
Mechatronics
Control Systems

K. Craig 
1

Control Systems

• Introduction to Control Systems

• Absolute Stability Criteria 

• System Performance Specifications

• Modes of Control



Mechatronics
Control Systems

K. Craig 
2

Introduction to Control Systems

Everything Needs Controls
for Optimum Functioning!

• Process or Plant
• Process Inputs

• Manipulated Inputs
• Disturbance Inputs

• Response Variables

Control systems are an integral part
of the overall system and not

after-thought add-ons!

Why Controls?
• Command Following
• Disturbance Rejection

Plant

Manipulated
Inputs

Disturbance
Inputs

Response
Variables
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• Classification of Control System Types
– Open-Loop

• Basic

• Input-Compensated Feedforward
– Disturbance-Compensated

– Command-Compensated

– Closed-Loop (Feedback)
• Classical

– Root-Locus
– Frequency Response

• Modern (State-Space)

• Advanced
– e.g., Adaptive, Nonlinear, Fuzzy Logic
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Director

Control
Effector
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of

Controlled Variable

Controlled
Variable

Plant Disturbance Input

Plant
Manipulated

Input
Flow of Energy
and/or Material

Basic Open-Loop Control System

Satisfactory if:
• disturbances are not too great
• changes in the desire value are not too severe
• performance specifications are not too stringent
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Input
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Disturbance
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Disturbance
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Open-Loop Input-Compensated Feedforward Control:
Disturbance-Compensated

• Measure the disturbance
• Estimate the effect of the disturbance on the 

controlled variable and compensate for it
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Controlled
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Flow of Energy
and/or Material

Command
Compensator

Open-Loop Input-Compensated Feedforward Control:
Command-Compensated

Based on the 
knowledge of plant 
characteristics, the 
desired value input is 
augmented by the 
command compensator 
to produce improved 
performance.
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• Open-loop systems without disturbance or 
command compensation are generally the 
simplest, cheapest, and most reliable control 
schemes. These should be considered first for any 
control task.

• If specifications cannot be met, disturbance and/or 
command compensation should be considered 
next.

• When conscientious implementation of open-loop 
techniques by a knowledgeable designer fails to 
yield a workable solution, the more powerful 
feedback methods should be considered.
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Controlled
Variable
Sensor

Closed-Loop (Feedback)
Control System

Open-Loop Control System is 
converted to a
Closed-Loop Control System 
by adding:
• measurement of the controlled variable
• comparison of the measured and desired values of the controlled variable
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Basic Benefits of Feedback Control

• Cause the controlled variable to accurately follow the desired 
variable.

• Greatly reduce the effect on the controlled variable of all 
external disturbances in the forward path.  It is ineffective in
reducing the effect of disturbances in the feedback path (e.g., 
those associated with the sensor), and disturbances outside the 
loop (e.g., those associated with the reference input element).

• Are tolerant of variations (due to wear, aging, environmental 
effects, etc.) in hardware parameters of components in the 
forward path, but not those in the feedback path (e.g., sensor) or 
outside the loop (e.g., reference input element).

• Can give a closed-loop response speed much greater than that of 
the components from which they are constructed.
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Instability in Feedback Control Systems

• All feedback systems can become unstable if 
improperly designed.

• In all real-world components there is some kind of 
lagging behavior between the input and output, 
characterized by τ’s and ωn’s.

• Instantaneous response is impossible in the real 
world!

• Instability in a feedback control system results 
from an improper balance between the strength of 
the corrective action and the system dynamic lags.
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Area A

C(t)

+M0 -M0

EDS

Consider the following
example:
• Liquid level C in a tank is    
manipulated by controlling the 
volume inflow rate M by 
means of a 3-position on/off 
controller.
• Transfer function K/D
between M and C represents 
conservation of volume 
between inflow rate and liquid 
level.
• Liquid-level sensor measures 
C perfectly but with a data 
transmission delay, τDT.

Tank Liquid-Level Feedback Control System
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Tank Liquid-Level Feedback Control System:
MatLab / Simulink Block Diagram

3-Position On-Off Controller
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Stable Behavior of the Tank Liquid-Level 
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Generalized Block Diagram of a
Feedback Control System
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Advantages of Digital Control

• The current trend toward using dedicated, 
microprocessor-based, and often decentralized 
(distributed) digital control systems in industrial 
applications can be rationalized in terms of the 
major advantages of digital control:
– Digital control is less susceptible to noise or parameter 

variation in instrumentation because data can be 
represented, generated, transmitted, and processed as 
binary words, with bits possessing two identifiable 
states.
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– Very high accuracy and speed are possible through 
digital processing.  Hardware implementation is usually 
faster than software implementation.

– Digital control can handle repetitive tasks extremely 
well, through programming.

– Complex control laws and signal conditioning methods 
that might be impractical to implement using analog 
devices can be programmed.

– High reliability can be achieved by minimizing analog 
hardware components and through decentralization 
using dedicated microprocessors for various control 
tasks.
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– Large amounts of data can be stored using compact, 
high-density data storage methods.

– Data can be stored or maintained for very long periods 
of time without drift and without being affected by 
adverse environmental conditions.

– Fast data transmission is possible over long distances 
without introducing dynamic delays, as in analog 
systems.

– Digital control has easy and fast data retrieval 
capabilities.

– Digital processing uses low operational voltages (e.g., 0 
- 12 V DC).

– Digital control has low overall cost.
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Digital Signals are:
• discrete in time
• quantized in amplitude

You must understand the effects of:
• sample period

• quantization size
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• In a real sense, the problems of analysis and 
design of digital control systems are concerned 
with taking into account the effects of the 
sampling period, T, and the quantization size, q.

• If both T and q are extremely small (i.e., sampling 
frequency 50 or more times the system bandwidth 
with a 16-bit word size), digital signals are nearly 
continuous, and continuous methods of analysis 
and design can be used.

