There is a better way to "connect” two blocks in series, but this command is often useful. If, for
example, you had the poles and zeros of a system, this command could be used to help create the
equivalent transfer function:

z1=-1-i; z2=-1+i;

pl=-1; p2=-3-.5%i; p3=-3+.5%;
num=conv([1 -z1],[1 -z2]);

den=conv([1 -pl],conv([1 -p2],[1 -p3]));

resultsin

nume=
1 2 2
den=
1.0000 7.0000 15.2500 9.2500

Partial fraction expansion.

To get the partial fraction expansion of a TF, you use the command r esi due. To demonstrate
this, there are three examples below, each representing one of the three major cases in partial
fraction expansion.

28

s +5s°+9s+7

Example#1: Distinct real poles. Let E (s) =
s°+3s+2

. Toenter El(s) into MATLAB :

elnunr[1 5 9 7]; elden=[1 3 2];

To perform PFE:
[rel, pel, kel] =resi due(elnum elden)

Thisresultsin:

rel=

-1
pel=
-1
-2
kel=

The variable r e1 represents the numerators of the expanded fraction, the variable pel represents
the poles of the new denominators, and the variable kel represents the constant terms. In other
words, usingr el, pel, andkel, the TF can be represented as follows:

2 1

s+l s+2

Eqi(s)=(s+2)+

Seehel p resi due for adescription of the general format.

e . +1) .
Example #2: Digtinct imaginary poles. Let E,(s) = 3j_—2+ . Enter thisTFinto MATLAB:
A S S

e2nune[1 1]; e2den=[1 1 1 0];
perform PFE:

[re2, pe2, ke2] =resi due(e2num e2den)

resultsin:

re2=
-0.5000 - 0.2887
-0.5000 + 0.2887
1. 0000
pe2=
-0.5000 + 0.8660
-0.5000 - 0.8660
0
ke2=
[]

This corresponds to:

E,(s) == 0.5- 0.2887i 4 0.5+ 0.2887i w1
s+0.5-0.866i s+05+0.866i =

s*+45+6)
Example #3: Repeated poles. Let E,(s) =————————_. EnterthisTF:
§T+3° + 35 +1

e3nune[1 4 6]; e3den=[1 3 3 1];

Have MATLAB perform PFE:
[re3, pe3, ke3] =resi due(e3num e3den)

Thisresultsin:

1. 0000
2.0000
3. 0000

-1.0000
-1.0000
-1.0000
ke3=
[]

In expanded form:

1 2 3

E (s)= + +
° s+l (s+1)7 (s+1)

This example was rigged so that you would be able to see how to create the expanded form from
re3, pe3, and ke3. It isup to the user to recognize what to do with repeated polesin an answer. Be
aware that the first "numerator" in a series of repeated poles corresponds to the first power
denominator, and so on.

4.4 Connecting block diagrams of TF's

There are several commands that are designed explicitly for deriving system transfer functions from
the connection of its component blocks. These commands are

series to connect two TF'sin series
f eedback to connect two TF'sin feedback
paral | el to connect two TF'sin parallel

To maintain brevity, this tutorial will only describe how to use these commands. The help facility
for these functions is very good. Trying out examplesis |eft to the reader. Also note, that these
blocks are for SISO systems only when using transfer function notation.

For all of the following descriptions, assume that you have already defined G(s) and H(s), and that
the connected system transfer function is F(s).

Series connections.

To connect G(s) and H(s) in series:
[Fnum Fden] =seri es(gnum gden, hnum hden) or
Fsys=seri es(gsys, hsys)

where gsys = tf(gnum gden) and hsys = tf(hnum hden)

Unity feedback.
To connect G(s) in unity feedback:

[Fnum Fden] =f eedback(gnum gden, 1, 1, si gn) or

Fsys=f eedback(gsys, 1, 1, si gn)

where, si gn=+1 for positive feedback, andsi gn=- 1 for negative feedback.

General feedback.

To connect G(s) and H(s) in feedback, where G(s) is in the feedforward path, and H(s) is in the
feedback path:

[Fnum Fden] =f eedback(gnum gden, hnum
hden, si gn) or

Fsys=f eedback(gsys, hsys, si gn)

Parallel connection.

To connect G(s) and H(s) in parallel:

[Fnum Fden] =par al | el (gnum gden, hnum hden) or

Fsys=paral | el (gsys, hsys)

Notice that thereisnosi gn option here. It isassumed that the outputs are added together.

31

4.5 Transfer Function Analysis Plots

Severa analysis plots are available in MATLAB. The most commonly used commands are listed
below. Some of these commands have useful subcommands associated with them, these are
discussed in their respective sections.

rlocus Evan'sroot locus plot

bode Bode diagram

nyqui st Nyquist plot

ni chol s Nichols plot

These analysistools will be demonstrated by example.

Evan's root locus.
This function calculates (and optionally plots) the closed-loop poles of an open-loop transfer

function at different gains. The gain isassumed to be applied in the feedforward path, and it isalso
assumed that there is negative feedback.

Assumethat G(s) = 1 1 in the feedforward path, and H (s) = 12 isin the feedback path.

si+s+ o+
To make aroot locus plot of the closed-loop system:

gsys=tf([1 1],[1 1 1]);hsys=tf(1,[1 2]);
ghsys=seri es(gsys, hsys);
rl ocus(ghsys);

To find out numerical values for specific closed-loop poles, you can specify again vector:

K=0: 1: 100; cl pol s=rl ocus(ghsys, K);

Associated commands are r| ocfi nd and sgri d. Use help to find out more about r | ocus,
| ocfind,andsgrid.

