

MATLAB Tutorials

For

Mechatronics

Dr. Kevin Craig
Associate Professor of Mechanical Engineering

Department of Mechanical Engineering,
Aeronautical Engineering, and Mechanics

Rensselaer Polytechnic Institute
Troy, New York 12180

Phone: (518) 276-6671 E-mail: craigk@rpi.edu

(Written for: Matlab version 5.3, Simulink version 3.0, Control System Toolbox version 4.2)

July 21, 2000

 ii

ACKNOWLEDGEMENTS

This document would not have been possible without the assistance of
several of my M.S. and Ph.D. graduate students over the past several years.

They are:

Dale Lombardo
Michael Chen
Celal Tufekci
Jeongmin Lee
Shorya Awtar
Kevin Bennion
Sean Russell

I am very grateful for their assistance. They used the document in classes
and research, offered valuable suggestions for improvement, and helped

revise it as MatLab was updated.

Thank You!

 iii

Table of Contents

1. BEFORE YOU BEGIN... 1

1.1 WHAT IS IN THIS TUTORIAL? ..1
1.2 WHO CAN USE THIS TUTORIAL?..1
1.3 WHY USE MATLAB?...1
1.4 HOW THE TUTORIAL IS STRUCTURED?..1
1.5 WHAT IS MATLAB?..2

2. BASIC MATLAB TUTORIAL.. 2

2.1 HOW MATLAB IS STRUCTURED ...2
2.2 FUNDAMENTALS...4
2.3 MATRIX OPERATIONS...11
2.4 ARRAY OPERATIONS ...13
2.5 POLYNOMIALS...16
2.6 CONCLUSION..17
2.7 SAMPLE PROBLEMS..17

3. PLOTTING TUTORIAL...19

3.1 CREATING SIMPLE X-Y GRAPHS..19
3.2 TAKING CONTROL OF THE PLOTS...20
3.3 ADVANCED GRAPHING STUFF..22
3.4 EXAMPLES..23

4. TRANSFER FUNCTION TUTORIAL..26

4.1 MATLAB AND TRANSFER FUNCTIONS ..26
4.2 LTI MODELS ..26
4.3 TRANSFER FUNCTION BASICS IN MATLAB...27
4.4 CONNECTING BLOCK DIAGRAMS OF TF'S..30
4.5 TRANSFER FUNCTION ANALYSIS PLOTS..32
4.6 SIMULATING TF SYSTEM RESPONSES...33
4.7 CONCLUSION..34
4.8 A COMPLETE EXAMPLE ...34
4.9 RLTOOL EXAMPLE ...35

5. SIMULINK TUTORIAL..40

5.1 WHAT IS SIMULINK? ...40
5.2 SIMULINK'S STRUCTURE ...41
5.3 SIMPLE SIMULINK TASKS...41
5.4 RUNNING SIMULATIONS..45
5.5 USING THE WORKSPACE ...46
5.6 CREATING SUBSYTEMS..50
5.7 MASKING SUBSYSTEM ...51
5.8 LINEAR ANALYSIS TOOL (LTI VIEWER) ...52
5.9 CREATING LIBRARIES...52
5.10 CONCLUSION..53

6. M-FILE TUTORIAL..53

6.1 INTRODUCTION TO M-FILES...53
6.2 SCRIPT FILES ...54

 iv

6.3 FUNCTIONS ..56
6.4 MORE M-FILE COMMANDS ...59
6.5 M-FILES : SOME FINAL NOTES..60
6.6 USEFUL M-FILES FOR MECHATRONICS...60

 1

1. Before you begin
Prior to starting the tutorials contained in this booklet, take a little time to read through this
introductory material.

The author would like to acknowledge that the format and some of the examples in this tutorial are
based upon those contained in the MATLAB Manual from the Mathworks. The tutorials from the
Mathworks are very well done, but are too long for use in Mechatronics.

1.1 What is in this tutorial?

Five short tutorials are contained in this booklet. They are :

• Basic MATLAB Tutorial

• Plotting Tutorial

• Transfer Function Tutorial

• Simulink Tutorial

• M-File Tutorial (optional)

These tutorial sections are in the order that they were intended to be used, (i.e., each tutorial builds
upon the previous ones.)

1.2 Who can use this tutorial?

This tutorial was written for students and engineers in the field of Mechatronics. However, any
college-level student with a level of understanding of computers and linear algebra should be able
to use sections 2 and 3 of this tutorial. The last three sections of the tutorial are directed toward
control system applications in MATLAB, and an understanding of the subject matter is assumed.

1.3 Why use MATLAB?

Many students will find that MATLAB is a very powerful numerical analysis tool. It can be used
to evaluate complex functions, simulate dynamic systems, solve equations, and in many other
applications. And now MATLAB version 5.3 can perform symbolic analysis with Symbolic toolbox
(e.g., Mathematica, MathCad, Maple).

1.4 How the tutorial is structured?

This tutorial has, as much as possible, a consistent structure. Each section is intended to be an
interactive tutorial. The reader should go through the tutorial while sitting at a computer terminal.

• Instructions and explanations are in this font.

• MATLAB Commands and the expected responses are
in this font and are indented.

 2

1.5 What is MATLAB?

MATLAB is a sophisticated mathematics and simulation environment that can be used to model
and analyze dynamic systems. It handles continuous, discrete, linear, or nonlinear systems, and
has extensive features for matrix manipulations. MATLAB is an open environment for which many
specialized toolboxes have been developed:

• Control System toolbox

• Optimization toolbox

• System Identification toolbox

• Neural Network toolbox

• Signal Processing toolbox

• Robust Control toolbox

• Fuzzy Logic Toolbox

• and others

These toolboxes are designed to provide the user with a powerful set of analysis tools in each of
their specific application areas. The success of the Control System toolbox has led to the
development of Simulink. Simulink is graphical environment for modeling and simulating block
diagrams and general nonlinear systems.

2. Basic MATLAB Tutorial
2.1 How MATLAB is structured

The workspace

The workspace is where all of the user's variables are stored.

The Command window

This window is a text window that appears once MATLAB is started. All user commands are
issued from this window.

User Variables

The basic entity in MATLAB is the rectangular matrix (with real or complex entries). Each matrix
must have a name, and the naming rules are similar to the rules for variable names in most
computing languages. The exception to this is that unlike some languages, MATLAB is case-
sensitive. In other words, variable names are sensitive to upper case and lower case. For example,
if a matrix exists in the workspace named stuff, this matrix cannot be referred to as STUFF.

M-functions and Script files

 3

M-functions and script files are often referred to under the larger category of m-files. M-files
represent an important aspect of MATLAB that the user should be aware of. The full power and
flexibility of MATLAB is based on these m-files.

M-files are simply text files with a ".m" extension. These files are written in the MATLAB
programming language. This language is an extension of the same commands that one uses in the
workspace with the addition of some program-flow-control commands.

MATLAB Data Files

MATLAB data files are binary files used to store workspace variables for later use.

Diary Files

Diary files save a record of a user's command window session in a text file (graphs are not saved).
This can be extremely useful in tracking down mistakes when a long series of commands has been
issued. Diary files also make it much easier to communicate your problems to a consultant (or
MATLAB expert) when you ask for assistance.

MATLAB's Order of Operations

For mathematical expressions, MATLAB uses the standard order of operations: arithmetic,
relational, and logical. However, when a command is issued, variable/function names have to run
through a mini-gauntlet. First, the names are checked against the variables in the workspace, then
the current disk directory is searched for an m-file of the same name, and finally, the entire
MATLAB search path (type help path for more) is run through. MATLAB always uses the
first occurrence. So be careful not to make any variables with the same name as a function you
plan to use!

MATLAB Command Syntax

The general syntax of MATLAB commands is the following:

 [output1,output2,...]=command_name(input1,input2,...)

where the command outputs are enclosed with square brackets and inputs within parentheses. If
there is only one output, brackets are optional.

Handle Graphics

This is the MATLAB graphics system. It includes high-level commands for two-dimensional and
three-dimensional data visualization, image processing, animation, and presentation graphics. It
also includes low-level commands that allow you to fully customize the appearance of graphics as
well as to build complete Graphical User Interfaces on your MATLAB applications.

Math Library

This is a vast collection of computational algorithms ranging from elementary functions like sum,
sine, cosine, and complex arithmetic, to more sophisticated functions like matrix inverse, matrix
eigenvalues, Bessel functions, and fast Fourier transforms.

 4

MATLAB API

This is a library that allows you to write C and Fortran programs that interact with MATLAB. It
includes facilities for calling routines from MATLAB (dynamic linking), calling MATLAB as a
computational engine, and for reading and writing MAT-files.

Simulink

Simulink, a companion program to MATLAB, is an interactive system for simulating dynamic
systems. It is a graphical mouse-driven program that allows you to model a system by drawing a
block diagram on the screen and manipulating it dynamically. It can work with linear, nonlinear,
continuous-time, discrete-time, multivariable, and multirate systems.

Editor/Debugger

The Editor/Debugger provides basic text editing operations as well as access to M-file debugging
tools. The Editor/Debugger offers a graphical user interface. It supports automatic indenting and
syntax highlighting; for details see the General Options section under View Menu. You can also
use debugging commands in the Command Window.

2.2 Fundamentals
In this section, you will be introduced to several basic aspects of entering matrices and controlling
the workspace.

Entering Simple Matrices

Matrices can be entered in several ways. Try the following and observe the resulting output.

Delimiters: The brackets [] indicate the beginning and end of a matrix. Spaces or commas are used
to separate elements within a row, and semicolons are used to separate rows.

 A=[1,2,3;4 5 6;7 8 9]

Alternatively, the matrix can be typed in as a matrix using the return key at the end of a row. The
entry is not finished until the closed bracket is supplied.

 A=[1 2 3
 4 5 6
 7 8 9]

The resulting output should be the same for the two lines above:

 A=
 1 2 3
 4 5 6
 7 8 9

Enter the following lines and observe MATLAB's response...

 A=[1,2,3;4,5;7,8,9]

What happened? Why?