• It is most important to understand the effects of all 
sample rates, fast and slow, and the effects of 
quantization for large and small word sizes.
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MatLab / Simulink Block Diagram:
Demonstration of Quantization
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MatLab / Simulink Block Diagram:
Demonstration of D/A Conversion

It is worthy to note that the single most important impact of implementing a 
control system digitally is the delay associated with the D/A converter, i.e., T/2.
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Aliasing

• The analog feedback signal coming from the 
sensor contains useful information related to 
controllable disturbances (relatively low 
frequency), but also may often include higher 
frequency "noise" due to uncontrollable 
disturbances (too fast for control system 
correction), measurement noise, and stray 
electrical pickup. 

• Such noise signals cause difficulties in analog 
systems and low-pass filtering is often needed to 
allow good control performance.
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• In digital systems, a phenomenon called aliasing
introduces some new aspects to the area of noise problems.

• If a signal containing high frequencies is sampled too 
infrequently, the output signal of the sampler contains low-
frequency ("aliased") components not present in the signal 
before sampling.  If we base our control actions on these 
false low-frequency components, they will, of course, 
result in poor control.  

• The theoretical absolute minimum sampling rate to prevent 
aliasing is 2 samples per cycle; however, in practice, rates 
of about 10 are more commonly used. A high-frequency 
signal, inadequately sampled, can produce a reconstructed 
function of a much lower frequency, which can not be 
distinguished from that produced by adequate sampling of 
a low-frequency function.
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Absolute Stability Criteria

• If  a system in equilibrium is momentarily 
excited by command and/or disturbance inputs 
and those inputs are then removed, the system 
must return to equilibrium if it is to be called 
absolutely stable.

• If action persists indefinitely after excitation is 
removed, the system is judged absolutely 
unstable.



Mechatronics
Control Systems

K. Craig 
32

• If  a system is stable, how close is it to becoming 
unstable? Relative stability indicators are gain 
margin and phase margin.

• If we want to make valid stability predictions, we 
must include enough dynamics in the system 
model so that the closed-loop system differential 
equation is at least third order.
– An exception to this rule involves systems with dead 

times, where instability can occur when the dynamics 
(other than the dead time itself) are zero, first, or 
second order.
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• The analytical study of 
stability becomes a study of 
the stability of the solutions 
of the closed-loop system’s 
differential equations.

• A complete and general 
stability theory is based on 
the locations in the complex 
plane of the roots of the 
closed-loop system 
characteristic equation, 
stable systems having all of 
their roots in the LHP.
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• Results of practical use to engineers are mainly limited to 
linear systems with constant coefficients, where an exact 
and complete stability theory has been known for a long 
time. 

• Exact, general results for linear time-variant and nonlinear 
systems are nonexistant.  Fortunately, the linear time-
invariant theory is adequate for many practical systems.

• For nonlinear systems, an approximation technique called 
the describing function technique has a good record of 
success. 

• Digital simulation is always an option and, while no 
general results are possible, one can explore enough 
typical inputs and system parameter values to gain a high 
degree of confidence in stability for any specific system.
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• Two general methods of determining the presence 
of unstable roots without actually finding their 
numerical values are:
– Routh Stability Criterion

• This method works with the closed-loop system characteristic 
equation in an algebraic fashion.

– Nyquist Stability Criterion
• This method is a graphical technique based on the open-loop 

frequency response polar plot.

• Both methods give the same results, a statement of 
the number (but not the specific numerical values) 
of unstable roots.  This information is generally 
adequate for design purposes.
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• This theory predicts excursions of infinite magnitude for 
unstable systems.  Since infinite motions, voltages, 
temperatures, etc., require infinite power supplies, no real-
world system can conform to such a mathematical 
prediction, casting possible doubt on the validity of our 
linear stability criterion since it predicts an impossible 
occurrence. 

• What actually happens is that oscillations, if they are to 
occur, start small, under conditions favorable to and 
accurately predicted by the linear stability theory.  They 
then start to grow, again following the exponential trend 
predicted by the linear model.  Gradually, however, the 
amplitudes leave the region of accurate linearization, and 
the linearized model, together with all its mathematical 
predictions, loses validity. 
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• Since solutions of the now nonlinear equations are usually 
not possible analytically, we must now rely on experience 
with real systems and/or nonlinear computer simulations 
when explaining what really happens as unstable 
oscillations build up.

• First, practical systems often include over-range alarms 
and safety shut-offs that automatically shut down operation 
when certain limits are exceeded.  If certain safety features 
are not provided, the system may destroy itself, again 
leading to a shut-down condition.  If safe or destructive 
shut-down does not occur, the system usually goes into a 
limit-cycle oscillation, an ongoing, nonsinusoidal 
oscillation of fixed amplitude.  The wave form, frequency, 
and amplitude of limit cycles is governed by nonlinear 
math models that are usually analytically unsolvable. 
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Routh Stability Criterion

• To use the Routh Stability criterion we must have 
in hand the characteristic equation of the closed-
loop system's differential equation.

• Routh's criterion requires the characteristic 
equation to be a polynomial in the differential 
operator D.  Therefore any dead times must be 
approximated with polynomial forms in D. 



Mechatronics
Control Systems

K. Craig 
39

• Dead-Time Approximations
– The simplest dead-time approximation can be obtained 

by taking the first two terms of the Taylor series 
expansion of the Laplace transfer function of a dead-
time element, τdt.
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– The accuracy of this approximation depends on the dead 
time being sufficiently small relative to the rate of 
change of the slope of qi(t).  If qi(t) were a ramp 
(constant slope), the approximation would be perfect for 
any value of τdt.  When the slope of qi(t) varies rapidly, 
only small τdt's will give a good approximation.

– A frequency-response viewpoint gives a more general 
accuracy criterion; if the amplitude ratio and the phase of 
the approximation are sufficiently close to the exact 
frequency response curves of for the range of 
frequencies present in qi(t), then the approximation is 
valid.  

dtse−τ
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– The Pade' approximants provide a family of 
approximations of increasing accuracy (and 
complexity), the simplest two being:

( ) ( )
( )

( )

2

dt
dt

o dt o
2

i dt i dt
dt

s
2 sQ 2 s Q 8s                s      

Q 2 s Q s
2 s

8

τ
− τ +− τ

= =
+ τ τ

+ τ +



Mechatronics
Control Systems

K. Craig 
42

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

-400

-350

-300

-250

-200

-150

-100

-50

0

frequency (rad/sec)

ph
as

e 
an

gl
e 

(d
eg

re
ss

)

Dead-Time Phase-Angle Approximation Comparison

– Dead-time approximation comparison:
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• The terms GdV and GdU are almost always themselves 
stable (no right-half plane roots) and when they are not 
stable it is generally obvious since these terms usually are 
already in factored form where unstable roots are apparent.