Bode plots.
Thiscommand isused in asimilar manner to that of r | ocus.
Assume that we want to make an open-loop bode plot of the same G(s) and H(s) as before, type:

bode(ghsys)

Or, if we want to make a closed-loop bode plot:

sys=f eedback(gsys, hsys, -1);
bode(sys)

Notice that the units of the plot are db and degrees. If numerical values for phase and gain
amplitude are desired, you can make a frequency vector:

32

w=l ogspace(-2, 2, 100);
[mag, phase] =bode(sys, w) ;

Unlike the plots, the units of mag and phase are magnitude ratio and degrees. An associated
command that you may want to use is mar gi n. This command calculates the gain and phase
margins of asystem. Seehelponl ogspace, mar gi n, andbode.

Nichols and Nyquist plots.

The commands for these plots are ni chol s and nyqui st . Itisno mistake that these too work
inasimilar manner. Try thefollowing

ni chol s(sys)
nyqui st (ghsys)

Seeasongri dand margin.

4.6 Simulating TF System Responses

Several simulation algorithms are available to help characterize the response of atransfer function
toaninput. Therearethree main commands that you can use;

step calculate the system's responseto a step

i mpul se |calculate the system's response to an impulse

l sim calculate the system's response to a user supplied input

The help facility on these commandsis also very good.
Step response.
To calculate a system's unit step response and plot it, simply type:

st ep(sys)

To calculate a system's step response and get numerical val ues out, type:

[y,t]=step(sys);
or

t=0:.05:10; [y, x]=step(sys,t);

Where y is the system output, X is the state history (don't worry about it if you don't need this),
and t isthetime vector used during the simulation. Notice that you can specify the time vector, or
let MATLAB automatically select one.

Impulse response.

To calculate asystem's response to an unit impulse input and plot it, type:

i mpul se(sys)

To get numerical values, use the same format asfor st ep.

General input response.

The only two main differences between this and the above isthat 1) you must create input and time
vectors, and 2) MATLAB will not automatically plot the response. Let'stry aunitramp input:

t=0:.05: 10;

u=t;

y=l si m(sys, u,t);
or

[y,ts]=lsimsys,u,t);
plot(ts,y,t,u);

This command is very powerful for simulating systems. The most difficult part becomes creating
the input.

4.7 Conclusion

At this point, you should be able to usetransfer functionsin MATLAB reasonably well. Thereisa
lot more that can be done with MATLAB in this manner, and you are encouraged to use
MATLAB's help facility to find out more.

4.8 A Complete Example

. +50
Lets assume that we have a transfer function G(s) = > . We want to create
s*+401s* +13.04s +013

root locus plots, OL bode plots, CL bode plots, and simulate this system's CL and OL responseto a
step input and an impulse.

Define the transfer function:

nune[1 5];
den=[1 4.01 13.04 0.13];
sys=tf(num den);

First find out the poles and zeros:

ol pol es=pol e(sys)
ol zeros=zero(sys)

Second, get the root locus plot:

rl ocus(sys)

Lets pick again to usefor the closed-loop system:
[k, pol es] =rl ocfind(sys)

Use the mouse to pick some point along one of the branches. Notice that this function also returns
the CL polesinpol es.

Create OL bode plot:
bode(sys)

Now let's build the closed-loop system using the gain you selected with rlocfind.
syscl =f eedback(k*sys, 1,1, -1)

Let'stake alook at the CL bode plot:

bode(syscl)

Finally lets simulate the system's CL and OL response to a step input and an impul se.

ysol =st ep(sys);

yscl =st ep(syscl);

yi ol =i npul se(sys);
yi cl =i npul se(syscl);

4.9 Rltool Example

Another useful tool for transfer function analysis and control design for single-input/single-output
is the command rltool. Start it by typing rlteel in the command window. The following window
should appear. If you want help about a button move the mouse over the button or go to the help
menu.

es cetirgs. |G 5] 20om 2]50]20 |08
™ Step [Impudse [Bode T Mpgust [Michals
Fleady l

Root L ocus Design Window

To use this tool import a model into the program. For this example enter the following transfer
function into the command window.

_ 0.0222
s +0.11115 +0.872

Matlab Command
G=tf(0.02222, [1 0.1111 0.872])

Import the model into the program,
Select File]lmport Model

The following window should appear in which you can select the model from the workspace.
Import it by clicking on the arrow next to the letter P. Once you import the model you can look at
the bode plot and step response by sel ecting the appropriate boxes.

— Pl s — - Wwipoceiete — r[wm—"
T [
||=
wi
— htfim
£ g L
™ Wi EII 3
I PIEA]
: | — S|
o flim] | e

Window to Import Model

T Tl S
CHPY S—
a
1
:
g == -_.1
i
&
Formascy puk'oni]
s Remcares
X
Firmm o |

||.h

53

Step Response and Bode Plot

The next step is to specify the desired performance. For this example, there are two performance
criteria

U, greater than 1.8 for arise time specification

Damping ratio greater than 0.5 for an overshoot specification

Show these design specifications on the root locus
- Select Tools|Add Grid Boundary (the following figure should appear)
Add agrid by selecting Grid on?
Input the values for the natural frequency and damping ratio
Select the appropriate boxes and click apply or OK

¢ <Student Version> | Giid and Conslrai... m

% Damping Fatio and Nabursl Frequency
™ Peak Overzhoot [FO)

W Gndon?

Add constraints for
™ Sebling Time =]
| Darging Ratio = (5
FF Matural Fiequency = [78

ok | cancet| e | [epy |

Add Design Specifications

The root locus plot should now show the acceptable region for the close loop poles. The next step
isto design the compensator.

Select Tools|Edit Compensator (The following figure should appear)

Add azero at—1 and apole at—10

Click on OK

¢ <Student Yerzsiony © Edit Compensalon

ome: [ce
| Zeros | Polas
| Delele HAeal Imaginary | Delsle Feal Imaginary

I T T I A

Edit Compensator Window

37

Asyou can see, the root locus changed shape, and the next step is to select an appropriate gain to
move the closed loop poles. Do this by selecting the poles with the mouse and moving them to the
desired location as in the following figure. You can aso type the value for the gain into the
corresponding box.

