Intro to Mechanical Engineering

Automobile: High-power lightweight engines, efficient mass-manufacturing

Apollo: Saturn V launch vehicle (7.5 million pound thrust), command and service module, lunar excursion module

Power generation: Conversion of stored energy into electricity, manipulation of chemical-, kinetic, potential-, and nuclear-energy, large-scale power production

Agriculture mechanization: Powered tractors, mechanized harvesting, high-capacity irrigation pumps, computerized crops management

Airplane: Propulsion (jet engines), lightweight materials, electromechanical control systems

Integrated circuit mass production: IC manufacturing machines, alignment systems, temperature- and vibration control, motors, bearings

Air-conditioning and refrigeration: Compressors, refrigerants, heat exchangers

Computer-aided engineering technology: Computer-aided design, analysis, manufacturing, virtual collaboratives

Bioengineering: Imaging, prosthetics, minimally invasive surgery, tissue engineering

Codes and standards: Interchangeability, interoperability, interconnectivity
Mech. Eng.: Typical Program

Thermo-Fluids: Heat transfer, Energy Systems, HVAC, IC Engines

Mechanical Systems: Vibrations, Feedback control, Mechatronics, MEMS

Design: Composites, Machine Design, FEM

Core: Statics, Dynamics, Thermodynamics, Fluid mechanics, Solid mechanics
Types of Motion

• Linear motion
 – motion in a straight line (example: train on a track)

• Reciprocating motion
 – linear motion that goes back and forth
 (example: pushing a slider-crank back and forth, such as the piston in an internal combustion engine)

• Rotary motion
 – circular motion (example: the hands of a clock moving, or a wheel on an axle)

• Oscillating motion
 – circular or arc-motion back and forth
 (example: the swing of a pendulum or the turning and release of a doorknob)
Machine Components: Basic Elements

- Inclined plane wedge
- Slider-Crank
- Chain and sprocket
- Gear, rack, pinion, etc.
- Cam and Follower
- Lever
- Wheel/Axle
- Springs
- Linkage
Lever

Weighing Scale Excavator Scissors Piano
Wheel and Axle

Waterwheel

Turbine

Windmill
Belt and Pulley

Chain Hoist

Crane

Elevator
Gears

- Bevel Gear
- Spur Gear
- Helical Gear
- Rack and Pinion
Cams

- Translating Cam
- Cylindrical cam
- Oscillating Cam
- End Cam
Springs

Leaf Spring

Washer Spring
Friction

Brake System

Bearing
Forces and Resultants

Rectangular Form: $F = F_x \mathbf{i} + F_y \mathbf{j}$

Polar Form: $F = |F| < \theta$

$F_x = F \cos(\theta)$, $F_y = F \sin(\theta)$

$|F| = \sqrt{F_x^2 + F_y^2}$, $\theta = \tan^{-1}(F_y/F_x)$
Moment of a Force—I

The moment of a force is a measure of its tendency to rotate an object about some point.

Moment of force W about pivot point: $W \times d$
Moment of a Force—II

Balancing Beams using moment of forces

A force applied to a pivoted beam causes the beam to rotate.
Equilibrium of Forces & Moments

Object in equilibrium

\[\sum F_x = 0 \]
\[\sum F_y = 0 \]
\[\sum M_o = 0 \]
Buoyancy

Force produced by fluid pressure

When an object is fully or partially immersed in a fluid, due to the pressure difference of the fluid between the top and bottom of the object, buoyant force acts on the object causing it to float.

The net upward buoyancy force is equal to the magnitude of the weight of fluid displaced by the body.

Buoyancy is important for boats, ships, balloons, and airships.
Drag Force

Force that resists the motion of an object through a fluid

Drag force arises from the motion of an object through fluid

Drag force arises from the flow of fluid past an object

An object moving through a fluid experiences a force in direction opposite to its motion. Terminal velocity is achieved when the drag force is equal in magnitude but opposite in direction to the force propelling the object.
Lift forces arise as a fluid flows around a structure. Lift force acts perpendicular to the direction of flow.
Mechanical Energy

Gravitational Potential Energy: Energy stored by an object as it gains elevation within a gravitational field.

\[\Delta U = mgh, \quad m: \text{mass of object}, \quad g = \text{gravitational constant}, \quad h: \text{elevation of object} \]

Elastic Potential Energy: Energy stored by an object when it is stretched or bent.

\[\Delta U = \frac{1}{2}kx^2, \quad k: \text{spring constant}, \quad x = \text{spring stretch/compression} \]

Kinetic Energy: Energy associated with an object’s motion.

\[\Delta U = \frac{1}{2}mv^2, \quad m: \text{mass of object}, \quad v = \text{speed of object} \]
Work & Power

When a force F acting on an object displaces it by distance d, the force F is said to have done work W

\[W = F \times d \]

Power is the rate at which work is performed

\[P = \frac{\Delta W}{\Delta t} \]
Newton’s Laws of Motion

1st Law: Every body continues in its state of rest or of uniform motion in a straight line unless it is compelled to change that state by an external force.

2nd Law: The rate of change of momentum of an object is proportional to the force acting on the object and is in the same direction as that force.

\[F = m \times a \]

3rd Law: To every action there is an equal and opposite reaction.
Equations of Motion

Translational motion

\[m\ddot{x} = \sum F \]

Rotational motion

\[I\ddot{\theta} = \sum M \]