 A=[2 4 6;8 10 12;14 16 18];

Notice that on this last example there is a semicolon on the end of the line. This should have
caused MATLAB to "not respond" with any output. Don't worry, MATLAB did record the matrix

 5

A. The semicolon at the end of a line of input has the effect of preventing MATLAB from echoing
the results to the screen. This is an important feature when very large matrices are being defined.

Matrix elements can be any MATLAB expression. For example :

 x=[-1.3 sqrt(3) (1+2+3)*4/5]
results in

 x=
 -1.3000 1.7321 4.8000

To define (or refer to) individual elements of a matrix, use the variable name and parentheses, try
this:

 x(5)=abs(x(1))

This produces

 x=
 -1.3000 1.7321 4.8000 0.0000 1.3000

Note that the vector x has been augmented to 5 elements. Now try

 x(4)=log10(x(6))

What happened? Why? It is possible to construct big matrices from smaller ones. Enter the
following two lines:

 r=[1 2 3 4 5];
 y=[x;r]

results in

 y=
 -1.3000 1.7321 4.8000 0.0000 1.3000
 1.0000 2.0000 3.0000 4.0000 5.0000
Now try:

 w=[x,r]

This puts x and r side-by-side in the new row vector w.

Little matrices can be extracted from big matrices using the colon delimiter. For example :

 z=A(2:3,1:2)

produces

 z=
 8 10

 14 16

 6

The statement defining z can be read as follows, "set z equal to the second through third rows and
first and second columns of A." Now try a second example:

 z=y(:,2:4)

results in

 z=
 1.7321 4.8000 0.0000
 2.0000 3.0000 4.0000

The issued command can be interpreted as "z is equal to all rows of y and the second through
fourth columns." Notice that the colon can be used to specify a range of rows and columns or it
can be used to specify all of the rows and columns. This notation can lead to some very exotic
submatrix references and can be used on either side of the equal sign, but it is always good practice
to hand check the results to see if you're getting the expected submatrices.

More on entering MATLAB expressions

The most common format for issuing commands to MATLAB is in this form

 variable = expression

However, the left side of that statement can be left out, and the results of the expression are
automatically placed in a variable called ans. For example type:

 1900/81
results in

 ans=
 23.4568

The question often arises what if the expression to be entered is longer than one line on the
screen? The correct way to do this is to use ellipses at the end of the current line.

For example

 s=1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + 1/7 ...
 - 1/8 + 1/9 - 1/10 + 1/11 - 1/12

produces the expected result.

Getting workspace information

To get a list of the current variables defined in the workspace type :

 who

produces a list of the currently defined variables. Try typing

 whos

What is the difference? By typing what, a current list of m-files in the search path are shown.
(Just for kicks, try why.)

 7

You can also edit your workspace variables using a graphical user interface tool called Workspace
Browser. You can access Workspace Browser from File|Show Workspace menu. In addition
to your workspace variables, there are also several permanent variables that MATLAB uses. The
variable eps is an example of such a variable. This variable represents the working precision of the
computer system. Type eps and look at the result. Other built in variables exist e.g., pi, i, and j.

Numbers in MATLAB

Conventional decimal notation is used by MATLAB; i.e., 3, -99, 0.0001, 1.54e-10, and 3.13E3 are all
valid ways of entering numbers. In all calculations, regardless of what is displayed, MATLAB
uses double precision floating point numbers.

The traditional mathematical operators are available (e.g., +, -, *, /, and ^). In addition to these, the \
operator signifies left division (explained later) and nearly all mathematical functions found on
scientific calculators can be used (e.g., cos, sin, abs, log, and log10).

MATLAB will return Inf when a number becomes infinite. Unlike on many other systems,
MATLAB does not halt when a division by zero occurs. Instead, it carries a representation of
infinity through the remaining calculations. Try typing s=1/0, and see the answer MATLAB
gives. Another special "number" that is often seen is NaN. This means "Not a Number." This is
produced during calculations like 0/0 or Inf/Inf.

Complex Numbers

Complex numbers are allowed in all mathematical expressions. The format for entering them is
shown in the following examples: (This will not work as expected if i & j have been redefined by
the user to something other than sqrt(-1).)

 z=3+4*i
 z=3+4*j
 r=1; theta=pi/4; w=r*exp(i*theta)

To enter a complex matrix :

 A=[1 2;3 4] + i*[5 6;7 8]
 A=[1+5*i 2+6*i;3+7*i 4+8*i]

Both of these result in

 A=
 1.0000+5.0000i 2.0000+6.0000i
 3.0000+7.0000i 4.0000+8.0000i

Note: That in the second expression for A, there are no spaces around the plus signs. MATLAB
would take these as separate entries.

Also Note: MATLAB will allow you to redefine the quantities i and j. If you do so you can re-
create "i" by entering i=sqrt(-1).

Formatting Output

 8

When displaying matrices, MATLAB will display a matrix of exact integers as such. For example,
type:

 x=[-1 0 1]

this yields

 x=
 -1 0 1

However, if there is at least one entry that is not an integer, there are several possible display
formats. Try the following

 x=[4/3 1.234567e-8]

this yields

 x=[1.3333 0.0000]

Notice that the second element of x appears to be 0.0000. Since the first element is so much larger
than the second, the second element IS zero in the displayed precision! Type each of the format
statements in the table on next page and type x with a return to see how the display types differ.
You can also set the output format from the File|Preferences menu.

format short (default)

format short e

format short g

format long

format long e

format long g

format hex

format +

format bank

format rat

With the short and long formats, if the largest element in the matrix is larger than 1000 or smaller
than 0.001, a common scale factor is used. For example :

With format long or short, type

 y=1.e20*x

 9

Look carefully at the result. A common scale factor of 1.0E+020 is applied to the matrix. Now
change the format to one of the "e" statements, and look at x again.

The + format is used to look at large matrices. It displays a +, -, or blank if the element is positive,
negative, or zero.

Using Diary files

Type help diary for a full explanation.

Basically, you issue the statement

 diary filename.dia

This will create a new file if it does not already exist, or start appending to the file if it does exist.
MATLAB will start recording all command window text to the file until one of the following is
typed.

• diary newfile,

• diary,

• diary off,

• or you leave MATLAB.

The diary file can be reinstated using diary on.

MATLAB Search Path

MATLAB uses a search path to find M-files. MATLAB's M-files are organized in directories or
folders on your file system. Many of these directories of M-files are provided along with
MATLAB, while others are available separately as toolboxes. You can edit the MATLAB Search
Path using a graphical user interface tool called Path Browser. You can open the Path Browser from
File|Set Path menu. The Path Browser lets you view and modify MATLAB's search path and
see all of its files.

Getting HELP

 10

To get help at any time simply type

 help

If you have a specific topic in mind, e.g., how to use the plot command :

 help plot

If you are really lost type

 help help

In addition to help command there are other useful help commands in MATLAB.

• helpwin Provides Windows based help
• helpdesk Provides comprehensive HTML help tools (search, index options). You can

also reach the online PDF manuals from within heldesk.
• demo Provides demo for MATLAB and related products by Math Works.
• tour Provides a tour of all MATLAB products like Toolboxes, Simulink,

Stateflow, Blocksets, etc.
• lookfor Provides a search for keywords in M-files.

Clearing variables from the workspace

You may want to clear previously used unnecessary variables from the workspace. To clear
variables and functions from memory, type clear.

To see its various options, type help clear.

It is a good practice to put this command in the beginning of m files before any other commands.

Quitting and saving the workspace

WARNING: MATLAB does not automatically save your workspace when you quit or exit!

To leave MATLAB, type quit or exit.

To save your workspace variables type

 save

this saves all of your variables in a file called MATLAB.mat.

The full format for saving is

 save filename variable_list

see help save for a full description.

To load an old set of workspace variables, type

 load
By itself, load brings in the file MATLAB.mat, if it exists. By specifying a filename, that file will be
loaded. When loading a file, the variable names used when saving are reinstated. If there is

 11

currently a variable with the same name, it will be overwritten without warning. Any (unique)
variables already in the workspace are left untouched. More can be done with the load
command, see help load.

2.3 Matrix Operations
Lets perform some basic matrix arithmetic.

Transpose.

The transpose operation is signified by a single apostrophe, '. If the matrix to be transposed is
complex, the result is the complex conjugate transpose. This is sometimes, but not always, the
desired result for complex matrices. To get around this use conj(A') or A.'. Try the following:

 A=[1 2 3; 4 5 6; 7 8 0]
 B=A'

results in

 A=
 1 2 3
 4 5 6
 7 8 0
 B=
 1 4 7
 2 5 8
 3 6 0
and

 x=[-1 0 2]'

produces

 x=
 -1
 0
 2

Addition and Subtraction and Multiplication.

These operations are straightforward. As is expected, the order of multiplication and subtraction
matters while it does not for addition. The matrices must be of compatible size for any operation to
be carried out. The only exception to this is if one of the quantities is a scalar (a 1x1 matrix), as will
be demonstrated below.

Try the following:

 C=A+B
 D=A+x
 b=A*x
The first expression was evaluated, and the second generated an error. Why? Now try these:

 y=x-1
 w=4;z=w*y

 12

Note: that the scalar quantities are applied to all elements. Now try a mix of these operations, for
example :

 x'*y
 y'*x
 x*y'
 x*y
 c=A*x+y

Make sure you understand the results of these operations.

Matrix Division.

Matrix division is a little more complex. This is because there is no "division" operation per se. In
actuality, it involves the "best" solution of a linear system. (Scalar division rules are as expected.)
There is left and right division.

It is easier to explain by example :

 X=A\B is equivalent to X=inv(A)*B. It solves the problem AX=B.

 X=B/A is equivalent to X=B*inv(A). It solves the problem XA=B.

If A is rectangular, A\B and B/A automatically find the least squares solution, whereas inv(A) is
only valid for square matrices.

The use of matrix division is NOT recommended for simple operations because it can get
confusing. Your work is easier to follow if you simply use the function inv(). For example, if you
have the equation, b=A*x, and you wish to know x, type

 x=inv(A)*b

Refer to the MATLAB manual tutorial for more information about matrix division.

Matrix Powers.

Raising a matrix to a matrix power, a matrix to a scalar power, a scalar to a matrix power, and a scalar
to a scalar power are all possible. However, raising a matrix to a scalar power is most likely the only
one you'll need. The only limitation is that the matrix must be square! Try these for practice :

 A^4
 x^3

Can you explain your results?