¢ Shudent Versions © Root Locws Dezign; aps -mﬂ

Rl

[Gan [1457751 | [F e |

I 5ep [Impuis I Bote: [Hyqust [Nichoh
Drag the seleched closedoop pole pais along thei Foci
eationd: -3.7180 8371 Damprrg. 0.955: Mah Lo

Root Locus Plot

To analyze your design, various plots are available, which are seen in the bottom of the window.
Plot the step response and the bode plots for the closed loop system by selecting the appropriate
boxes. They should appear like the following figure. Asyou can see the steady state error is too
large. Toimproveit we will add alag compensator.

Fe Tak Hep
B Disgumy
g
1 —=— S
i- —
£ —
Frésprancy (riginec)
Huli_lllpm,l
Tired s

| L8 Wit ¢ i s gt i | s 3

Step Response and Bode Plot

Create a lag controller by adding a pole and zero at the listed locations. The root locus should
changeto look like the following figure.

zero at—0.5

pole at —0.025

Hool Locus Design: sps

Fla Took: ‘Windw Help

Cirrert Compensalor L 4 S
Gainis+1 O0li5+0 501] ~el-E

2+ 1015 +

o
IEQ'.-; 148719 IF Gind I
1

Root Locus Plot

Plot the step response and bode plot again for this system. By right clicking on the plot window a
menu pops up with pull down lists. If you select Characteristics, more options will appear

depending on the plot you selected. The following table lists the options available for the step and
bode plots.

Step Response Bode Plot
Peak Response Peak Response
Settling Time Stability Margins
Rise Time
Steady State

Display information about the rise time, overshoot, and steady state error on the step response.
Select Characteristicg|Rise Time
Select Characteristics|Peak Response
Select Characteristics|Settling Time

Display information about the phase margin on the bode plot.
Select Characteristics|Stability Margins

A point appears representing the rise time, and if you click on the dot it will display the value for
the rise time. You can do the same with the other points. The graphs should appear like the
following figure.

LTI ¥iwwer for Heod Leour Besgn: eer

Fie Toai Hep
Hede Cragmna
7]
a
£
2 0
i
= -+
Friquarcy (rndis]
Siep Feapanine
-
T R S R S o B T A GEgimisastag
3 ;
i
Tiwwa fear §
|Mummm-iMWHWHwnm

Step Response and Bode Plot

Another useful feature is the ability to quickly see changesin the root locus as poles and zeros are
moved. For example, select the pole at the far left and move it towards the origin. How does it
changetheroot locus? Try thiswith the other poles and zeros.

5. Simulink Tutorial

5.1 What is Simulink?

Simulink is an extension of MATLAB that assists in the building of simulations. Simulink models
are created much like a block diagram is created, i.e., by connecting up blocks and subsystems.
Simulink is a VERY powerful simulation tool, and this tutorial is only a brief introduction to it. If
you have a need for more information, refer to the Simulink manual. This tutoria is intended to

40

only give an introduction, and get you started as a Simulink user. With the knowledge you gain
here, you should become able to use Simulink at areasonable level of proficiency.

5.2 Simulink's Structure

To be able to use Simulink effectively, you must understand something about how the program is
structured.
Blocks

A Simulink block is a subsytem with inputs and/or outputs. Within the block, some rule exists that
relates the input and output. Blocks can be almost anything. Laplace transfer functions, nonlinear
relations, signal sources, and signal display devices are all examples of the kinds of blocks
available.

Models

A Simulink model is a collection of individual blocks, connected in such a way that they form the
model for a specific system or perform a specific task.

Libraries

A Simulink library is actually a special type of model. These libraries are collections of blocks that
are used by you to create other models. You can, if you like, create your own libraries of commonly
used blocks simply by copying the blocks you want into a model window and saving the new
"model."

Workspace

The regular MATLAB workspace is important in Simulink. It allows you to start the Simulink
interface and collect simulation data for further manipulation. In the workspace, you can aso
control important simulation variables.

Simulation

In order to simulate a block diagram, an integration method must be chosen. The choice of method
depends on the type of system to be simulated.

5.3 Simple Simulink Tasks

In this section, you will be taught the basics of Simulink. To do this, you will create a simple model,
and run asimulation.
Starting Simulink.
Simulink can only be run from within MATLAB. To start Simulink, type
si mul i nk
from the command window. Y ou can also start Simulink by entering the name of a model that you
already created.
Using the Simulink Master Library.

Once Simulink is started, a small window is opened that contains some blocks with titles under
them. Thisisthe Simulink Master Library. All of the blocks that were supplied with Simulink are
accessible from thiswindow.

Simulink's blocks are organized into categories, subcategories, subsubcategories, etc. Currently,
you are looking at the top level of thislibrary. Tolook at the next level down, click on the plus sign

41

next to the desired category, or double click the category name. All of the basic blocks are foundin
the Simulink category. For example, click on the Simulink plus sign, then again on the plussignin
front of Sources. This opens up the source block library. Alternatively, you can right click on the
name of a category to open up the library in its own window. At some point, now or after this
tutorial, you should go on a“tour” of the Simulink libraries. Look through all of the libraries to see
the extent of blocks that are available. This will assist you later when you are building you own
models.

To close this library, click on the minus sign next to the category name or you can select File|Close
if awindow isopen. The same method is used to close all Simulink windows including the Master
Library.

It is strongly recommended that you close the libraries once you get what you want from them.
This will keep your workspace from getting cluttered, and will improve the stability of Simulink.

K eeping them open gobbles up your available memory.

Now, let's create anew model for this demonstration.
* Click ontheicon with ablank piece of paper

Thiswill open anew window similar to the first, but without the blocks. Y our new fileis now ready
for you to build your simulation.