• For these reasons it is conventional to concentrate on the 
term Gn + Gd which came from the original 1 + G1G2H 
term which describes the behavior of the feedback loop 
without including outside effects such as A(D), N(D), and 
Z(D).  

• When we proceed in this fashion we are really examining 
the stability behavior of the closed loop rather then the 
entire system.  Since instabilities in the outside the loop 
elements are so rare and also usually obvious, this 
common procedure is reasonable.
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• We may write the system characteristic equation in a more 
general form:

• Assume that a0 is nonzero, otherwise the characteristic 
equation has one or more zero roots which we easily detect 
and which do not correspond to stable systems. 
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• Routh Criterion Steps
– Arrange the coefficients of the characteristic 

polynomial into the following array:

– Then form a third row:

– Where

n n 2 n 4 n 6

n 1 n 3 n 5

a   a a a

a a a
− − −

− − − L

1 2 3b b b L

n 1 n 2 n n 3 n 1 n 4 n n 5
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a a a a
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−
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– When the 3rd row has been completed, a 4th row is 
formed from the 2nd and 3rd in exactly the same fashion 
as the 3rd was formed from the 1st and 2nd.  This is 
continued until no more rows and columns can be 
formed, giving a triangular sort of array.

– If the numbers become cumbersome, their size may be 
reduced by multiplying any row by any positive 
number.  

– If one of the a's is zero, it is entered as a zero in the 
array.  Although it is necessary to form the entire array, 
its evaluation depends always on only the 1st column.
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– Routh's Criterion states that the number of roots not in 
the LHP is equal to the number of changes of algebraic 
sign in the 1st column.

– Thus a stable system must exhibit no sign change in 
first column. 

– The Routh criterion does not distinguish between real 
and complex roots, nor does it give the specific 
numerical values of the unstable roots.

– Although the complete Routh procedure gives a correct 
result in every case, two special situations are worth 
memorizing as shortcuts:

• If the original system characteristic equation itself shows any 
sign changes, there is really no point in carrying out the Routh
procedure; the system will always be unstable.
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• If there are any gaps (zero coefficients) in the characteristic 
equation, the system is always unstable.

• Note, however, that a lack of gaps or sign changes is a 
necessary but not a sufficient condition for stability.

– Although not of much practical significance, since 
they rarely occur in practical problems, two special 
cases can occur mathematically:

a) a term in the first column is zero but the remaining terms in 
its row are not all zero, causing a division by zero when 
forming the next row.

b) all terms in the second or any further row are zero, giving 
the indeterminate from 0/0.  This indicates pairs of equal 
roots with opposite signs located either on the real axis or on 
the imaginary axis.
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– The solution for these two special cases is as follows:
• For case (a) substitute 1/x for s in the characteristic equation, 

then multiply by xn, and form a new array.  This method 
doesn't work when the coefficients of the original 
characteristic equation and the newly formed characteristic 
equation are identical.  Another solution is to replace the 0 by a 
very small positive number ε, complete the array and then 
evaluate the signs in the first column by letting ε → 0. Or 
another solution  is to multiply the original polynomial by 
(s+1), which introduces an additional negative root, and then 
form the Routh array.
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• For case (b) form an auxiliary equation using coefficients from 
the row above, being careful to alternate powers of s. 
Differentiate the equation with respect to s to obtain the 
coefficients of the previously all-zero row. The roots of the 
auxiliary equation are also roots of the characteristic equation. 
These roots occur in pairs. They may be imaginary (complex 
conjungates) or real and equal in magnitude, with one positive 
and one negative.
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– Thus for a system to be stable, there must be no sign 
changes in the first column (to ensure that there are no 
roots in the RHP) and no rows of zeros (to ensure that 
there are no pairs of roots on the imaginary axis).

– For example, one sign change in the first column and a 
row of zeros would imply one real root in the RHP and 
one real root of the same magnitude in the LHP.

– In addition to answering yes-no questions concerning 
absolute stability, the Routh criterion is often useful in 
developing design guidelines helpful in making trade-
off choices among system physical parameters. 
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Nyquist Stability Criterion

• The advantages of the Nyquist stability criterion 
over the Routh criterion are:
– It uses the open-loop transfer function, i.e., (B/E)(s), to 

determine the number, not the numerical values, of the 
unstable roots of the closed-loop system characteristic 
equation.  The Routh criterion requires the closed-loop 
system characteristic equation to determine the same 
information.
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– If some components are modeled experimentally using 
frequency response measurements, these measurements 
can be used directly in the Nyquist criterion.  The 
Routh criterion would first require the fitting of some 
analytical transfer function to the experimental data.  
This involves extra work and reduces accuracy since 
curve fitting procedures are never accurate.

– Being a frequency response method, the Nyquist 
criterion handles dead times without approximation 
since the frequency response of a dead time element, 
τdt, is exactly known, i.e., the Laplace transfer function 
of a dead time element is , with an amplitude ratio 
= 1.0 and a phase angle = - ωτdt.

dtse−τ
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– In addition to answering the question of absolute 
stability, Nyquist also gives some useful results on 
relative stability, i.e., gain margin and phase margin.  
Furthermore, the graphical plot used, keeps the effects 
of individual pieces of hardware more apparent (Routh 
tends to "scramble them up") making needed design 
changes more obvious.

• While a mathematical proof of the Nyquist 
stability criterion is available, here we focus on its 
application and first give a simple explanation of 
its plausibility.
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Feedback Control System
Block Diagram

Plausibility Demonstration for the Nyquist Stability Criterion
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– Consider a sinusoidal input to the open-loop configuration. 
Suppose that at some frequency, (B/E)(iω) = -1 = 1 ∠ 180°.  If we 
would then close the loop, the signal -B would now be exactly the 
same as the original excitation sine wave E and an external source 
for E would no longer be required.  The closed-loop system would 
maintain a steady self-excited oscillation of fixed amplitude, i.e., 
marginal stability.