 13

Miscellaneous Matrix Operations.

These operations are presented for your use, but their use is either too obvious or too rare to take
up more space here. See the help facility or the Reference section of the MATLAB manual for more
detail.

det determinant of a matrix

trace trace

poly characteristic polynomial

kron Kronecker tensor product

expm exponential

logm logarithm

sqrtm square root

funm arbitrary function

2.4 Array Operations
Array operations refer to element-by-element arithmetic operations, as opposed to matrix
operations. By preceding the usual operators (e.g., / \ * ^) with a period . , the operation is carried
out as an array operation. Many functions and all logical operators are considered array
operations.

Addition and Subtraction.

SAME AS BEFORE.

Multiplication and Division.

For example:

 x=[1 2 3]; y=[4 5 6];
 z=x.*y
results in

 z=
 4 10 18

Now try this :

 z=x.\y
results in

 z=
 4.0000 2.5000 2.0000

NOTE: The expression x.\y is equivalent to y./x

Array Powers.

Element by element powers are denoted by .^. Try these examples :

 z=x.^y

 14

produces

 z=
 1 32 729

If the exponent is a scalar :

 z=x.^2
produces

 z=
 1 4 9

Or, the base can be a scalar :

 z=2 .^[x y]
 z=
 2 4 8 16 32 64

Relational and Logical Operations and Functions.

These operations (e.g., greater than, less than, ...) exist, but they are not often used outside of m-
files. See the Reference section of the MATLAB manual, or help <.

Elementary Math Functions.

Many functions are inherently element by element in MATLAB. These functions are summarized
below.

Trigonometric Functions Elementary Math Functions

sin sine abs absolute value

cos cosine angle phase angle

tan tangent sqrt square root

asin arcsine real real part

acos arccosine imag imaginary part

atan arctangent conj complex conjugate

atan2 four quadrant arctangent round round to nearest integer

sinh hyperbolic sine fix round towards zero

cosh hyperbolic cosine floor round towards -Inf

tanh hyperbolic tangent ceil round towards +Inf

asinh hyperbolic arcsine sign signum

acosh hyperbolic arccosine rem remainder or modulus

atanh hyperbolic arctangent exp exponential base e

 log natural logarithm

 log10 log base 10

 15

Generating Vectors and Matrices.

It is possible to generate vectors using operators and matrices using special functions. (Caution
should be used here. If you are generating a large vector or matrix, be sure to end the statement
with a semicolon. Otherwise, you'll get to see the entire vector (matrix) from beginning to end.)

To generate an evenly spaced vector try typing

 t=1:5
this produces

 t=
 1 2 3 4 5

Notice that this produces a row vector by default. Now try an increment other than unity:

 y=(0:pi/4:pi)'
gives

 y=
 0.0000
 0.7854
 1.5708
 2.3562
 3.1416

Negative increments are also possible.

Using the functions linspace and logspace, you can specify the number of points rather
than the increment.

 y=linspace(-pi,pi,4)

produces

 y=
 -3.1416 -1.0472 1.0472 3.1416

The square identity matrix is defined by using the function eye(n), where n is the number of
columns or rows. The functions in the table below allow the user to generate special matrices. The
arguments of these functions are either

• (m,n), signifying the number of rows and columns

• (m), signifying a square (m x m) matrix

 or

• (A), a matrix whose dimension you want to match

rand random values

zeros all zeros

ones all ones

 16

For example,

• ones(t), where t is a vector generates the unit step function.

• y(t)=3+t, for t=0, 1 2, ..., 10 is created by entering

 t=[0:1:10];y=3*ones(t)+t

One last useful matrix creation function is diag. Here is an example of its use:

 x=[1 2 3 4];X=diag(x)

produces

 x=
 1 0 0 0
 0 2 0 0
 0 0 3 0
 0 0 0 4

2.5 Polynomials
Polynomials are represented as vectors containing the polynomial coefficients in descending order.
The roots command finds roots of polynomials. For example, the roots of the polynomial
s

3
+2s

2
+3s+4 are found by

 p=[1 2 3 4]; roots(p)
produces

 ans =
 -1.6506
 -0.1747 + 1.5469i
 -0.1747 - 1.5469i
The poly command is used to form a polynomial from its roots. It returns the coefficients of the
polynomial as a row vector:

 p=poly([-1 2])
produces

 p=
 1 -1 -2

A polynomial can be evaluated at a point using the polyval command. Its syntax is

 ps=polyval(p,s)

where p is a polynomial and s is the point at which the polynomial is to be evaluated. The input s
can be a vector or a matrix. In such cases, the evaluation is done element by element. For example,
consider the polynomial p(s)=(s+1)(s+2):

 p=[1 3 2]; s=[1 2;3 4]; polyval(p,s)
gives

 17

 ans =
 6 12
 20 30

Polynomials are multiplied and divided using the conv and deconv commands, respectively. The
residue command performs partial fraction expansion.

2.6 Conclusion
You should now have a basic understanding of how to use MATLAB to perform simple matrix
operations. At this time, it would probably be a good idea for you to try a complete problem on
your own. It is recommended that you select a problem that you know the answer to, so you can
verify that you have solved it correctly. Feel free to choose one of the problems below.

2.7 Sample Problems
1. If

A = −
F

H
GG

I

K
JJ

3 1 4

2 0 1

1 2 2

 and B = −

−

F

H
GG

I

K
JJ

1 0 2

3 1 1

2 4 1

compute:

(a) 2A (b) A+B (c) 2A-3B

(d) (2A)T-(3B)T (e) AB (f) BA

(g) ATBT (h) (BA)T

2. Solve the following system of equations:

2 41 2 3x x x+ + =

x x x1 2 32 2− + =

3 2 01 2 3x x x− − =

3. Calculate the eigenvalues and eigenvectors for A and B in #1. (Hint: eig)

 18

Answers:

1. (a)
6 2 8
4 0 2

2 4 4

−
F

H
GGG

I

K
JJJ

 (b)
4 1 6
5 1 2

3 2 3

−
−

F

H
GGG

I

K
JJJ

 (c)
3 2 2
5 3 1

4 16 1

− −
−

F

H
GGG

I

K
JJJ

 (d)
3 5 4
2 3 16

2 1 1

−
−
−

F

H
GGG

I

K
JJJ

(e)
8 15 11
0 4 3

1 6 6

−
− −

− −

F

H
GGG

I

K
JJJ

 (f)
5 5 8
10 1 9

15 4 6

− − −
F

H
GGG

I

K
JJJ

 (g) and (h)
5 10 15
5 1 4

8 9 6

−
−
−

F

H
GGG

I

K
JJJ

2. x
T

= 1 1 1c h

3. If you used these commands

 [Avec,Aval]=eig(A)

 [Bvec,Bval]=eig(B)

you got the right answer. You should have used help eig to find out how to do this.

 19

3. Plotting Tutorial
MATLAB has a very strong graphic capability that is well suited to scientific and engineering
applications.

3.1 Creating Simple X-Y Graphs
Create the data.

First you must have some data to plot. Enter the following lines into the command window:

t=(0:pi/36:2*pi)';
y1=2*sin(6*t); y2=3*cos(2*t);

Plotting a single set of data.

To plot y1, enter the following command:

plot(y1)

Notice that if a vector is presented to the plot command, it plots the values against the index
number of each value. The exception to this is if the vector contains complex numbers, then the
vector is plotted as the imaginary part versus the real part. To illustrate this, type in the following
command:

plot(t+2*t*i)

The result of this should be a straight line beginning at (0,0) and ending at (2*pi,4*pi).

To plot y1 vs. t, issue the command:

plot(t,y1)

Plotting multiple lines.

To plot multiple lines (e.g., y1 and y2), enter the following command:

plot([y1,y2])

Or to plot these same lines vs. t:

plot(t,[y1 y2])

However, for reasons that will become apparent shortly, the following command is often preferable:

 plot(t,y1,t,y2)

 20

3.2 Taking Control of the Plots
It is OK to be able to create these plots on the screen, but usually, you need a hardcopy of the
graphs as well. In this section, you will find out how to print, add titles, gridlines, and axis labels to
your plots. In addition, you'll see how to control the axis scaling, proportion, and line types and
colors.

Changing line types and colors.

Let's say that you wanted to plot y1 as a green line, and y2 as a series of blue circles with a dashed
red line through them. You would issue the following command:

 plot(t,y1,'g',t,y2,'bo',t,y2,'r--')

Notice that the format is as below, and that you cannot plot lines and symbols in the same option
string.

plot(xdata,ydata,'options',...)

The full list of options is shown in the table below:

Line Types Point Types Colors

- solid . point y yellow

-- dashed o circle m magenta

: dotted x x-mark c cyan

-. dashdot + plus r red

 * star g green

 s square b blue

 d diamond w white

 v triangle (down) k black

 ^ triangle (down)

 < triangle (left)

 > triangle (right)

 p pentagram

 h hexagram

Try, on your own, to plot y1 as a white dotted line and y2 as a red dash-dotted line.

Adding titles, grids, and axis labels.

To add grid lines, type

 grid

 21

To add a title, type

 title('Your title information goes here.')

To add axis labels, type

 xlabel('Time (sec)')
 ylabel('V (volts)')

If you want to add a variable's value to a string, use something like this:

 plot(t,y1+y2,'w--')
 M=200;
 title(['Response @ M=' num2str(M) ' lbs.'])

See the MATLAB Reference guide for more about this function and using strings or type:

 help num2str

Controlling the plot axis scaling.

If you noticed, MATLAB automatically selected the plot axis scales for you. This may not always
produce the desired result. The command used to change this is the axis command. The axis
command, like many MATLAB commands, is a multi-purpose command. For the first sample of its
use, type:

 y3=cos(t); y4=sin(t); plot(y3,y4)

Notice that this should be a circle, but does not look like one. Now issue the following:

 axis('square')

Now it looks more like a circle. The square option of axis tells MATLAB to place the graph in a
square box. Try also axis('equal'). To return to the default axis scaling with a rectangular
box, type

 axis('normal')

The second way to use axis is to manually specify the x-y ranges to show in the box. Type

 axis([0 2*pi -5 5])
 plot(t,y1,t,y2)

The format for the axis -vector is : [xmin xmax ymin ymax]

To return to the default mode with automatic ranging, type

 Axis auto

Printing a graph.