To saveamode file,
» sdect File|Save or File|Save As

It is recommended that you do this often. Simulink files are saved with extension, mdl.

Copying blocks between/within windows.

To place a block into your model, first that block must be displayed in the library. Let's copy a
Signal Generator block in your file.
» Openthe Sources library from the Master Library (if it is not already).
* Then, using the left mouse button, click and drag the Signal Generator block from the
Sources library to your model window.
* Releaseit.
Y ou have now copied this block to your file.
To copy ablock within your model, you use the right mouse button.

» Click and drag the Signal Generator block using the right button somewhere else within
your model.
* Releaseit.
This operation is a convenience when you need several copies of the same block or type of block
within amodel.

To continue the demonstration, go get copies of the following blocks:
Format: block_name (library)

» Scope(Sinks)
* Gain(Math)
* Mux (Signalsand Systems)

If you have trouble finding the blocks, you can enter its name in the search box next to the
binocular icon on thelibrary browser.

Y our model window would look something like this.
42

oooo
[e]e} >

Signal Gain

|:| Generatorl

Scope %%DD ;I>

Signal
Generator

Deleting, moving, block parameters, connecting, branching and cleaning up model files
We do not need the second signal generator, so let's deleteit.

» Withasingleclick of the left mouse button, select the second signal generator.

* Pressthe delete key.
Itisgone. Thissame method can be used to delete anything within a model, including connections
and text.

Lets move the individual blocks into a more logical order (preparation for connecting them). To
move ablock,

» simply click and drag it to its new location with the left mouse button.
Order the blocks into approximately this configuration:

oooo

Signal Gain
Generator Scope

Most, but not all, blocks have block parameters associated with them. Block parameters define the
behavior of the blocks, and their use varies depending on the block type. For example, let's set the
gain block to have again of 2.5.

» Doubleclick onthe gain block to open its dialogue box.
» Editthegainvalue so that it reads 2.5, and click OK.

Block parameters can also be entered as names of variablesin the workspace. Y ou can aso change
the number of inputs on the Mux block. Go ahead and make the change. In these dialogue boxes,
you can also get help on thistype of block by clicking on the help button.

To connect the blocks, you use the small arrows on the sides of the block.

* Click onthe"out" arrow on the Signal Gen. block and drag the connection around. Notice
that the line behaves differently in free space and near an input arrow-tail.

* Release thelinein arandom location. Notice that it leaves the line's end in place with an
arrow head on it.

* Now click on this arrowhead and drag a new connection to the input of the gain block.

You have now connected the two blocks. (These operations also work dragging from the input
side of one block to the output side of another.)

To straighten this model up, delete the connection you just made. (Select the connecting line and
pressdelete.) Now connect up all of the blocks as shown below:

s Ty RN

Signal Gain
Generator Scope

To branch (solder) a new connection line onto an existing connection, you use the right mouse
button.

* Click on the connection from the Signal Gen. block with the right mouse button,

e dragit straight downward.

e Then using the same techniques described above, connect this branch to the second
input on the Mux block as shown below.

0ooo
o >3]
Signal Gain
Generator Scope

To clean up model files, it is often useful to move several blocks around and alter connecting lines.
To group some blocks together for moving, copying, or deleting,

» simply click with the left mouse button and drag a rectangle around the blocks that you

want to alter.

* Now the grouped features are highlighted (small handles appear in the corners of the
blocks),

* and as far as editing goes, they will behave as one block. (This is different from
Edit|Create Subsystem.)

To modify aconnection line,

» firstyou selectit.
» Thenyou can grab any of the line's vertices and move them around.

Y ou can also change the names of the blocks to more descriptive names.

» Click onthetext below the gain block.
* Now that it is highlighted, it can be edited. If you press return, it adds a new line to the
name.
» Tofinish editing the block name, click elsewherein the model window.
Every block must have aname, and it must be unique.

Finally, you can change the size of blocks.

» Select thegain block.
» Drag one of the handles that appear at the corners outward from the center of the block to
makeit larger.

If a block is made large enough, more information about the contents of that block can often be
seen.

Play with these features until you get the following.

oooo

00 1]
Signal Gain
Generator

Scope

The reader is encouraged to explore Format|Flip Block and Format|Rotate Block on his/her own.

5.4 Running Simulations

The basics of running a simulation are very simple, so in addition to explaining this, you will be
introduced to several other useful aspects of Simulink that are related to simulations.

Controlling a simulation

To start a simulation, select Simulation|Start from the menu bar. If you do this with the current
model, nothing appears to be happening. This is because there are no 'open’ display devices on
the screen.

To stop the simulation, select Simulation|Stop from the menu bar.

There are several other parameters that the user can control in a simulation. These options are
summarized below:

Start Time When to start simulation (sec)

Stop Time When to stop simulation (sec)

Solver Options This controls the algorithm that Simulink uses to simulate your model.
(see descriptions below)
Variable-step solvers can modify their step sizes during the simulation.
Fixed-step solvers take the same step size during the simulation.

Max Step Size The largest time step the solver can take

Initia Step Size A suggested first step size

Relative Tolerance A percentage of the state’ svalue

Absolute Tolerance The acceptable error as the val ue of the measured state approaches zero

Theindividual solvers are described briefly below, including what they're good at solving and what
they are not.

oded5 --- The best solver to apply asa“first try” for most problems.

0de23 --- More efficient than oded5 at crude tolerances and in the presence of mild
stiffness.

0dell3 --- More efficient than oded5 at stringent tolerances

odel5s --- Use this solver if you suspect that a problem is stiff or if ode45 failed or was
very inefficient.

0de23s --- This method can solve sone kinds of stiff problems for which odel5s is not
effective.

0de23t --- Use this solver if the problem is only moderately stiff and you need a solution
without numerical damping.