– It thus appears that if the open-loop curve (B/E)(iω) for any system 
passes through the -1 point, then the closed-loop system will be 
marginally stable.

– However, the plausibility argument does not make clear what 
happens if curve does not go exactly through -1.  The complete 
answer requires a rigorous proof and results in a criterion that
gives exactly the same type of answer as the Routh Criterion, i.e., 
the number of unstable closed-loop roots.  Instead, we state a step-
by-step procedure for the Nyquist criterion.
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1. Make a polar plot of (B/E)(iω) for 0 ≤ ω < ∞ , either 
analytically or by experimental test for an existing 
system.  Although negative ω's have no physical 
meaning, the mathematical criterion requires that we 
plot (B/E)(-iω) on the same graph. Fortunately this is 
easy since (B/E)(-iω) is just a reflection about the real 
(horizontal) axis of (B/E)(+iω).



Mechatronics
Control Systems

K. Craig 
60

Polar Plot of Open-Loop 
Frequency Response

Simplified Version of
Nyquist Stability Criterion

( ) ( )1 2

B
i G G H i

E
ω = ω
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Examples
of

Polar Plots



Mechatronics
Control Systems

K. Craig 
62

2. If (B/E)(iω) has no terms (iω)k, i.e., integrators, as 
multiplying factors in its denominator, the plot of 
(B/E)(iω) for -∞ < ω < ∞ results in a closed curve.  If 
(B/E)(iω) has (iω)k as a multiplying factor in its 
denominator, the plots for +ω and -ω will go off the 
paper as ω → 0 and we will not get a single closed 
curve.  The rule for closing such plots says to connect 
the "tail" of the curve at ω → 0− to the tail at ω → 0+

by drawing k clockwise semicircles of "infinite" 
radius.  Application of this rule will always result in a 
single closed curve so that one can start at the ω = -∞
point and trace completely around the curve toward ω
= 0- and ω = 0+ and finally to ω = +∞, which will 
always be the same point (the origin) at which we 
started with ω = -∞.  
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3. We must next find the number Np of poles of 
G1G2H(s) that are in the right half of the complex 
plane.  This will almost always be zero since these 
poles are the roots of the characteristic equation of 
the open-loop system and open-loop systems are 
rarely unstable.  If the open-loop poles are not 
already factored and thus apparent, one can apply the 
Routh criterion to find out how many unstable ones 
there are, if any.  If G1G2H(iω) is not known 
analytically but rather by experimental measurements 
on an existing open-loop system, then it must have 
zero unstable roots or else we would never have been 
able to run the necessary experiments because the 
system would have been unstable.  We thus generally 
have little trouble finding Np and it is usually zero.
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4. We now return to our plot (B/E)(iω), which has 
already been reflected and closed in earlier steps.  
Draw a vector whose tail is bound to the -1 point and 
whose head lies at the origin, where ω = -∞.  Now let 
the head of this vector trace completely around the 
closed curve in the direction from w = -∞ to 0- to 0+ 
to +∞, returning to the starting point.  Keep careful 
track of the total number of net rotations of this test 
vector about the -1 point, calling this Np-z and making 
it positive for counter-clockwise rotations and 
negative for clockwise rotations.
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5. In this final step we subtract Np-z from Np.  This 
number will always be zero or a positive integer and 
will be equal to the number of unstable roots for the 
closed-loop system, the same kind of information 
given by the Routh criterion. The example shows an 
unstable closed-loop system with two unstable roots 
since Np = 0 and Np-z = -2.
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– The Nyquist criterion treats without approximation 
systems with dead times. Since the frequency response 
of a dead time element τdt is given by the expression 
1∠-ωτdt, the (B/E)(iω) for the system of Figure (a) 
spirals unendingly into the origin. With low loop gain, 
the closed-loop system is stable, i.e., Np = 0 and Np-z = 
0. 

– Raising the gain, Figure (b), expands the spirals 
sufficiently to cause the test vector to experience two 
net rotations, i.e., Np-z = -2, causing closed-loop 
instability.  Further gain increases expand more and 
more of these spirals out to the region beyond the -1 
point, causing Np-z to increase, indicating the presence 
of more and more unstable closed-loop roots.
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Nyquist Stability Analysis of 
a System with Dead Time
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Root-Locus Interpretation of Stability

• The root locus method for analysis and design is a method 
to find information about closed-loop behavior given the 
open-loop transfer function.

• The root locus is a plot of the poles of the closed-loop 
transfer function as any single parameter varies from 0 to 
∞.

• The most straightforward method to obtain the root locus 
is simply to vary the parameter value and use a polynomial 
root solver to find the poles.  However, early techniques in 
control analysis still give important insights into the design 
of closed-loop systems.
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G1(D)

H(D)

A(D)

N(D)

Σ Σ
C

V R E

B

M

U

+

+

_
+

G2(D) Z(D)

Q

( ) ( ) ( )1 21 KG s G s H s 0+ =
Characteristic Equation

of the
Closed-Loop System

K is the parameter that is being 
varied from 0 to ∞.
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• The root locus begins at the poles of the open-loop 
transfer function KG1(s)G2(s)H(s) and ends at the 
zeros of the open-loop transfer function or at 
infinity. 

• Rewrite the closed-loop transfer function as 

• This implies that

( ) ( ) ( )1 2KG s G s H s 1= −

( ) ( ) ( )
( ) ( ) ( ) ( )

1 2

1 2

KG s G s H s 1

G s G s H s 2k 1       k = 0, 1, 2, 

=

∠ = ± + π L
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• For a point s* in the s plane to be a part of the root 
locus, the total angle from the poles and zeros of 
G1(s)G2(s)H(s) to s* must be ± (2k+1)π.

• The gain K that corresponds to this point is found 
by:

• Consider as an example a system with open-loop 
transfer function:

( ) ( ) ( )* * *
1 2

1
K

G s G s H s
=

( ) ( ) ( )1 2

B K
s

E s s 1 s 1
=

τ + τ +
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• The closed-loop characteristic equation is given by:

• Assume that τ1 and τ2 have been chosen and we wish to 
explore the effect of varying loop gain K on system 
stability.  For each value of K, the equation has 3 roots 
which may be plotted in the complex plane.  For K = 0, 
these roots are 0, -1/τ1, -1/τ2.  As K is increased, the roots 
trace out continuous curves that are called the root loci.