The first step is to create the desired graph in the graphics window.

 22

The print facility in MATLAB simply dumps the current graph window to the printer. The details
on how to accomplish this vary from system to system.

To print the current contents of the Graphics window :

• From a workstation, type

 print

• From Windows MATLAB

 use the menu bar in the graphics window

3.3 Advanced Graphing Stuff

Not everyone will need the following, but you'll be a better person for knowing that these options
are available to you.

Clearing the graphics window, holding a plot, and adding text.

To clear the graphics window, type

 clf

To hold a plot so that other lines can be added, type

 hold on

And to release them so that the next plot command clears the old graph, type

 hold off

To add text anywhere in the graphics window, use the text or gtext command. To find out how
to use it, type help text or help gtext.

Creating logarithmic plots.

To create a log-log or semilog plot, first plot the data using the plot command, and then type
one of the following:

 loglog(…)
 semilogx(…)
 semilogy(…)

Making subplots.

This one is a little more complicated, but it is still not too bad. As always, refer to the manual or the
help facility for more information. Let's create two separate plots, one above the other.

First, tell MATLAB that you want to divide the graphics window:

 subplot(211)

This number's digits can be broken down, in order, as follows:

 23

 2 = two "rows" of plotting boxes

 1 = one "column" of plotting boxes

 1 = make the first plot box active, i.e., MATLAB will send the next plot command
 to the first box.

Windows are numbered from left to right and top to bottom.

Type

 plot(t,y1), grid
 ylabel('y1'), xlabel('t'), title('Graph 1')
 subplot(212), plot(t,y2), grid
 ylabel('y2'), xlabel('t'), title('Graph 2')

Watch the results carefully. The subplot command advances to the next graph box. Now type
this

 plot(t,y3)

Did you notice that the second graph was replaced when the third plot statement was issued? If
you had wanted to make four separate boxes, you could have used

 subplot(221)

3.4 Examples

(1) The equations for Mercury's orbit about the Earth are given by the following parametric
equations:

 x t t t() cos cos .= +93 36 415

 y t t t() sin sin .= +93 36 415

After 7-1/3 revolutions we get the following curve called an epitrochoid. Compute the vectors x
and y and plot them against each other:

 t=[0:pi/360:2*pi*22/3];
 x=93*cos(t)+36*cos(t*4.15);

y=93*sin(t)+36*sin(t*4.15);
plot(x,y),axis('square')

produces

 24

-150 -100 -50 0 50 100 150

-150

-100

-50

0

50

100

150

(2) The equation of a four-leaf figure in polar coordinates is r=cos(2θ). The angle must be in radians
for the polar command.

th=[pi/200:pi/200:2*pi]';
r=cos(2*th);
polar(th,r)

produces

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

(3) The equation for the Archimedes spiral is given by r=Kθ, K>0.

th=[pi/200:pi/200:2*pi]';
sa=th/(2*pi);
polar(th,sa)

produces

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

 25

(4) The parametric equations of a circle with radius r and center at (a,b) are given by

 x t r t a() cos()= +

 y t r t b() sin()= +

 i.e., () ()x a y b r− + − =2 2 2

t=[0:0.1:2*pi];
a=2;b=1;
x=cos(t)+a;
y=sin(t)+b;
plot(x,y),axis('square')

produces

1 1.5 2 2.5 3
0

0.5

1

1.5

2

 26

4. Transfer Function Tutorial
4.1 MATLAB and Transfer Functions

MATLAB, with the addition of the Control System Toolbox, can do quite a lot with respect to
system analysis and simulation with transfer functions. This toolbox was written to handle the
most general cases possible and can even accommodate MIMO (Multi-Input, Multi-Output)
systems. This tutorial will only describe how to use MATLAB with SISO (Single-Input, Single-
Output) systems. Keep this in mind when using the help facility for functions described here
because some of the explanations include MIMO information.

MATLAB has very few limitations regarding transfer functions, the main one however is that the
transfer function must be in polynomial form. There are, as will be discussed later, ways that
MATLAB will help you get polynomial form from say pole-zero format; but nonlinear terms, like the
exponential time-delay, are not valid.

In this tutorial, you will:

• learn how to manipulate TF's,

• learn how to generate Root Locus, Bode, Nyquist, and Nichols plots,

• learn how to simulate the responses of TF's,

• and be shown a complete analysis example.

This tutorial, however, makes no attempt to describe the development or "teach" these topics to
the reader. It is assumed that the reader already has that knowledge.

4.2 LTI Models

You can specify linear time-invariant (LTI) systems as transfer function (TF) models, zero/pole/gain
(ZPK) models, state-space (SS) models, or frequency response data (FRD) model. You can
construct the corresponding models using the constructor functions.

 sys = tf(num,den) % transfer function
 sys = zpk(z,p,k) % zero/pole/gain
 sys = ss(a,b,c,d) % state space
 sys = frd(response, frequencies) % frequency response data

To find out information about LTI models, type

 ltimodels

The output sys is a model-specific data structure called a TF, ZPK, SS, or FRD object,
respectively. These objects store the model data and enable you to manipulate the LTI model as a
single entity. For example, type

 h = tf(1,[1 1])

 27

This results in :

 Transfer function:

 1

 s + 1

4.3 Transfer Function Basics in MATLAB

Transfer function representation

In order to handle TF's, MATLAB has a specific format that must be followed. If G(s) is your
transfer function in this form (a system with m zeros and n poles) :

G s
B s

A s

b s b s b s b

a s a s a s a

m m

m m

n n

n n

()
()
()

...

...
= =

+ + + +
+ + + +

−

−

−

−

0 1

1

1

0 1

1

1

In MATLAB, the same system would be represented by two vectors containing the coefficients of
the numerator and denominator in descending powers of s:

B b b b b
m m

=
−

[...]
0 1 1

A a a a a
n n

=
−

[...]
0 1 1

For example, lets say that G(s) is to be used in MATLAB where, G s
s

s s s
() =

+
+ + +

2

3 2

1
2 3 4

. The

numerator and denominator polynomials would be as follows, type:

 gnum=[1 0 1]
 gden=[1 2 3 4]

Notice that the "missing" power of s is shown as a zero in the numerator. Similarly, if you want to
represent H(s)=s, hnum=[1 0] and hden=[1].

Finding poles and zeros.

Since the poles and zeros are simply the roots of the denominator and numerator, respectively, the
roots command is used. For example, what are the poles and zeros of G(s) above? Type :

 poles=roots(gden)
 zeros=roots(gnum)

This results in :

 poles=
 -1.6506
 -0.1747 + 1.5469i
 -0.1747 - 1.5469i
 zeros=
 0 + 1.0000i
 0 - 1.0000i

 28

(In case you were wondering, this command works with any polynomial, as long as the powers of
the independent variable are in descending order.)

If you have defined a system as, for example, sys = tf(gnum,gden), then the following
commands give the same results as the above.

 pole(sys)

 zero(sys)

Multiplying TF's.

To multiply two polynomials together, you use the command conv. For example, if you have

H s
s

s
() =

+ 1
 and you want to multiply G(s) and H(s) simply issue the following commands:

 hnum=[1 0]; hden=[1 1];
 ghnum=conv(gnum,hnum)
 ghden=conv(gden,hden)

This results in :

 ghnum=
 1 0 1 0
 ghden=
 1 3 5 7 4

There is a better way to "connect" two blocks in series, but this command is often useful. If, for
example, you had the poles and zeros of a system, this command could be used to help create the
equivalent transfer function:

 z1=-1-i; z2=-1+i;
 p1=-1; p2=-3-.5*i; p3=-3+.5*i;
 num=conv([1 -z1],[1 -z2]);
 den=conv([1 -p1],conv([1 -p2],[1 -p3]));

results in

 num=
 1 2 2
 den=
 1.0000 7.0000 15.2500 9.2500

Partial fraction expansion.

To get the partial fraction expansion of a TF, you use the command residue. To demonstrate
this, there are three examples below, each representing one of the three major cases in partial
fraction expansion.

 29

Example #1: Distinct real poles. Let E s
s s s

s s1

3 2

2

5 9 7
3 2

() =
+ + +

+ +
. To enter E

1
(s) into MATLAB :

 e1num=[1 5 9 7]; e1den=[1 3 2];

To perform PFE:

 [re1,pe1,ke1]=residue(e1num,e1den)

This results in:

 re1=
 2
 -1
 pe1=
 -1
 -2
 ke1=
 1 2

The variable re1 represents the numerators of the expanded fraction, the variable pe1 represents
the poles of the new denominators, and the variable ke1 represents the constant terms. In other
words, using re1, pe1, and ke1, the TF can be represented as follows:

2
1

1
2

)2()(1 +
−

+
++=

ss
ssE

See help residue for a description of the general format.

Example #2: Distinct imaginary poles. Let E s
s

s s s2 3 2

1
() =

+
+ +

. Enter this TF into MATLAB:

 e2num=[1 1]; e2den=[1 1 1 0];
perform PFE:

 [re2,pe2,ke2]=residue(e2num,e2den)

results in:

 re2=
 -0.5000 - 0.2887i
 -0.5000 + 0.2887i
 1.0000
 pe2=
 -0.5000 + 0.8660i
 -0.5000 - 0.8660i
 0
 ke2=
 []

 30

This corresponds to:

sis
i

is
i

sE
1

866.05.0
2887.05.0

866.05.0
2887.05.0)(2 +

++
+−+

−+
−−=

Example #3: Repeated poles. Let E s
s s

s s s3

2

3 2

4 6
3 3 1

() = + +
+ + +

. Enter this TF :

 e3num=[1 4 6]; e3den=[1 3 3 1];

Have MATLAB perform PFE:

 [re3,pe3,ke3]=residue(e3num,e3den)

This results in:

 re3=
 1.0000
 2.0000
 3.0000
 pe3=
 -1.0000
 -1.0000
 -1.0000
 ke3=
 []

In expanded form:

E s
s s s3 2 3

1
1

2
1

3
1

()
() ()

=
+

+
+

+
+

This example was rigged so that you would be able to see how to create the expanded form from
re3, pe3, and ke3. It is up to the user to recognize what to do with repeated poles in an answer. Be
aware that the first "numerator" in a series of repeated poles corresponds to the first power
denominator, and so on.