0de23tb --- More efficient than odel5s at crude tolerances

discrete (varigble-step) --- The solver Simulink chooses when it detects that your model
has no continuous states

ode5 --- The fixed-step version of ode45

» ode4 --- The fourth-order Runge-Kuttaformula

» ode3 --- Thefixed-step version of ode23

* ode2 --- Heun's method, also known as the improved Euler formula

» odel --- Euler's method. Suffer from accuracy and stability problems. Not recommended
for use as anything except to verify results.

» discrete (fixed-step) --- Suitable for models having no states and for which zero crossing
detection and error control are not important

Watching a simulation
The scope block allows you to view asignal asit runs. To do this,

* Doubleclick on the scopeicon. Thisopensup asmall window with agrid.

» Before we start the simulation, change the horizontal range to 10 by clicking the
Properti es icon and changing Ti me range, and the vertical range to 3 by right
clicking on an axes and choosing Pr operti es.... Don't close the scope unless you no
longer wish to view it. Leavethisone open for now.

» Changethe Simulation|Parameters so that 0.01 is the maximum step size.

* Now select Simulation|Start.

Y ou should see a sine wave on the scope's grid. Let the simulation continue while you move on to
the next section.

Changing parameters "on-the-fly"

One of the nice features of Simulink is that you can alter some system parameters while the
simulation is running. Try this.

* Doubleclick the Signal Gen. icon.
» Select the sawtooth wave, and see how the scope graph changes.
e Try changing the amplitude of the input.
Some blocks even allow you to change their parameters while running a simulation.

* Openthegain block's dialogue box, and change the gain.
As soon as you select OK, the value has been changed. If you try to change a fixed parameter
during a simulation (e.g., the order of a transfer function block), Simulink will tell you that you
cannot do that or it will stop the simulation.

Play around alittle, but stop the simulation before continuing on to the next section.

5.5 Using the Workspace

This section will demonstrate how to pass information back and forth between Simulink and the
MATLAB workspace. To demonstrate this, we will use an entirely new example. Create anew file
as shown below.

4 »{ 5 > s+5
3 +42 +13s
Gain Transfer Fcn

Be sure to redefine the block parameters as follows:

e Sum(Math) ... +-

* Gan(Math) ... 5

e Transfer Fcn (Continuous) ... numerator [1 5] and denominator [1 4 13 0]
With this done, you can proceed.

Sending/Receiving data between the workspace and Simulink
There are two blocks that allow you to do this:
1. toworkspace (Sinkslibrary)

2. from workspace (Sourceslibrary)

Lets begin by using the "to workspace" block (it'salittle simpler).

e Modify your model so that it appears as shown below. The clock block is found in the
Sources library.

e The default variable name for To Workspace is si nout . This is easily changed by
double clicking on the block.

Be sure to change the data type from Structure to Matrix. While a Structure type holds more
information, Matrix is simpler to manipulate in the workspace.

The simulation will automatically send to the workspace the time stepsin the variable tout, but it is
always a good idea to add the clock setup to any system where you use To Workspace. Thisis
because most of the simulation algorithms use adaptive step sizing, and thisis the simplest way to
record the time vector associated with asimulation.

For this simulation, a maximum number of rows equal to 1000 is adequate.

oooo

00 +_ }{ 5 > 43 > yout
S+42 +13s

Signal Gain Transfer Fcn To Workspacel

Generator

O—>
Clock

To Workspace

Before you start the simulation:

* Changethe Signal Generator to create square waves with afrequency of 0.5 rad/sec.

» Change the Simulation|Parameters|Solver options to ode45, the stop time to 30 sec, and the
max step sizeto 0.1 sec.

e Start the simulation.

e You'll hear a beep when the simulation is done. Now that the system output is saved in a
workspace variable, it can be manipulated and plotted like any other simulation variable.

To see the results of the simulation, open the MATLAB command window andtype
plot(t,yout)

Theresult looks like this:

a7

10

15

20 25

30

A To Workspace block can be connected to each branch that you desire the datafor (with different
variable names of course). However there is a more efficient method. By using the Mux block from
the Connections library, a multiple-column matrix can be stored in one variable.

For example,

» modify your model to be as shown below:

yout

0o
5] P{ 5 P 5*5
3 +42 +13s
Signal Gain Transfer Fcn
Generator

Clock

t

To Workspace

To Workspacel

* Now run the simulation and issue the same pl ot statement in the command window.
Thereisnow asecond line on the graph. The first and second columns of yout correspond to the
first and second inputs to the Mux block, the signal generator output and the system output.

15

05 |

-05 H

-1.5

15

20

25

30

The block From Workspace works in asimilar but different manner. Substitute a From Workspace
block for the Signal Generator and label it as shown in the figure below. With the From Workspace
block, the workspace variables, [T,U], must be defined in the workspace prior to starting the
simulation.

To define[T,U], use the following statements: (don't forget the transpose operators and the ;)
T=[0:.05:30]";
U=(2*sin(T)+cos(3.3*T));

Simulink will interpolate between the data points as it simulates.

o Start the simulation.
* From MATLAB, plot the results using the same command as before. Simulink used your

input to the system.
s+5 yout
mu) & ’{ 5 >
' 3 +42 +13s To Workspacel
From Gain Transfer Fcn
Workspace

@—P t

Clock

To Workspace

The result should be

That is essentially all that you'll need to pass data back and forth between the workspace and
Simulink. There are also blocks within Simulink to load values from files. It isleft up to the reader
to figure these out.

Getting a workspace linear model for a system.

MATLAB has acommand | i nnod that allows the user to create a state-space model of a Simulink
model file. Thistutorial will only explain how to use this command with linear systems. (I i nnod
can also be used with nonlinear systems to produce alinearized system.)

49

* Moaodify the model that you just created to the following and save it assimtutor.mdl.
» Thelnland Outl blocks are contained in the Signals and Systems library.