• Every linear, time-invariant feedback system has a root-
locus plot and these are extremely helpful in system design 
and analysis. 

( )3 2
1 2 1 2s s s K 0τ τ + τ + τ + + =
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( )( )1 2

B K
(s)

E s s 1 s 1
=

τ + τ +

Root Locus method   
gives information 
about closed-loop 
behavior given the 
open-loop transfer 

function.

The root locus is a 
plot of the poles of 

the closed-loop 
transfer function as 

any single 
parameter varies 

from 0 to ∞.
Root-Locus Plot
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System Performance Specifications

• Basic Considerations
• Time-Domain Performance Specifications
• Frequency-Domain Performance 

Specifications
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Basic Considerations

• Most of our discussion will involve rather specific 
mathematical performance criteria whereas the 
ultimate success of a controlled process generally 
rests on economic considerations which are difficult 
to calculate.

• This rather nebulous connection between the 
technical criteria used for system design and the 
overall economic performance of the manufacturing 
unit results in the need for much exercise of 
judgment and experience in decision making at the 
higher management levels.  
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• Control system designers must be cognizant of 
these higher-level considerations but they usually 
employ rather specific and relatively simple 
performance criteria when evaluating their 
designs.
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• Control System Objective
– C follow desired value V and ignore disturbance U

– Technical performance criteria must have to do with how 
well these two objectives are attained 

• Performance depends both on system characteristics 
and the nature of V and U. 

G1(D)

H(D)

A(D)

N(D)

Σ Σ
C

V R E

B

M

U

+

+

_
+

G2(D) Z(D)

Q

Basic Linear Feedback System
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• The practical difficulty is that precise 
mathematical functions for V and U will not 
generally be known in practice.

• Therefore the random nature of many practical 
commands and disturbances makes difficult the 
development of performance criteria based on the 
actual V and U experienced by real system.

• It is thus much more common to base performance 
evaluation on system response to simple 
"standard" inputs such as steps, ramps, and sine 
waves.  
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• This approach has been successful for several reasons:
– In many areas, experience with the actual performance of various

classes of control systems has established a good correlation 
between the response of systems to standard inputs and the 
capability of the systems to accomplish their required tasks.

– Design is much concerned with comparison of competitive 
systems.  This comparison can often be made nearly as well in 
terms of standard inputs as for real inputs.

– Simplicity of form of standard inputs facilitates mathematical 
analysis and experimental verifications.

– For linear systems with constant coefficients, theory shows that the 
response to a standard input of frequency content adequate to 
exercise all significant system dynamics can then be used to find 
mathematically the response to any form of input.
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• Standard performance criteria may be classified as 
falling into two categories: 
– Time-Domain Specifications: Response to steps, 

ramps, and the like

– Frequency-Domain Specifications: Concerned with 
certain characteristics of the system frequency response

• Both time-domain and frequency-domain design 
criteria generally are intended to specify one or 
the other of:
– speed of response

– relative stability

– steady-state errors
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• Both types of specifications are often applied to 
the same system to ensure that certain behavior 
characteristics will be obtained.

• All performance specifications are meaningless 
unless the system is absolutely stable. So we 
assume absolute stability for the remainder of this 
discussion.
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Time-Domain Performance Specifications

• For linear systems, the superposition principle 
allows us to consider response to commands apart 
from response to disturbances.

• If both occur simultaneously, the total response is 
just the superposition of the two individual 
responses.

• In nonlinear systems, such treatment with 
subsequent superposition is not valid.
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• Rise time, Tr, and peak time, Tp, are speed of response 
criteria.

• Percent overshoot, Op = (O/V) × 100, is a relative stability 
criterion, with 10% - 20% as an acceptable value.

Closed-Loop 
Response

of C to a Step of V 
when U = 0
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• Settling time, Ts, the time it takes for the response to get 
and stay within a specified percentage, e.g., 5%, of V, 
combines stability and speed of response aspects.

• The decay ratio, the ratio of the second overshoot divided 
by the first, is a relative stability criterion used most often 
in the process control industry, with 1/4 a common design 
value.

Which System is 
Faster?
A or B?
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• Certain math models of systems will predict ,for 
given commands or disturbances, steady-state 
errors that are precisely zero, but no really system 
can achieve this perfection.

• Nonzero errors are always present because of 
nonlinearities, measurement uncertainties, etc.

• To determine the steady-state error set up the 
closed-loop system differential equation in which 
error (V-C) is the unknown.  Solution of this 
equation gives a transient solution that always 
decays to zero for an absolutely stable system.
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• The remaining solution is, by definition, the 
steady-state error, whether it is itself steady or 
time varying.  That is, steady-state error need not 
be a constant value.

• The steady-state error, Ess, depends on both the 
system and the input command or disturbance that 
causes the error.

• There is a certain pattern of behavior as the input 
is made more difficult from the steady-state 
viewpoint.  This type of pattern can be expected 
for both commands and disturbances in all linear 
systems, though details will vary.  
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Effect of 
Command Severity 

on Steady-State 
Error
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• For systems in which the feedback element H(s) = 
1, i.e., unity-feedback systems, and the reference 
input element A(s) = 1, the actuating signal E is 
the system error (V-C), i.e., desired value minus 
the controlled variable.

• In this case, we can determine the steady-state 
error Ess by examining the open-loop transfer 
function G1(s)G2(s).

( ) ( )1 2

1
E(s) V(s)

1 G s G s
=

+
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• The final value theorem, assuming closed-loop 
stability, tells us that:

• We are interested in the steady-state error for step, 
ramp, and parabolic inputs, i.e.,

• Therefore

ss
s 0

E limsE(s)
→

=

n 1

1
V(s)           n 0, 1, 2

s += =

ss n ns 0
1 2

1
E lim

s s G (s)G (s)→
=

+
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• System type is the order of the input polynomial 
that the closed-loop system can track with finite 
error.  