4.4 Connecting block diagrams of TF's

There are several commands that are designed explicitly for deriving system transfer functions from
the connection of its component blocks. These commands are

series to connect two TF's in series

feedback to connect two TF's in feedback

parallel to connect two TF's in parallel

 31

To maintain brevity, this tutorial will only describe how to use these commands. The help facility
for these functions is very good. Trying out examples is left to the reader. Also note, that these
blocks are for SISO systems only when using transfer function notation.

For all of the following descriptions, assume that you have already defined G(s) and H(s), and that
the connected system transfer function is F(s).

Series connections.

To connect G(s) and H(s) in series:

 [Fnum,Fden]=series(gnum,gden,hnum,hden) or

 Fsys=series(gsys,hsys)

where gsys = tf(gnum,gden) and hsys = tf(hnum,hden)

Unity feedback.

To connect G(s) in unity feedback:

 [Fnum,Fden]=feedback(gnum,gden,1,1,sign) or

 Fsys=feedback(gsys,1,1,sign)

where, sign=+1 for positive feedback, and sign=-1 for negative feedback.

General feedback.

To connect G(s) and H(s) in feedback, where G(s) is in the feedforward path, and H(s) is in the
feedback path:

 [Fnum,Fden]=feedback(gnum,gden,hnum, ...
 hden,sign) or

 Fsys=feedback(gsys,hsys,sign)

Parallel connection.

To connect G(s) and H(s) in parallel:

 [Fnum,Fden]=parallel(gnum,gden,hnum,hden) or

 Fsys=parallel(gsys,hsys)

Notice that there is no sign option here. It is assumed that the outputs are added together.

 32

4.5 Transfer Function Analysis Plots

Several analysis plots are available in MATLAB. The most commonly used commands are listed
below. Some of these commands have useful subcommands associated with them, these are
discussed in their respective sections.

rlocus Evan's root locus plot

bode Bode diagram

nyquist Nyquist plot

nichols Nichols plot

These analysis tools will be demonstrated by example.

Evan's root locus.

This function calculates (and optionally plots) the closed-loop poles of an open-loop transfer
function at different gains. The gain is assumed to be applied in the feedforward path, and it is also
assumed that there is negative feedback.

Assume that G s
s

s s
() =

+
+ +

1
12

 in the feedforward path, and H s
s

() =
+
1

2
 is in the feedback path.

To make a root locus plot of the closed-loop system:

 gsys=tf([1 1],[1 1 1]);hsys=tf(1,[1 2]);
 ghsys=series(gsys,hsys);
 rlocus(ghsys);

To find out numerical values for specific closed-loop poles, you can specify a gain vector:

 K=0:1:100; clpols=rlocus(ghsys,K);

Associated commands are rlocfind and sgrid. Use help to find out more about rlocus,
locfind, and sgrid.

Bode plots.

This command is used in a similar manner to that of rlocus.

Assume that we want to make an open-loop bode plot of the same G(s) and H(s) as before, type:

 bode(ghsys)

Or, if we want to make a closed-loop bode plot:

 sys=feedback(gsys,hsys,-1);
 bode(sys)

Notice that the units of the plot are db and degrees. If numerical values for phase and gain
amplitude are desired, you can make a frequency vector:

 33

 w=logspace(-2,2,100);
 [mag,phase]=bode(sys,w);

Unlike the plots, the units of mag and phase are magnitude ratio and degrees. An associated
command that you may want to use is margin. This command calculates the gain and phase
margins of a system. See help on logspace, margin, and bode.

Nichols and Nyquist plots.

The commands for these plots are nichols and nyquist. It is no mistake that these too work
in a similar manner. Try the following

 nichols(sys)
 nyquist(ghsys)

See also ngrid and margin.

4.6 Simulating TF System Responses

Several simulation algorithms are available to help characterize the response of a transfer function
to an input. There are three main commands that you can use:

step calculate the system's response to a step

impulse calculate the system's response to an impulse

lsim calculate the system's response to a user supplied input

The help facility on these commands is also very good.

Step response.

To calculate a system's unit step response and plot it, simply type :

 step(sys)

To calculate a system's step response and get numerical values out, type:

 [y,t]=step(sys);
 or

 t=0:.05:10; [y,x]=step(sys,t);

Where y is the system output, x is the state history (don't worry about it if you don't need this),
and t is the time vector used during the simulation. Notice that you can specify the time vector, or
let MATLAB automatically select one.

Impulse response.

To calculate a system's response to an unit impulse input and plot it, type:

 impulse(sys)

 34

To get numerical values, use the same format as for step.

General input response.

The only two main differences between this and the above is that 1) you must create input and time
vectors, and 2) MATLAB will not automatically plot the response. Let's try a unit ramp input:

 t=0:.05:10;
 u=t;
 y=lsim(sys,u,t);
 or

 [y,ts]=lsim(sys,u,t);
 plot(ts,y,t,u);

This command is very powerful for simulating systems. The most difficult part becomes creating
the input.

4.7 Conclusion

At this point, you should be able to use transfer functions in MATLAB reasonably well. There is a
lot more that can be done with MATLAB in this manner, and you are encouraged to use
MATLAB's help facility to find out more.

4.8 A Complete Example

Lets assume that we have a transfer function G s
s

s s s
()

.
. . .

=
+

+ + +
50

401 13 04 0133 2
. We want to create

root locus plots, OL bode plots, CL bode plots, and simulate this system's CL and OL response to a
step input and an impulse.

Define the transfer function:

 num=[1 5];
 den=[1 4.01 13.04 0.13];
 sys=tf(num,den);

First find out the poles and zeros:

 olpoles=pole(sys)
 olzeros=zero(sys)

Second, get the root locus plot:

 rlocus(sys)

Lets pick a gain to use for the closed-loop system:

 [k,poles]=rlocfind(sys)

 35

Use the mouse to pick some point along one of the branches. Notice that this function also returns
the CL poles in poles.

Create OL bode plot:

 bode(sys)

Now let's build the closed-loop system using the gain you selected with rlocfind.

 syscl=feedback(k*sys,1,1,-1)

Let's take a look at the CL bode plot:

 bode(syscl)

Finally lets simulate the system's CL and OL response to a step input and an impulse.

 ysol=step(sys);
 yscl=step(syscl);
 yiol=impulse(sys);
 yicl=impulse(syscl);

4.9 Rltool Example

Another useful tool for transfer function analysis and control design for single-input/single-output
is the command rltool. Start it by typing rltool in the command window. The following window
should appear. If you want help about a button move the mouse over the button or go to the help
menu.

Root Locus Design Window

 36

To use this tool import a model into the program. For this example enter the following transfer
function into the command window.

2

0.0222
G

0.1111 0.872s s
=

+ +

 Matlab Command
 G = tf(0.02222, [1 0.1111 0.872])

Import the model into the program,

• Select File|Import Model

The following window should appear in which you can select the model from the workspace.
Import it by clicking on the arrow next to the letter P. Once you import the model you can look at
the bode plot and step response by selecting the appropriate boxes.

Window to Import Model

Step Response and Bode Plot

 37

The next step is to specify the desired performance. For this example, there are two performance
criteria.

• ùn greater than 1.8 for a rise time specification
• Damping ratio greater than 0.5 for an overshoot specification

Show these design specifications on the root locus

• Select Tools|Add Grid Boundary (the following figure should appear)
• Add a grid by selecting Grid on?
• Input the values for the natural frequency and damping ratio
• Select the appropriate boxes and click apply or OK

The root locus plot should now show the acceptable region for the close loop poles. The next step
is to design the compensator.

• Select Tools|Edit Compensator (The following figure should appear)
• Add a zero at –1 and a pole at –10
• Click on OK

Add Design Specifications

Edit Compensator Window

 38

As you can see, the root locus changed shape, and the next step is to select an appropriate gain to
move the closed loop poles. Do this by selecting the poles with the mouse and moving them to the
desired location as in the following figure. You can also type the value for the gain into the
corresponding box.

To analyze your design, various plots are available, which are seen in the bottom of the window.
Plot the step response and the bode plots for the closed loop system by selecting the appropriate
boxes. They should appear like the following figure. As you can see the steady state error is too
large. To improve it we will add a lag compensator.

Root Locus Plot

Step Response and Bode Plot

 39

Create a lag controller by adding a pole and zero at the listed locations. The root locus should
change to look like the following figure.

• zero at –0.5
• pole at –0.025

Plot the step response and bode plot again for this system. By right clicking on the plot window a
menu pops up with pull down lists. If you select Characteristics , more options will appear
depending on the plot you selected. The following table lists the options available for the step and
bode plots.

Step Response Bode Plot
Peak Response Peak Response
Settling Time Stability Margins
Rise Time
Steady State

Display information about the rise time, overshoot, and steady state error on the step response.

• Select Characteristics|Rise Time
• Select Characteristics|Peak Response
• Select Characteristics|Settling Time

Root Locus Plot

 40

Display information about the phase margin on the bode plot.
• Select Characteristics|Stability Margins

A point appears representing the rise time, and if you click on the dot it will display the value for
the rise time. You can do the same with the other points. The graphs should appear like the
following figure.

Another useful feature is the ability to quickly see changes in the root locus as poles and zeros are
moved. For example, select the pole at the far left and move it towards the origin. How does it
change the root locus? Try this with the other poles and zeros.

5. Simulink Tutorial
5.1 What is Simulink?

Simulink is an extension of MATLAB that assis ts in the building of simulations. Simulink models
are created much like a block diagram is created, i.e., by connecting up blocks and subsystems.
Simulink is a VERY powerful simulation tool, and this tutorial is only a brief introduction to it. If
you have a need for more information, refer to the Simulink manual. This tutorial is intended to

Step Response and Bode Plot

 41

only give an introduction, and get you started as a Simulink user. With the knowledge you gain
here, you should become able to use Simulink at a reasonable level of proficiency.