45

& 5 > | outl
Il S +42 +13s
Gain Transfer Fcn

@—P t

Clock

To Workspace

For MIMO systems, the numbers that you assign to the Inports and Outports become the order of
the inputs/outputs for the | i nnod system. One limitation to keep in mind here isthat Inports and
Outports can only handle scalar quantities.

Now lets create the state space model for this system:
[A B C D =linnmd('sinmutor')

For those who wish to use transfer function notation, you can then issue the command
[num den] =ss2tf (A, B, C, D)

See hel p |inmodandhel p ss2tf for moreinformation.

5.6 Creating Subsytems

For simulations of large systems, it is recommended that the system be broken down into smaller
parts. Thisisdone using Edit|Create subsystem from the menu bar.

» Click theleft mouse button in aclear area of the window.

» Drag arectangle from this point so that you have surrounded the entire model except the
in and out ports.

* Releasethe button. All of the blocks except the ports will be highlighted.

» Select Edit|Create subsystem, and now the model should look like this:

You can now treat this block like any other block that you might use. You can give the block a
name, copy it to other models, copy it within the same model, etc.

Outl

‘

—‘
Inl1
In1 Outl

Subsystem

To seethe new block's component parts and edit them,
» doubleclick onthe"grouped" block. Thiswill open another window.

5.7 Masking Subsystem

By masking a subsystem you can build your own Simulink block that is composed of the built-in
Simulink blocks and behaves the same way as the built-in blocks do. Masking enables you to
customize the dialog box and icon for a subsystem. With masking, you can:

Simplify the use of your model by replacing many dialog boxes in a subsystem with a
single one.

Provide a more descriptive and helpful user interface by defining a dialog box with your
own block description, parameter field labels, and help text.

Define commands that compute variables whose values depend on block parameters.
Create ablock icon that depicts the subsystem’ s purpose.

Prevent unintended modification of subsystems by hiding their contents behind a
customized interface.

Create dynamic dialogs.

To create the mask for a subsystem, select the subsystem block and choose Mask Subsystem
from the Edit menu. The Mask Editor pops up with which you can define dialog prompts and their
characteristics, the masked block description and help text, and the commands that creates the
masked block icon. For detailed instructions on the Mask Editor, refer toHel p inthe Mask Editor.

Thefollowing is an example of a masked subsystem.

Reset
m :
W2
Clock Pulse
. Generator Pulse Memory on time
min. Accumulator
Tp — N
max
—>
Tp lirr reset
roses .D
1A off time [7 Pulse n
@ > Output -
Set p
Duty dl—u_;l“m set Hold ean
invert
&,

A

A complicated diagram made by the built-in Simulink blocks is masked into a block icon that has a
dialog box of its own.

Tp

Duty PWM}
A

Pulse-Width

Modulator

51

5.8 Linear Analysis Tool (LTI Viewer)

LTI Viewer is an interactive environment for comparing time and frequency responses of LTI
systems. The Viewer can contain up to 6 response areas, where each response area can show a
different response type and be independently manipulated. The LTI Viewer controls are found in
two main locations:

1. TheFigure menus (File, Tools, and Help)
2. Right click menus (from any axes displaying aresponse plot)

The Figure menus provide high level tools for manipulating datain the LTI Viewer, and configuring
the appearance of the Viewer.

File dlows you to Import/Export/Delete LTI Objects from the Viewer's workspace, or
Open/Close/Print the Viewer and related windows.

Tools opens additional windows for configuring the number of response areas to show on the
Viewer, aswell as setting up response and line style preferences.

Help providestips on using the Viewer and related windows.

Si mul i nk provides accessto Simulink model in use to get the linear model.

Theright click menus provide tools for manipulating the actual responses.

The LTI Viewer can be caled from Tools|Linear Analysis menu in the Simulink model file. When it
is called the LTI Viewer brings Input Point and Output Point block window for use in linear
analysis.

5.9 Creating Libraries

To create alibrary, selectLi br ar y from the New submenu of the Fi | e menu. Simulink displays
anew window, labeledLi brary: untitl ed. If anuntitled window already appears, a
sequence number is appended.

Y ou can create alibrary from the command line using this command.

new_system('newlib’, ‘Library")

This command creates anew library named' newl i b' . To display thelibrary, use the
open_syst emcommand. The library must be named (saved) before you can copy blocks from it.

I
Y el
library Y referance
block block
Library (Source) Model or Library (Destination)

52

It isimportant to understand the terminology used with this feature.

Library - A collection of library blocks. A library must be explicitly created usingNew Li br ary
fromtheFi | e menu.

Library block - A block inalibrary.

Reference block - A copy of alibrary block.

Link - The connection between the reference block and itslibrary block that allows Simulink to
update the reference block when the library block changes.

Copy - The operation that creates areference block from either alibrary block or another reference
block.

5.10 Conclusion

Y ou should be capable of building and simulating systems using Simulink at this point. Remember
that, if you have not done so, you should take some time to explore the libraries and see what is
there. Practice and experience will, of course, improve your knowledge of Simulink. It is
recommended that you try to model a simple system from beginning to end for practice.

There are extensive examples and demos available under the Extra library. Take alook at these to
see how more complicated systems can be built.

6. M-File Tutorial

MATLAB supports some basic programming structures that allow looping and conditioning
commands along with relational and logical operations. These new commands combined with ones
aready discussed can create powerful programs or new functionsin MATLAB.

6.1 Introduction to m-files

An mfileissimply atext file that is created to perform a specific task. M -files can be broken down
into two categories:

e Scriptfiles
e User functions

Script files are analogous to batch files. They are executed as if the user had entered the
commands directly, while user functions behave like the "built in" MATLAB functions. As a
matter of fact, many of the MATLAB functions are simply mfiles that were written by the
Mathworks.

The differences between these types of m-files are fairly simpleto understand. Because script files
are executed as if they were typed at the command prompt, variable references within the script file
affect the workspace. Functions, on the other hand, have an input parameter list and output

parameter list. Any variables used within the function are local and do not affect the workspace.