• For example, if G1(s)G2(s) has no poles at the 
origin, the closed-loop is a Type 0 system and can 
track a constant with finite steady-state error.  A 
Type 1 system (one pole at the origin) can track a 
constant with zero error and a ramp with finite 
error.  A Type 2 system (two poles at the origin) 
can track both a constant and ramp with zero error 
and a parabola with finite error.
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• When system input is a disturbance U (V=0) some of these 
criteria can still be applied, although others cannot.

• It is still possible to define a peak time Tp, however Tr, Ts, 
and Op are all referenced to step size V, which is now zero, 
thus they cannot be used.

• One possibility is to use peak value Cp as a reference value to 
define Tr and Ts. 

• To replace Op as a stability specification one could use the 
decay ratio defined earlier or perhaps the number of cycles to 
damp the amplitude to say, 10% of Cp.  The smaller the 
number of cycles, the better the stability. 

• Definition of steady-state error still applies and we would 
again expect the same trend of worsening error as U changed 
from step to ramp to parabola.
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Time-Domain 
Performance 
Specifications

for a Disturbance 
Input
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Frequency Response Performance 
Specifications

• Let V be a sine wave (U = 0) and wait for transients to die 
out.

• Every signal will be a sine wave of the same frequency.  
We can then speak of amplitude ratios and phase angles 
between various pairs of signals.

1 2

1 2

C AG G (i )
(i )

V 1 G G H(i )
ω

ω =
+ ω
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• The most important pair involves V and C.  Ideally 
(C/V)(iw) = 1.0 for all frequencies.

• Amplitude ratio and phase angle will approximate the ideal 
values of 1.0 and 0 degrees for some range of low 
frequencies, but will deviate at higher frequencies.
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Typical Closed-Loop 
Frequency Response 

Curves
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• The frequency at which a resonant peak occurs, ωr, is a 
speed of response criterion.  The higher ωr, the faster the 
system response.

• The peak amplitude ratio, Mp, is a relative stability 
criterion.  The higher the peak, the poorer the relative 
stability.  If no specific requirements are pushing the 
designer in one direction or the other, Mp = 1.3 is often 
used as a compromise between speed and stability.

• For systems that exhibit no peak, the bandwidth is used for 
a speed of response specification.  The bandwidth is the 
frequency at which the amplitude ratio has dropped to 
0.707 times its zero-frequency value.  It can of course be 
specified even if there is a peak.
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• If we set V = 0 and let U be a sine wave, we can 
measure or calculate (C/U)(iω) which should 
ideally be 0 for all frequencies.  A real system 
cannot achieve this perfection but will behave 
typically as shown. 

Closed-Loop Frequency Response to a Disturbance Input
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• Two open-loop performance criteria in common use to 
specify relative stability are gain margin and phase 
margin.

• The open-loop frequency response is defined as (B/E)(iω).  
One could open the loop by removing the summing 
junction at R, B, E and just input a sine wave at E and 
measure the response at B.  This is valid since (B/E)(iω) = 
G1G2H(iω).  Open-loop experimental testing has the 
advantage that open-loop systems are rarely absolutely 
unstable, thus there is little danger of starting up an untried 
apparatus and having destructive oscillations occur before 
it can be safely shut down.

• The utility of open-loop frequency-response rests on the 
Nyquist stability criterion.
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• Gain margin (GM) and phase margin (PM) are in the 
nature of safety factors such that (B/E)(iω) stays far 
enough away from 1 ∠ -180° on the stable side.

• Gain margin is the multiplying factor by which the steady 
state gain of (B/E)(iω) could be increased (nothing else in 
(B/E)(iω) being changed) so as to put the system on the 
edge of instability, i.e., (B/E)(iω)) passes exactly through 
the -1 point.  This is called marginal stability.

• Phase margin is the number of degrees of additional phase 
lag (nothing else being changed) required to create 
marginal stability.

• Both a good gain margin and a good phase margin are 
needed; neither is sufficient by itself.
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A system must have adequate stability margins.
Both a good gain margin and a good phase margin
are needed.
Useful lower bounds:  GM > 2.5     PM > 30°

Open-Loop Performance Criteria:
Gain Margin and Phase Margin
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Bode Plot View of
Gain Margin and Phase Margin
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• It is important to realize that, because of model 
uncertainties, it is not merely sufficient for a system to be 
stable, but rather it must have adequate stability margins.

• Stable systems with low stability margins work only on 
paper; when implemented in real time, they are frequently 
unstable.

• The way uncertainty has been quantified in classical 
control is to assume that either gain changes or phase 
changes occur.  Typically, systems are destabilized when 
either gain exceeds certain limits or if there is too much 
phase lag (i.e., negative phase associated with unmodeled 
poles or time delays).

• As we have seen these tolerances of gain or phase 
uncertainty are the gain margin and phase margin.  



Mechatronics
Control Systems

K. Craig 
107

• Consider the following design problem: Given a 
plant transfer function G2(s), find a compensator 
transfer function G1(s) which yields the following:
– stable closed-loop system

– good command following

– good disturbance rejection

– insensitivity of command following to modeling errors 
(performance robustness)

– stability robustness with unmodeled dynamics

– sensor noise rejection
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• Without closed-loop stability, a discussion of performance 
is meaningless.  It is critically important to realize that the 
compensator G1(s) is actually designed to stabilize a 
nominal open-loop plant        .  Unfortunately, the true 
plant is different from the nominal plant due to 
unavoidable modeling errors, denoted by δG2(s).  Thus the 
true plant may be represented  by                               .

• Knowledge of δG2(s) should influence the design of G1(s).  
We assume here that the actual closed-loop system, 
represented by the true closed-loop transfer function is 
absolutely stable.

2G (s)∗

2 2 2G (s) G (s) G (s)∗= + δ

1 2 2

1 2 2

G (s) G (s) G (s)

1 G (s) G (s) G (s)

∗

∗

 + δ 
 + + δ (unity feedback assumed)
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Design a Good
Single-Input, 

Single-Output
Control Loop

• stable closed-loop system
• good command following
• good disturbance rejection
• insensitivity of command following

to modeling errors
• stability robustness with

unmodeled dynamics
• sensor noise rejection

Smooth transition from the 
low to high-frequency 

range, i.e., -20 dB/decade 
slope near the gain 

crossover frequency
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Modes of Control

• On-Off
• Proportional
• Integral

• Derivative
• Combined and Approximate Modes
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• By mode of control we mean the nature of the 
behavior of the controller G1(s) in the control 
system diagram.
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Basic Linear Feedback System
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On-Off Control

• Good design, in general, uses the simplest (and thus 
usually the least expensive and most reliable) hardware 
that will meet system performance specifications.