5.2 Simulink's Structure

To be able to use Simulink effectively, you must understand something about how the program is
structured.

Blocks

A Simulink block is a subsytem with inputs and/or outputs. Within the block, some rule exists that
relates the input and output. Blocks can be almost anything. Laplace transfer functions, nonlinear
relations, signal sources, and signal display devices are all examples of the kinds of blocks
available.

Models

A Simulink model is a collection of individual blocks, connected in such a way that they form the
model for a specific system or perform a specific task.

Libraries

A Simulink library is actually a special type of model. These libraries are collections of blocks that
are used by you to create other models. You can, if you like, create your own libraries of commonly
used blocks simply by copying the blocks you want into a model window and saving the new
"model."

Workspace

The regular MATLAB workspace is important in Simulink. It allows you to start the Simulink
interface and collect simulation data for further manipulation. In the workspace, you can also
control important simulation variables.

Simulation

In order to simulate a block diagram, an integration method must be chosen. The choice of method
depends on the type of system to be simulated.

5.3 Simple Simulink Tasks

In this section, you will be taught the basics of Simulink. To do this, you will create a simple model,
and run a simulation.

Starting Simulink.

Simulink can only be run from within MATLAB. To start Simulink, type

 simulink

from the command window. You can also start Simulink by entering the name of a model that you
already created.

Using the Simulink Master Library.

Once Simulink is started, a small window is opened that contains some blocks with titles under
them. This is the Simulink Master Library. All of the blocks that were supplied with Simulink are
accessible from this window.

Simulink's blocks are organized into categories, subcategories, subsubcategories, etc. Currently,
you are looking at the top level of this library. To look at the next level down, click on the plus sign

 42

next to the desired category, or double click the category name. All of the basic blocks are found in
the Simulink category. For example, click on the Simulink plus sign, then again on the plus sign in
front of Sources. This opens up the source block library. Alternatively, you can right click on the
name of a category to open up the library in its own window. At some point, now or after this
tutorial, you should go on a “tour” of the Simulink libraries. Look through all of the libraries to see
the extent of blocks that are available. This will assist you later when you are building you own
models.

To close this library, click on the minus sign next to the category name or you can select File|Close
if a window is open. The same method is used to close all Simulink windows including the Master
Library.

It is strongly recommended that you close the libraries once you get what you want from them.
This will keep your workspace from getting cluttered, and will improve the stability of Simulink.
Keeping them open gobbles up your available memory.

Now, let's create a new model for this demonstration.

• Click on the icon with a blank piece of paper

This will open a new window similar to the first, but without the blocks. Your new file is now ready
for you to build your simulation.

To save a model file,

• select File|Save or File|Save As

It is recommended that you do this often. Simulink files are saved with extension, mdl.

Copying blocks between/within windows.

To place a block into your model, first that block must be displayed in the library. Let's copy a
Signal Generator block in your file.

• Open the Sources library from the Master Library (if it is not already).
• Then, using the left mouse button, click and drag the Signal Generator block from the

Sources library to your model window.
• Release it.

You have now copied this block to your file.

To copy a block within your model, you use the right mouse button.

• Click and drag the Signal Generator block using the right button somewhere else within
your model.

• Release it.
This operation is a convenience when you need several copies of the same block or type of block
within a model.

To continue the demonstration, go get copies of the following blocks:

 Format: block_name (library)

• Scope (Sinks)
• Gain (Math)
• Mux (Signals and Systems)

If you have trouble finding the blocks, you can enter its name in the search box next to the
binocular icon on the library browser.

Your model window would look something like this.

 43

Signal
Generator1

Signal
Generator

Scope

1
Gain

Deleting, moving, block parameters, connecting, branching and cleaning up model files

We do not need the second signal generator, so let's delete it.

• With a single click of the left mouse button, select the second signal generator.
• Press the delete key.

It is gone. This same method can be used to delete anything within a model, including connections
and text.

Lets move the individual blocks into a more logical order (preparation for connecting them). To
move a block,

• simply click and drag it to its new location with the left mouse button.

Order the blocks into approximately this configuration:

Signal
Generator Scope

1
Gain

Most, but not all, blocks have block parameters associated with them. Block parameters define the
behavior of the blocks, and their use varies depending on the block type. For example, let's set the
gain block to have a gain of 2.5.

• Double click on the gain block to open its dialogue box.
• Edit the gain value so that it reads 2.5, and click OK.

Block parameters can also be entered as names of variables in the workspace. You can also change
the number of inputs on the Mux block. Go ahead and make the change. In these dialogue boxes,
you can also get help on this type of block by clicking on the help button.

To connect the blocks, you use the small arrows on the sides of the block.

• Click on the "out" arrow on the Signal Gen. block and drag the connection around. Notice
that the line behaves differently in free space and near an input arrow-tail.

• Release the line in a random location. Notice that it leaves the line's end in place with an
arrow head on it.

• Now click on this arrowhead and drag a new connection to the input of the gain block.

You have now connected the two blocks. (These operations also work dragging from the input
side of one block to the output side of another.)

 44

To straighten this model up, delete the connection you just made. (Select the connecting line and
press delete.) Now connect up all of the blocks as shown below:

Signal
Generator Scope

2.5
Gain

To branch (solder) a new connection line onto an existing connection, you use the right mouse
button.

• Click on the connection from the Signal Gen. block with the right mouse button,
• drag it straight downward.
• Then using the same techniques described above, connect this branch to the second

input on the Mux block as shown below.

Signal
Generator Scope

2.5
Gain

To clean up model files, it is often useful to move several blocks around and alter connecting lines.
To group some blocks together for moving, copying, or deleting,

• simply click with the left mouse button and drag a rectangle around the blocks that you
want to alter.

• Now the grouped features are highlighted (small handles appear in the corners of the
blocks),

• and as far as editing goes, they will behave as one block. (This is different from
Edit|Create Subsystem.)

To modify a connection line,

• first you select it.
• Then you can grab any of the line's vertices and move them around.

You can also change the names of the blocks to more descriptive names.

• Click on the text below the gain block.
• Now that it is highlighted, it can be edited. If you press return, it adds a new line to the

name.
• To finish editing the block name, click elsewhere in the model window.

Every block must have a name, and it must be unique.

Finally, you can change the size of blocks.

• Select the gain block.
• Drag one of the handles that appear at the corners outward from the center of the block to

make it larger.
If a block is made large enough, more information about the contents of that block can often be
seen.

Play with these features until you get the following.

 45

Signal
Generator Scope

2.5
Gain

The reader is encouraged to explore Format|Flip Block and Format|Rotate Block on his/her own.

5.4 Running Simulations

The basics of running a simulation are very simple, so in addition to explaining this, you will be
introduced to several other useful aspects of Simulink that are related to simulations.

Controlling a simulation

To start a simulation, select Simulation|Start from the menu bar. If you do this with the current
model, nothing appears to be happening. This is because there are no 'open' display devices on
the screen.

To stop the simulation, select Simulation|Stop from the menu bar.

There are several other parameters that the user can control in a simulation. These options are
summarized below:

Start Time When to start simulation (sec)

Stop Time When to stop simulation (sec)

Solver Options This controls the algorithm that Simulink uses to simulate your model.
(see descriptions below)

Variable-step solvers can modify their step sizes during the simulation.

Fixed-step solvers take the same step size during the simulation.

Max Step Size The largest time step the solver can take

Initial Step Size A suggested first step size

Relative Tolerance A percentage of the state’s value

Absolute Tolerance The acceptable error as the value of the measured state approaches zero

The individual solvers are described briefly below, including what they're good at solving and what
they are not.

• ode45 --- The best solver to apply as a “first try” for most problems.
• ode23 --- More efficient than ode45 at crude tolerances and in the presence of mild

stiffness.
• ode113 --- More efficient than ode45 at stringent tolerances
• ode15s --- Use this solver if you suspect that a problem is stiff or if ode45 failed or was

very inefficient.
• ode23s --- This method can solve some kinds of stiff problems for which ode15s is not

effective.
• ode23t --- Use this solver if the problem is only moderately stiff and you need a solution

without numerical damping.
• ode23tb --- More efficient than ode15s at crude tolerances
• discrete (variable-step) --- The solver Simulink chooses when it detects that your model

has no continuous states
• ode5 --- The fixed-step version of ode45

 46

• ode4 --- The fourth-order Runge-Kutta formula
• ode3 --- The fixed-step version of ode23
• ode2 --- Heun’s method, also known as the improved Euler formula
• ode1 --- Euler’s method. Suffer from accuracy and stability problems. Not recommended

for use as anything except to verify results.
• discrete (fixed-step) --- Suitable for models having no states and for which zero crossing

detection and error control are not important

Watching a simulation

The scope block allows you to view a signal as it runs. To do this,

• Double click on the scope icon. This opens up a small window with a grid.
• Before we start the simulation, change the horizontal range to 10 by clicking the

Properties icon and changing Time range, and the vertical range to 3 by right
clicking on an axes and choosing Properties… . Don't close the scope unless you no
longer wish to view it. Leave this one open for now.

• Change the Simulation|Parameters so that 0.01 is the maximum step size.
• Now select Simulation|Start.

You should see a sine wave on the scope's grid. Let the simulation continue while you move on to
the next section.

Changing parameters "on-the-fly"

One of the nice features of Simulink is that you can alter some system parameters while the
simulation is running. Try this.

• Double click the Signal Gen. icon.
• Select the sawtooth wave, and see how the scope graph changes.
• Try changing the amplitude of the input.

Some blocks even allow you to change their parameters while running a simulation.

• Open the gain block's dialogue box, and change the gain.
As soon as you select OK, the value has been changed. If you try to change a fixed parameter
during a simulation (e.g., the order of a transfer function block), Simulink will tell you that you
cannot do that or it will stop the simulation.

Play around a little, but stop the simulation before continuing on to the next section.

5.5 Using the Workspace

This section will demonstrate how to pass information back and forth between Simulink and the
MATLAB workspace. To demonstrate this, we will use an entirely new example. Create a new file
as shown below.

s+5

s +4s +13s 3 2
Transfer Fcn

5
Gain

Be sure to redefine the block parameters as follows:

• Sum (Math) ... +-
• Gain (Math) ... 5
• Transfer Fcn (Continuous) ... numerator [1 5] and denominator [1 4 13 0]

With this done, you can proceed.