In this tutorial, you will be shown examples of both types of files and given a brief set of
commands that are special to (or most commonly used in) mfiles. To create your own miles, dl
that you will need is an editor that creates ASCII text files. The only restriction on this editor is
that it cannot insert anything other than ASCII charactersinto thefile.

MATLAB now has its own text editor and debugger for creating and editing m-files. The editor is
simple to use and has features specifically useful to MATLAB applications. Y ou can create anew
mile by going to File]New|M -File

6.2 Script files

examplel.m : A simple flow control demonstration.
This program will demonstrate the use of for-loops and if-then-elseif-el se statements.

This is a comment line. The %-symbol tells MATLAB to ignore
the rest of the line.

In addition, the comments at the beginning of ANY m-file are
considered to be the help screen for that function. The first
line that is not a comment terminates the help section.

o° o0 o0 d° o° o°

% this line will not be printed if
% help examplel
% is issued from the command line.

% defi ne some constants
t=li nspace(0, 1, 100);
% a, b, and c are assuned to be defined in the workspace

% cal cul ations in a for | oop

for n=1:100 % for |loop starts
f(n)=t(n)~5 + a*t(n)”3 + b*t(n) + c;
end % for | oop ends

%if statenent denonstration
if (any(f==0)) % are there any exact roots
di sp(' An exact root for f(t) was found in [0,1].")
el seif (any(f<0) & any(f>0)) % are there any roots
disp('f(t) has a root in [0,1]")
else %if none of the above conditions...
disp('f(t) has no root in [0,1]")
end

% pl ot results
plot(t,f), grid

In the workspace, enter the coefficients:
a=-40; b=-20; c=5;

Run the program by typing
exanpl el

Change the coefficients as follows:

c=100;

andrunit again.

Finally, try the program with
c=0;

This script file has created several variableswhileit wasrunning. Type
whos

If there had been other variables with the same name in the workspace, they would have been
overwritten by the script file. Keep thisin mind when you use script files.

Thedi sp command displays strings and variables without displaying the variable name.

Thefor-loop isbasically of thisformat:
for variable=start:increnent:stop
your commands
end

It is possible to nest for loops, but each one must have its own end statement. It isalso possible
to use amatrix as the loop variable. See hel p f or for information on this. See hel p whil e
for information on while-loops.

The conditional used in this program is the most general one possible. The statement must be of
thefollowing format :

if (conditional)
your commands
el seif (conditional) (optional)
your commands
el se (optional)
your commands
end
Theel sei f andel se partsare optional, and you can have nested conditionals.

example2.m : A demonstration of user input/output.

% This file demonstrates the use of user input in
% a script file. 1In addition, more complicated
% output is also demonstrated.

% get the user's desired value for search range and coeff's
tl ow=i nput (' Enter the | ower bound for t : ');
tup=i nput (' Enter the upper bound for t : ');

azinput (' Enter the first coeff : ');
b=i nput (' Enter the second),
c=input('Enter the third),

% defi ne some constants
t=li nspace(tl ow, tup, 100);

% cal cul ations in a for | oop

for n=1:100 % for |loop starts
f(n)y=t(n)~5 + a*t(n)*3 + b*t(n) + c;

end % for | oop ends

% define string to contain bracket e.g. '[0,5]"'
T=["[" numRstr(tlow) ',' numstr(tup) ']'];

% if statement denonstration
if (any(f==0)) % are there any exact roots
di sp([' An exact root for f(t) was found in ' T])
el seif (any(f<0) & any(f>0)) % are there any roots
disp(['f(t) has a root in ' T])
else %if none of the above conditions...
disp(['f(t) has no root in ' T])
end

% pl ot results
plot(t,f), grid

This script file demonstrates the use of the i nput command, and shows you how to incorporate
variable stringsinto adi sp command. Now run the program by typing

exanpl e2

and play around with the ranges and coefficients.

6.3 Functions

example3.m : A function with inputs only.

function example3(tlow,tup,a,b,c)
% This file is a simple function with no outputs

% defi ne some constants
t=li nspace(tl ow, tup, 100);

% cal cul ations in a for |oop

for n=1:100 % for |loop starts
f(n)=t(n)~5 + a*t(n)*3 + b*t(n) + c;
end % for | oop ends

% define string to contain bracket e.g. '[0,5]"'
T=["[" numRstr(tlow) ',' numstr(tup) ']'];

% if statement denonstration
if (any(f==0)) % are there any exact roots
di sp([' An exact root for f(t) was found in ' T])
el seif (any(f<0) & any(f>0)) % are there any roots
disp(['f(t) has a root in ' T])
else %if none of the above conditions...
disp(['f(t) has no root in ' T])
end

% pl ot results
plot(t,f), grid

return

This function is the same as the previous script file except that the user variables are now in a
parameter list. The only way that MATLAB knows that afunction is afunction and not a script file
ishy the f unct i on statement at thefirst linein the file. Thisstatement definesthe format for the
function.

To run thisfunction type
exanpl e3(0, 1, - 40, - 20, 5)
Notice that when you run this function, the workspace variables are unaffected.

example4.m : A function with a single output.

function status=example4 (tlow, tup,a,b,c)
% This file is a simple function with one output.

% defi ne some constants
t=li nspace(tl ow, tup, 100);

% cal cul ations in a for | oop

for n=1:100 % for |loop starts
f(n)=t(n)~5 + a*t(n)~3 + b*t(n) + c;
end % for | oop ends

% if statenent denonstration

if (any(f==0)) % are there any exact roots
status=0;

el seif (any(f<0) & any(f>0)) % are there any roots
status=1;

else %if none of the above conditions...
status=2;

end

return

Notice how the functi on statement has changed. Now the function will return a number
between 0 and 2 depending on whether roots were found.