• We should thus try the simplest mode first and go to more 
complex ones only as the simpler ones are proven 
inadequate by analysis.

• On-Off controls are generally the simplest possible from a 
hardware viewpoint. The analysis of on-off control 
systems, due to nonlinearity, has in the past been difficult 
or impossible; however, today digital simulation allows us 
to get essentially exact results for any specific form of 
system with given numerical values.
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• For the two-position controller shown, manipulated variable 
M can take on only two possible values, depending on 
whether actuating signal E is positive or negative.

• The controller gives the same corrective effort irrespective 
of whether E is small or large. 
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• Although the nonlinearity of the system prevents 
application of the Routh or Nyquist stability criteria, it is 
easily seen that the system is unstable and will go into 
limit-cycle oscillation (an ongoing, nonsinusoidal 
oscillation of fixed amplitude).

• M is never off; it is always on in either a positive or a 
negative sense.  Thus controlled variable C is bound to be 
driven back and forth in a cyclic manner.

• From an energy viewpoint, the controller can supply 
energy and/or material to the process at only two discrete 
rates.  If neither of these precisely matches the demand of 
the process, the controller must continually shuttle back 
and forth between a supply that is too large and one that is 
too small, giving a limit-cycle instability.
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• And so we see that on-off controls very often limit cycle 
and the designer must evaluate the frequency and 
amplitude of the limit cycle to judge whether such 
behavior is acceptable.

• For example, most residential heating-cooling systems use 
on-off control since the limit-cycling behavior is 
acceptable both in terms of temperature fluctuations being 
small enough to be comfortable and cycling rates being 
slow enough to not wear out the switching hardware 
prematurely.
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Proportional Control

• Here the manipulating variable M is directly proportional 
to the actuating signal E.

• We assume that the dynamics associated with the real 
controller are negligible relative to other system dynamics.

• The corrective effort is made proportional to system 
"error"; large errors engender a stronger response than do 
small ones.  We can vary in a continuous fashion the 
energy and/or material sent to the controlled process.

• Relative to on-off control, the advantage is a lack of limit 
cycling behavior.  The disadvantages are general 
complexity, higher cost, and lower reliability of hardware. 
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• Proportional control exhibits nonzero steady-state errors 
for even the least-demanding commands and disturbances.

• Why is this so?  Suppose for an initial equilibrium 
operating point xc = xv and steady-state error is zero.  Now 
ask xc to go to a new value xvs.  It takes a different value 
for the manipulated input M to reach equilibrium at the 
new xc.  When the manipulated input M is proportional to 
the actuating signal E, a new M can only be achieved if E 
is different from zero which requires xc ≠ xv; thus, there 
must be a steady-state error.  
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Integral Control

• When a proportional controller can use large loop gain and 
preserve good relative stability, system performance, 
including those on steady-state error, may often be met.

• However, if difficult process dynamics such as significant 
dead times prevent use of large gains, steady-state error 
performance may be unacceptable.

• When human process operators notice the existence of 
steady-state errors due to changes in desired value and/or 
disturbance they can correct for these by changing the 
desired value ("set point") or the controller output bias 
until the error disappears.  This is called manual reset. 



Mechatronics
Control Systems

K. Craig 
119

• Integral control is a means of removing steady-state errors 
without the need for manual reset.  It is sometimes called 
automatic reset.

• Integral control can be used by itself or in combination 
with other control modes.  Proportional + Integral (PI) 
control is the most common mode.

• We have seen why proportional control suffers from 
steady-state errors.  We need a control that can provide any 
needed steady output (within its design range, of course) 
when its input (system error) is zero. 
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Comparison of  Proportional and Integral Control

However, Integral control has the undesirable side effects of:
reducing response speed

degrading stability
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• Although integral control is very useful for removing or 
reducing steady-state errors, it has the undesirable side 
effect of reducing response speed and degrading stability.

• Why?  Reduction in speed is most readily seen in the time 
domain, where a step input (a sudden change) to an 
integrator causes a ramp output, a much more gradual 
change.

• Stability degradation is most apparent in the frequency 
domain (Nyquist Criterion) where the integrator reduces 
the phase margin by giving an additional 90 degrees of 
phase lag at every frequency, rotating the (B/E)(iω) curve 
toward the unstable region near the -1 point.  
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• Occasionally an integrating effect will naturally appear in a 
system element (actuator, process, etc.) other than the 
controller.

• These gratuitous integrators can be effective in reducing 
steady-state errors.  Although controllers with a single 
integrator are most common, double (and occasionally 
triple) integrators are useful for the more difficult steady-
state error problems, although they require careful stability 
augmentation. 

• Conventionally, the number of integrators between E and 
C in the forward path has been called the system type 
number.  
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From a steady-state 
error viewpoint, the 

"difficulty" of a 
command or 

disturbance is 
determined by  the kind 
of manipulated-variable 

M signal required to 
return the error to zero 

in steady state.
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• In addition to the number of 
integrators, their location 
(relative to disturbance 
injection points) determines 
their effectiveness in 
removing steady-state errors.

• Figure (a) the integrator 
gives zero steady-state error 
for a step command but not 
for a step disturbance. 

• By relocating the integrator 
as in Figure (b), either or 
both step inputs Vs and Us
can be "canceled" by M 
without requiring E to be 
nonzero. 
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• Integrators must be located upstream from disturbance 
injection points if they are to be effective in removing 
steady-state errors due to disturbances.

• Location is not significant for steady-state errors caused by 
commands.
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Integral (Reset) Windup and its Correction

Integral control may be degraded 
significantly by saturation effects.
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• Let's consider the situation of integral windup and its correction.  
Integral control may be degraded significantly by saturation effects.

• For example, as seen in the figure, a large sustained error causes the 
integral controller to ramp its output pressure up to the 20-psig supply 
pressure.

• The diaphragm valve, sized to be wide open at 15 psig (the upper end 
of the 3 to 15 psig control range) saturates at 15 psig.