 47

Sending/Receiving data between the workspace and Simulink

There are two blocks that allow you to do this:

1. to workspace (Sinks library)

2. from workspace (Sources library)

Lets begin by using the "to workspace" block (it's a little simpler).

• Modify your model so that it appears as shown below. The clock block is found in the
Sources library.

• The default variable name for To Workspace is simout. This is easily changed by
double clicking on the block.

Be sure to change the data type from Structure to Matrix. While a Structure type holds more
information, Matrix is simpler to manipulate in the workspace.

The simulation will automatically send to the workspace the time steps in the variable tout, but it is
always a good idea to add the clock setup to any system where you use To Workspace. This is
because most of the simulation algorithms use adaptive step sizing, and this is the simplest way to
record the time vector associated with a simulation.

For this simulation, a maximum number of rows equal to 1000 is adequate.

s+5

s +4s +13s 3 2
Transfer Fcn

yout
To Workspace1

t
To Workspace

Signal
Generator

5
Gain

Clock

Before you start the simulation:

• Change the Signal Generator to create square waves with a frequency of 0.5 rad/sec.
• Change the Simulation|Parameters|Solver options to ode45, the stop time to 30 sec, and the

max step size to 0.1 sec.
• Start the simulation.
• You'll hear a beep when the simulation is done. Now that the system output is saved in a

workspace variable, it can be manipulated and plotted like any other simulation variable.

To see the results of the simulation, open the MATLAB command window and type

 plot(t,yout)

The result looks like this:

 48

0 5 10 15 20 25 30
-1.5

-1

-0.5

0

0.5

1

1.5

A To Workspace block can be connected to each branch that you desire the data for (with different
variable names of course). However there is a more efficient method. By using the Mux block from
the Connections library, a multiple-column matrix can be stored in one variable.

For example,

• modify your model to be as shown below:

s+5
s +4s +13s 3 2
Transfer Fcn

yout
To Workspace1

t
To Workspace

Signal
Generator

5
Gain

Clock

• Now run the simulation and issue the same plot statement in the command window.
There is now a second line on the graph. The first and second columns of yout correspond to the

first and second inputs to the Mux block, the signal generator output and the system output.

0 5 10 15 20 25 30
-1.5

-1

-0.5

0

0.5

1

1.5

 49

The block From Workspace works in a similar but different manner. Substitute a From Workspace
block for the Signal Generator and label it as shown in the figure below. With the From Workspace
block, the workspace variables, [T,U], must be defined in the workspace prior to starting the
simulation.

To define [T,U], use the following statements: (don't forget the transpose operators and the ;)

 T=[0:.05:30]';

 U=(2*sin(T)+cos(3.3*T));

Simulink will interpolate between the data points as it simulates.

• Start the simulation.
• From MATLAB, plot the results using the same command as before. Simulink used your

input to the system.

s+5
s +4s +13s 3 2
Transfer Fcn

yout
To Workspace1

t
To Workspace

5
Gain

[T,U]
From

Workspace

Clock

The result should be

0 5 10 15 20 25 30
-3

-2

-1

0

1

2

3

That is essentially all that you'll need to pass data back and forth between the workspace and
Simulink. There are also blocks within Simulink to load values from files. It is left up to the reader
to figure these out.

Getting a workspace linear model for a system.

MATLAB has a command linmod that allows the user to create a state-space model of a Simulink
model file. This tutorial will only explain how to use this command with linear systems. (linmod
can also be used with nonlinear systems to produce a linearized system.)

 50

• Modify the model that you just created to the following and save it as simtutor.mdl.
• The In1 and Out1 blocks are contained in the Signals and Systems library.

1
Out1

s+5
s +4s +13s 3 2
Transfer Fcn

t
To Workspace

5
Gain

Clock

1
In1

For MIMO systems, the numbers that you assign to the Inports and Outports become the order of
the inputs/outputs for the linmod system. One limitation to keep in mind here is that Inports and
Outports can only handle scalar quantities.

Now lets create the state space model for this system:

 [A,B,C,D]=linmod('simtutor')

For those who wish to use transfer function notation, you can then issue the command

 [num,den]=ss2tf(A,B,C,D)

See help linmod and help ss2tf for more information.

5.6 Creating Subsytems

For simulations of large systems, it is recommended that the system be broken down into smaller
parts. This is done using Edit|Create subsystem from the menu bar.

• Click the left mouse button in a clear area of the window.
• Drag a rectangle from this point so that you have surrounded the entire model except the

in and out ports.
• Release the button. All of the blocks except the ports will be highlighted.
• Select Edit|Create subsystem, and now the model should look like this:

You can now treat this block like any other block that you might use. You can give the block a
name, copy it to other models, copy it within the same model, etc.

1

Out1

In1 Out1

Subsystem

1
In1

To see the new block's component parts and edit them,

• double click on the "grouped" block. This will open another window.

 51

5.7 Masking Subsystem

By masking a subsystem you can build your own Simulink block that is composed of the built-in
Simulink blocks and behaves the same way as the built-in blocks do. Masking enables you to
customize the dialog box and icon for a subsystem. With masking, you can:

• Simplify the use of your model by replacing many dialog boxes in a subsystem with a
single one.

• Provide a more descriptive and helpful user interface by defining a dialog box with your
own block description, parameter field labels, and help text.

• Define commands that compute variables whose values depend on block parameters.

• Create a block icon that depicts the subsystem’s purpose.

• Prevent unintended modification of subsystems by hiding their contents behind a
customized interface.

• Create dynamic dialogs.

To create the mask for a subsystem, select the subsystem block and choose Mask Subsystem
from the Edit menu. The Mask Editor pops up with which you can define dialog prompts and their
characteristics, the masked block description and help text, and the commands that creates the
masked block icon. For detailed instructions on the Mask Editor, refer to Help in the Mask Editor.

The following is an example of a masked subsystem.

1

PWM

max

time
limit

1

set

0

reset

p.Tp

on time

off time

Mux

mux

2*T_s
min.

Tp

invert

duty limit

Pulse
Set

Pulse
Reset

Pulse
Accumulator

Output
Hold

Memory

Gain

Clock Pulse
Generator

3

A

2

Duty

1

Tp

A complicated diagram made by the built-in Simulink blocks is masked into a block icon that has a
dialog box of its own.

Tp
Duty
A

PWM

Pulse-Width
Modulator

 52

5.8 Linear Analysis Tool (LTI Viewer)

LTI Viewer is an interactive environment for comparing time and frequency responses of LTI
systems. The Viewer can contain up to 6 response areas, where each response area can show a
different response type and be independently manipulated. The LTI Viewer controls are found in
two main locations:

1. The Figure menus (File, Tools, and Help)
2. Right click menus (from any axes displaying a response plot)

The Figure menus provide high level tools for manipulating data in the LTI Viewer, and configuring
the appearance of the Viewer.

File allows you to Import/Export/Delete LTI Objects from the Viewer’s workspace, or
Open/Close/Print the Viewer and related windows.

Tools opens additional windows for configuring the number of response areas to show on the
Viewer, as well as setting up response and line style preferences.

Help provides tips on using the Viewer and related windows.

Simulink provides access to Simulink model in use to get the linear model.
The right click menus provide tools for manipulating the actual responses.
The LTI Viewer can be called from Tools|Linear Analysis menu in the Simulink model file. When it
is called the LTI Viewer brings Input Point and Output Point block window for use in linear
analysis.

5.9 Creating Libraries

To create a library, select Library from the New submenu of the File menu. Simulink displays
a new window, labeled Library: untitled. If an untitled window already appears, a
sequence number is appended.
You can create a library from the command line using this command.

 new_system('newlib', 'Library')

This command creates a new library named 'newlib'. To display the library, use the
open_system command. The library must be named (saved) before you can copy blocks from it.

 53

It is important to understand the terminology used with this feature.

Library - A collection of library blocks. A library must be explicitly created using New Library
from the File menu.
Library block - A block in a library.
Reference block - A copy of a library block.
Link - The connection between the reference block and its library block that allows Simulink to
update the reference block when the library block changes.
Copy - The operation that creates a reference block from either a library block or another reference
block.

5.10 Conclusion

You should be capable of building and simulating systems using Simulink at this point. Remember
that, if you have not done so, you should take some time to explore the libraries and see what is
there. Practice and experience will, of course, improve your knowledge of Simulink. It is
recommended that you try to model a simple system from beginning to end for practice.

There are extensive examples and demos available under the Extra library. Take a look at these to
see how more complicated systems can be built.

6. M-File Tutorial
MATLAB supports some basic programming structures that allow looping and conditioning
commands along with relational and logical operations. These new commands combined with ones
already discussed can create powerful programs or new functions in MATLAB.

6.1 Introduction to m-files

An m-file is simply a text file that is created to perform a specific task. M-files can be broken down
into two categories:

• Script files

• User functions

Script files are analogous to batch files. They are executed as if the user had entered the
commands directly, while user functions behave like the "built in" MATLAB functions. As a
matter of fact, many of the MATLAB functions are simply m-files that were written by the
Mathworks.

The differences between these types of m-files are fairly simple to understand. Because script files
are executed as if they were typed at the command prompt, variable references within the script file
affect the workspace. Functions, on the other hand, have an input parameter list and output
parameter list. Any variables used within the function are local and do not affect the workspace.

In this tutorial, you will be shown examples of both types of files and given a brief set of
commands that are special to (or most commonly used in) m-files. To create your own m-files, all
that you will need is an editor that creates ASCII text files. The only restriction on this editor is
that it cannot insert anything other than ASCII characters into the file.

 54

MATLAB now has its own text editor and debugger for creating and editing m-files. The editor is
simple to use and has features specifically useful to MATLAB applications. You can create a new
m-file by going to File|New|M-File

6.2 Script files

example1.m : A simple flow control demonstration.

This program will demonstrate the use of for-loops and if-then-elseif-else statements.

% This is a comment line. The %-symbol tells MATLAB to ignore
% the rest of the line.
%
% In addition, the comments at the beginning of ANY m-file are
% considered to be the help screen for that function. The first
% line that is not a comment terminates the help section.