57

Type:
exanpl e4(0, 1, - 40, - 20, 5)

Y ou should see the following :

ans=
1
Now type:

resul t =exanpl e4(0, 1, - 40, - 20, 0)

thisresultsin

result=
0

exampleS.m : A multi-output function.

function [root,status]=example5(tlow, tup,a,b,c)
% This file is a simple function with two outputs.

% defi ne sonme constants
t=li nspace(tl ow, tup, 100);

% cal cul ations in a for | oop

for n=1:100 % for |loop starts
f(n)=t(n)~5 + a*t(n)*3 + b*t(n) + c;
end % for | oop ends

%if statenent denonstration

if (any(f==0)) % are there any exact roots
st at us=0;
root =t (find(f==0)); % return the exact roots
el seif (any(f<0) & any(f>0)) % are there any roots
stat us=1;
for n=1:99 % find brackets of roots

if ((f(n)*f(n+1))<0)
root=[t(n) t(n+l)];

end
end
else %if none of the above conditions...
st at us=2;
root=[1;
end
return

Notice how the function statement has changed. In thisfunction, the roots (or bracketed ranges of
the roots) and the status will be returned.

Try thefollowing examples:

[r1,s1] =exanpl e5(0, 1, -40, - 20, 0)
[r2,s2] =exanpl e5(0, 1, - 40, - 20, 5)
[r3, s3] =exanpl e5(0, 1, -40, - 20, 100)

exanpl e5(0, 1, - 40, - 20, 5)

r4=exanpl e5(0, 1, - 40, - 20, 10)

Notice that if both output variables are specified, they are returned. Otherwise, only the first

output variable isreturned.

6.4 More M-file commands

Relational and Logical Operators

< less than & AND
<= |lessthan or equal [OR
> greater than ~ NOT

>= | greater than or equal

== equa|

~= | not equal

Flow Control Commands

if conditionally execute statements

el seif used with if

el se used with if
end terminatesif, for, while statements
for repeat statements for anumber of times

whi | e dowhile

br eak breaks out of for and while loops

return return from functions

pause [pause

59

Programming

i nput get numbers from keyboard
keyboard |call keyboard as mfile

error display error message

function define function

eval interpret text as command

f eval evaluate function given be string
echo enable command echoing

exi st check if variable exists

nar gi n get the number of input arguments
nar gout get the number of output arguments
menu select item from menu

etime get the elapsed time

Thisisonly apartial list taken from the reference section of the MATLAB manual.

6.5 M-files : Some final notes

M-files can call other mfiles. In fact, it is recommended that you break down a program into
several routines.

Take advantage of the help section at the top of the file. It isthe curse of programming that you
will forget what your own functions do after awhile. A well written help section will prevent many
headaches for you.

If you need more instruction, the MATLAB manual has a good description of how to use m-iles.
In addition, you can look at the Mathworks miles for many of the commands. These are often
helpful in finding programming tricks...

6.6 Useful M-files for Mechatronics
(1) Stepmesh.m

% This m-file computes the step response of a second-order system
% for values of zeta ranging from 0.1 to 1 and will create a mesh
% plot of the step responses. The natural frequency is set at 1.

n=1;
y=zero0s(200, 1);
i =1;

for del=0.1:0.1:1
d=[1 2*del 1];
t=[0:0.1:19.9]";
y(:,i)=step(n,d,t);
i =i +1;

end

mesh(fliplr(y), [-120 30])

(2) Stepchar.m

function[pos, tr,ts,tp]=stepchar(t,y)
% This m-file computes the % overshoot, peak time, rise time,
% and 1% settling time for a unit step response.
[mp,ind]=max(y); dint=length(t); yss=y(dint);
pos=100* (np-yss)/yss; tp=t(ind);
for i=21:dint,
if y(i) > 1.01*yss,
ts=t(i);
elseif y(i) < 0.99*yss,
ts=t(i);
end
end
for i=1.dim
if y(i) < 0.1*yss
t1l=t(i);
el seif y(i)==np,
br eak;
end
end
for i=1:dint;
if y(i) < 0.9*yss,
t2=t(i);
el seif y(i)==np,
br eak
end;
end
tr=t2-t1;

(3) Stepmat.m

function [pos,tr,ts,tp]l=stepmat(t,y)

% This program finds the step response characteristics

% for any number of step responses.

% The columns of y are the step responses, i.e., y=[yl y2 ...]
[dint, col _y]=size(y);

61

% This is the main |loop to search over the colums of vy.
for ii=1l:col _y
yss=y(dint,:);
% Finding the rise tinme, tr
indl=find(y(:,ii)<=0.1*yss(ii)); max(indl); til=t(ans);
ind2=find(y(:,ii)<=0.9*yss(ii)); max(ind2); t2=t(ans);
tr(ii)=t2-t1;
% Finding the 1 percent settling tine, ts

jj=dint;
for jj=1:dint;
if y(jj,ii)>=1.01*yss(ii); ts(ii)=t(jj);
elseif y(jj,ii)<=0.99*yss(ii); ts(ii)=t(jj);
end

end

end
% Fi ndi ng the percent overshoot, pos, and the peak tinme, tp.
[mp,ind]=max(y); tp=t(ind)'; pos=100*(nmax(y)-yss)./yss;

(4) Fregmat.m

function [mr,bw]=freqmat (w,m)

% This program calculates Mr and BW from the magnitude Bode plot.

% Use [m,w]=bode(sys); to gather the data.

% Columns of m are the absolute magnitudes, i.e., m=[ml m2 ...]
[di nw, col _n =si ze(m); mdb=ones(di nw, col _m); bw=ones(1,col_m;
for ii=1l:col_m

ji=1

while m(jj,ii)>m(1,ii)/sqrt(2);

Ji=ii+

end
bw(ii)=w(jj);
end

nr =20*| 0g10(max(m) ;

62