• The integral signal beyond t = 7.5 seconds is really useless since it 
asks for a motion that the valve cannot produce.

• When the error reverses at t = 10 seconds, the valve cannot respond to 
this change until the integral signal (which has "wound up" to 20 psig) 
is "unwound" back to the 15-psig level at t = 12.5.

• This delayed response is called reset windup or integral windup. 

• Note that this delay is in addition to the normal lagging behavior of 
integral control and can cause excessive overshooting and stability 
problems.
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• Integral windup is of course not a problem in every application of 
integral control.

• If difficulty is anticipated, the controller can be modified in different 
ways to give various degrees of improvement. 

• Basically, one wants to disable the integrator whenever its output 
signal causes saturation in the final control element.

• In this example, the integrator is disabled when its output pressure 
reaches 15 psig, preventing any windup.

• When the error reverses at t = 10 seconds the integrator and valve 
immediately respond to the negative error since there is no windup that 
needs to first be unwound.
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Derivative Control

• On-off, proportional and integral control actions can be 
used as the sole effect in a practical controller.

• But the various derivative control modes are always used 
in combination with some more basic control law.  This is 
because the derivative mode produces no corrective effect 
for any constant error, no matter how large, and therefore 
would allow uncontrolled steady-state errors.

• One of the most important contributions of derivative 
control is in system stability augmentation.  If absolute or 
relative stability is the problem, a suitable derivative 
control mode is often the answer.

• The stabilization or "damping" aspect can easily be 
understood qualitatively from the following discussion.



Mechatronics
Control Systems

K. Craig 
130

• Invention of integral control may have been stimulated by the 
human process operators' desire to automate their task of 
manual reset.  Derivative control hardware may first have been 
devised as a mimicking of human response to changing error 
signals.  Suppose a human process operator is given a display 
of system error E and has the task of changing manipulated 
variable M (say with a control dial) so as to keep E close to 
zero.
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• If you were the operator, would you produce the same value of 
M at t1 as at t2?  A proportional controller would do exactly 
that.

• A stronger corrective effect seems appropriate at t1 and a lesser 
one at t2 since at t1 the error E is E1,2 and increasing, whereas at 
t2 it is also E1,2 but decreasing.

• The human eye and brain senses not only the ordinate of the 
curve but also its trend or slope.  Slope is clearly dE/dt, so to 
mechanize this desirable human response we need a controller 
sensitive to error derivative.

• Such a control can, however, not be used alone since it does 
not oppose steady errors of any size, as at t3, thus a 
combination of proportional + derivative control, for example, 
makes sense.
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• The relation of the general concept of derivative control to 
the specific effect of viscous damping in mechanical 
systems can be appreciated from the figure below.

• Here an applied torque T tries to control position θ of an 
inertia J.  The damper torque on J behaves exactly like a 
derivative control mode in that it always opposes velocity 
dθ/dt with a strength proportional to dθ/dt making motion 
less oscillatory.
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• Derivatives of E, C, and almost any available signal in the 
system are candidates for a useful derivative control mode.

• First derivatives are most common and easiest to 
implement.

• The noise-accentuating characteristics of derivative 
operations may often require use of approximate (low-pass 
filtered) derivative signals.

• Derivative signals can sometimes be realized better with 
sensors directly responsive to the desired value, rather than 
trying to differentiate an available signal.

• In addition to stability augmentation, derivative modes 
may also offer improvements in speed of response and 
steady-state errors.
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Combined and Approximate Control Modes

• Proportional + Integral (PI) Control
Phase-Lag Compensation

• Proportional + Derivative (PD) Control

Phase-Lead Compensation
• Proportional + Integral + Derivative (PID) Control

Lead / Lag Compensation
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• We have introduced the basic control modes: on-off, 
proportional, integral, and derivative.  Each of these has its 
own advantages and drawbacks, and thus it is not 
surprising that many practical applications are best served 
by some combination of basic modes.

• We have also considered the most basic or idealized 
versions of the modes so that their essential features could 
be brought out most clearly without confusing side issues.  
Practical versions of some controllers are not able to 
realize completely the ideal behavior and also may require 
a modified design technique.  Sometimes a non-ideal 
controller can meet specifications with simpler hardware 
or software.  For these reasons, approximate forms of 
control modes should be considered. 
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• Phase-Lag Compensation
– PI control provides the steady-state-error benefits of 

pure integral control with faster response and improved 
stability.

– Phase-Lag Compensation is the approximate version of 
PI Control realized in many practical controllers.  It 
cannot attain the zero steady-state errors possible with 
perfect integral control but this is not a fatal defect 
because realistic error specifications always must allow 
some steady-state error.
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• Phase-Lead Compensation
– Since derivative control is never used alone and we 

have already briefly discussed PD control, let's 
concentrate on the approximate version, phase-lead 
compensation.

– If a basic system has had its gain set for desired relative 
stability and we then find that its response speed is too 
slow, phase-lead compensation may be helpful.  Also, 
if a basic system is structurally unstable (gain setting 
does not provide stability), phase-lead compensation 
may stabilize the system.  Usually, phase-lead 
compensation also provides a modest gain increase, so 
steady-state errors are reduced whether this was a 
problem or not.
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• Proportional + Integral + Derivative (PID) 
Control
– This combination of basic control modes can improve 

all aspects (stability, speed, steady-state errors) of 
system performance and is the most complex method 
available as an off-the-shelf general-purpose controller.  
If we look at analog pneumatic and electronic 
controllers, their microprocessor-based digital versions, 
or the individual control loops implemented in a large 
general-purpose digital process computer, over and 
over again we see successful applications of P, PI, PD, 
and PID controls.  The basis of the strength of the PID 
modes is their simplicity; they "make sense."
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• Lag/Lead Compensation
– The approximate version of PID control implemented 

in many practical controllers is called lag/lead 
compensation. Mathematically it is exactly a cascading 
of the phase-lag and phase-lead controllers already 
discussed.

– The effects on system performance are also a 
superposition of the two separate effects, thus a lag/lead 
controller can improve all aspects of performance (as 
can a PID): stability, speed, and steady-state errors.  
Selection of the parameters is performed by essentially 
designing the two compensators separately.