% this line will not be printed if
% help example1
% is issued from the command line.

% define some constants
t=linspace(0,1,100);
% a, b, and c are assumed to be defined in the workspace

% calculations in a for loop
for n=1:100 % for loop starts
 f(n)=t(n)^5 + a*t(n)^3 + b*t(n) + c;
end % for loop ends

% if statement demonstration
if (any(f==0)) % are there any exact roots
 disp('An exact root for f(t) was found in [0,1].')
elseif (any(f<0) & any(f>0)) % are there any roots
 disp('f(t) has a root in [0,1]')
else % if none of the above conditions...
 disp('f(t) has no root in [0,1]')
end

% plot results
plot(t,f), grid

In the workspace, enter the coefficients :

 a=-40; b=-20; c=5;

Run the program by typing

 example1

Change the coefficients as follows:

 55

 c=100;

and run it again.

Finally, try the program with

 c=0;

This script file has created several variables while it was running. Type

 whos

If there had been other variables with the same name in the workspace, they would have been
overwritten by the script file. Keep this in mind when you use script files.

The disp command displays strings and variables without displaying the variable name.

The for-loop is basically of this format:

 for variable=start:increment:stop

 your commands

 end

It is possible to nest for loops, but each one must have its own end statement. It is also possible
to use a matrix as the loop variable. See help for for information on this. See help while
for information on while-loops.

The conditional used in this program is the most general one possible. The statement must be of
the following format :

 if (conditional)

 your commands

 elseif (conditional) (optional)

 your commands

 else (optional)

 your commands

 end

The elseif and else parts are optional, and you can have nested conditionals.

example2.m : A demonstration of user input/output.

% This file demonstrates the use of user input in
% a script file. In addition, more complicated
% output is also demonstrated.

% get the user's desired value for search range and coeff's
tlow=input('Enter the lower bound for t : ');
tup=input('Enter the upper bound for t : ');

 56

a=input('Enter the first coeff : ');
b=input('Enter the second : ');
c=input('Enter the third : ');

% define some constants
t=linspace(tlow,tup,100);

% calculations in a for loop
for n=1:100 % for loop starts
 f(n)=t(n)^5 + a*t(n)^3 + b*t(n) + c;
end % for loop ends

% define string to contain bracket e.g. '[0,5]'
T=['[' num2str(tlow) ',' num2str(tup) ']'];

% if statement demonstration
if (any(f==0)) % are there any exact roots
 disp(['An exact root for f(t) was found in ' T])
elseif (any(f<0) & any(f>0)) % are there any roots
 disp(['f(t) has a root in ' T])
else % if none of the above conditions...
 disp(['f(t) has no root in ' T])
end

% plot results
plot(t,f), grid

This script file demonstrates the use of the input command, and shows you how to incorporate
variable strings into a disp command. Now run the program by typing

 example2

and play around with the ranges and coefficients.

6.3 Functions

example3.m : A function with inputs only.

function example3(tlow,tup,a,b,c)
% This file is a simple function with no outputs

% define some constants
t=linspace(tlow,tup,100);

% calculations in a for loop
for n=1:100 % for loop starts
 f(n)=t(n)^5 + a*t(n)^3 + b*t(n) + c;
end % for loop ends

 57

% define string to contain bracket e.g. '[0,5]'
T=['[' num2str(tlow) ',' num2str(tup) ']'];

% if statement demonstration
if (any(f==0)) % are there any exact roots
 disp(['An exact root for f(t) was found in ' T])
elseif (any(f<0) & any(f>0)) % are there any roots
 disp(['f(t) has a root in ' T])
else % if none of the above conditions...
 disp(['f(t) has no root in ' T])
end

% plot results
plot(t,f), grid

return

This function is the same as the previous script file except that the user variables are now in a
parameter list. The only way that MATLAB knows that a function is a function and not a script file
is by the function statement at the first line in the file. This statement defines the format for the
function.

To run this function type

 example3(0,1,-40,-20,5)

Notice that when you run this function, the workspace variables are unaffected.

example4.m : A function with a single output.

function status=example4(tlow,tup,a,b,c)
% This file is a simple function with one output.

% define some constants
t=linspace(tlow,tup,100);

% calculations in a for loop
for n=1:100 % for loop starts
 f(n)=t(n)^5 + a*t(n)^3 + b*t(n) + c;
end % for loop ends

% if statement demonstration
if (any(f==0)) % are there any exact roots
 status=0;
elseif (any(f<0) & any(f>0)) % are there any roots
 status=1;
else % if none of the above conditions...
 status=2;
end

return

Notice how the function statement has changed. Now the function will return a number
between 0 and 2 depending on whether roots were found.

 58

Type :

 example4(0,1,-40,-20,5)

You should see the following :

 ans=
 1
Now type :

 result=example4(0,1,-40,-20,0)

this results in

 result=
 0

example5.m : A multi-output function.

function [root,status]=example5(tlow,tup,a,b,c)
% This file is a simple function with two outputs.

% define some constants
t=linspace(tlow,tup,100);

% calculations in a for loop
for n=1:100 % for loop starts
 f(n)=t(n)^5 + a*t(n)^3 + b*t(n) + c;
end % for loop ends

% if statement demonstration
if (any(f==0)) % are there any exact roots
 status=0;
 root=t(find(f==0)); % return the exact roots
elseif (any(f<0) & any(f>0)) % are there any roots
 status=1;
 for n=1:99 % find brackets of roots
 if ((f(n)*f(n+1))<0)
 root=[t(n) t(n+1)];
 end
 end
else % if none of the above conditions...
 status=2;
 root=[];
end

return
Notice how the function statement has changed. In this function, the roots (or bracketed ranges of
the roots) and the status will be returned.

Try the following examples :

 [r1,s1]=example5(0,1,-40,-20,0)
 [r2,s2]=example5(0,1,-40,-20,5)
 [r3,s3]=example5(0,1,-40,-20,100)

 59

 example5(0,1,-40,-20,5)
 r4=example5(0,1,-40,-20,10)

Notice that if both output variables are specified, they are returned. Otherwise, only the first
output variable is returned.

6.4 More M-file commands

Relational and Logical Operators

< less than & AND

<= less than or equal | OR

> greater than ~ NOT

>= greater than or equal

== equal

~= not equal

Flow Control Commands

if conditionally execute statements

elseif used with if

else used with if

end terminates if, for, while statements

for repeat statements for a number of times

while do while

break breaks out of for and while loops

return return from functions

pause pause

 60

Programming

input get numbers from keyboard

keyboard call keyboard as m-file

error display error message

function define function

eval interpret text as command

feval evaluate function given be string

echo enable command echoing

exist check if variable exists

nargin get the number of input arguments

nargout get the number of output arguments

menu select item from menu

etime get the elapsed time

This is only a partial list taken from the reference section of the MATLAB manual.

6.5 M-files : Some final notes

M-files can call other m-files. In fact, it is recommended that you break down a program into
several routines.

Take advantage of the help section at the top of the file. It is the curse of programming that you
will forget what your own functions do after a while. A well written help section will prevent many
headaches for you.

If you need more instruction, the MATLAB manual has a good description of how to use m-files.
In addition, you can look at the Mathworks' m-files for many of the commands. These are often
helpful in finding programming tricks...

6.6 Useful M-files for Mechatronics

(1) Stepmesh.m

% This m-file computes the step response of a second-order system
% for values of zeta ranging from 0.1 to 1 and will create a mesh
% plot of the step responses. The natural frequency is set at 1.

n=1;
y=zeros(200,1);
i=1;

 61

for del=0.1:0.1:1
 d=[1 2*del 1];
 t=[0:0.1:19.9]';
 y(:,i)=step(n,d,t);
 i=i+1;
end
mesh(fliplr(y), [-120 30])

(2) Stepchar.m

function[pos,tr,ts,tp]=stepchar(t,y)
% This m-file computes the % overshoot, peak time, rise time,
% and 1% settling time for a unit step response.
[mp,ind]=max(y); dimt=length(t); yss=y(dimt);
pos=100*(mp-yss)/yss; tp=t(ind);
for i=1:dimt,
 if y(i) > 1.01*yss,
 ts=t(i);
 elseif y(i) < 0.99*yss,
 ts=t(i);
 end
 end
for i=1:dimt
 if y(i) < 0.1*yss
 t1=t(i);
 elseif y(i)==mp,
 break;
 end
end
for i=1:dimt;
 if y(i) < 0.9*yss,
 t2=t(i);
 elseif y(i)==mp,
 break
 end;
end
tr=t2-t1;

(3) Stepmat.m

function [pos,tr,ts,tp]=stepmat(t,y)
% This program finds the step response characteristics
% for any number of step responses.
% The columns of y are the step responses, i.e., y=[y1 y2 ...]
[dimt,col_y]=size(y);

 62

% This is the main loop to search over the columns of y.
 for ii=1:col_y
 yss=y(dimt,:);
% Finding the rise time, tr
 ind1=find(y(:,ii)<=0.1*yss(ii)); max(ind1); t1=t(ans);
 ind2=find(y(:,ii)<=0.9*yss(ii)); max(ind2); t2=t(ans);
 tr(ii)=t2-t1;
% Finding the 1 percent settling time, ts
 jj=dimt;
 for jj=1:dimt;
 if y(jj,ii)>=1.01*yss(ii); ts(ii)=t(jj);
 elseif y(jj,ii)<=0.99*yss(ii); ts(ii)=t(jj);
 end
 end
end
% Finding the percent overshoot, pos, and the peak time, tp.
[mp,ind]=max(y); tp=t(ind)'; pos=100*(max(y)-yss)./yss;

(4) Freqmat.m

function [mr,bw]=freqmat(w,m)
% This program calculates Mr and BW from the magnitude Bode plot.
% Use [m,w]=bode(sys); to gather the data.
% Columns of m are the absolute magnitudes, i.e., m=[m1 m2 ...]
[dimw,col_m]=size(m); mdb=ones(dimw,col_m); bw=ones(1,col_m);
for ii=1:col_m;
 jj=1;
 while m(jj,ii)>m(1,ii)/sqrt(2);

 jj=jj+1;
 end
bw(ii)=w(jj);
end
mr=20*log10(max(m));

