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ABSTRACT 

This paper investigates learning behavior in SR-167 HOT lanes using a six-month toll tag 1 

reading data. Bayesian-Stochastic Learning Algorithm (SLA) theory is employed to model 2 

drivers’ sequential lane choice occasions. Reward and penalty parameters are used to update 3 

users’ lane choice probabilities. The results show that the effect of reward parameters which 4 

increases selecting probability of an alternative after a satisfactory experience is more obvious 5 

than penalty parameters that decrease the probability of selecting an unfavorable choice. Low 6 

magnitudes of learning parameters might indicate strong habit formation among the users. 7 

Moreover, posterior distribution of learning parameters indicates there exist user perception 8 

heterogeneity when evaluating the outcomes of choices. Finally, user familiarity is investigated 9 

with a less experienced subsample and it is shown that learning rates of more familiar users are 10 

lower than less familiar users.  11 
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BACKGROUND 1 

A widely used implementation of congestion pricing in the U.S. is Managed Lanes (ML), where 2 

one or more lanes are dedicated to certain user groups to maintain free-flowing traffic conditions.  3 

High-occupancy vehicle (HOV), High-Occupancy toll (HOT), Express lanes (EL) and busways 4 

are among the most common forms of MLs (1). In HOT lanes drivers can carpool and experience 5 

a faster and more reliable travel for free or they can pay a toll when driving alone. Most of the 6 

existing HOT lanes in the U.S. employ certain kind of a dynamic pricing that aims to allocate 7 

capacity in an efficient way by adjusting toll rates in real-time depending on the congestion level. 8 

Several existing HOT lane facilities and pilot projects have shown that obtained benefits to 9 

society include more reliable travel times, less number of accidents, increased ridesharing and 10 

transit usage.  11 

Existing literature on driver behavior in MLs mainly focused on savings in average travel 12 

times and travel time reliability (2-8). Moreover, recent empirical work from two different ML 13 

facilities showed that that the choice of using MLs cannot solely be dependent on travel time 14 

savings since operating speeds in dedicated lanes are mostly similar with the general purpose 15 

lanes (5; 9). For example, Burris et al. (9) showed that 35 percent of paid trips in I-394 ELs took 16 

place when travel time savings were less than one minute. Some other recent literature shifted 17 

their focus on other underlying factors of lane choice behavior such as individual risk related 18 

attributes. Burris et al. (10) showed evidence for ML users’ having significantly higher risk 19 

tolerance and also having tendency towards risky driving which is associated with higher travel 20 

speeds (10).    21 

Estimation of willingness-to-pay (WTP) for travel time and travel time reliability savings 22 

of ML users has been generally carried out using discrete choice models. Data used for model 23 

estimations are usually collected from stated preference (SP) surveys where ML users’ responses 24 

are evaluated for hypothetical choice situations. Alternative data sources that are employed in the 25 

literature include combined SP and revealed preference (RP) data (7; 11) and loop detector data 26 

(12; 13). Alternative to discrete choice modeling, some studies employ methodologies to 27 

calculate aggregated mean or median cost per hour savings from revealed toll reader data (5; 9).   28 

An interesting observation based on two ML facilities, i.e. Katy MLs and I-394 HOT 29 

lanes, is that the majority of the ML users only infrequently choose to travel on tolled lanes for 30 

rare situations such as when there is a risk of being late to work (10). Unfortunately, occasional 31 

usage of MLs cannot be captured by random samples that are used in stated preference (SP) 32 

surveys (2). Therefore WTP estimations from SP data are often found to underestimate the actual 33 

values when compared with revealed preference (RP) data (5). 34 

One of the major goals of MLs is to generate revenue while improving mobility and 35 

relieving traffic congestion (14). Although empirical studies strongly agree that individual 36 

decision-making towards ML usage is mainly motivated by savings in travel time and its 37 
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reliability,  Cao et al. (15) found that in I-394 ELs only 7 percent of total costs are compensated 1 

by travel time savings, whereas travel time reliability savings contribute an additional 23 percent 2 

to cover total costs. Improvements in safety are stated as the main sources of benefits in I-394 3 

ML program (15). 4 

Although factors that affect ML usage have been extensively investigated in the 5 

literature, the research question whether observed behavior of ML users reveals that they learn 6 

from their previous experiences remains largely unexplored. This study aims to add to the 7 

literature by investigating HOT lane users’ lane choice behavior within a stochastic learning 8 

framework by utilizing large-size observed toll transaction data. In other words, this research 9 

models learning characteristics of a large group of HOT lane users by taking advantage of this 10 

rich revealed preference data  11 

LEARNING BEHAVIOR OF TOLL ROAD USERS 12 

Understanding day-to-day evolution of user decisions in MLs is of utmost interest for many 13 

aspects of operational efficiency. Until recently, lane choice behavior in MLs is usually 14 

evaluated based on SP surveys which can only provide a snapshot of actual case in a tolled road. 15 

Therefore, from SP data it is not possible to observe whether frequent users are seeking an 16 

equilibrium state over time as they continue to use the ML facilities. Some studies also used 17 

laboratory experiments to get responses of participants for consecutive time periods with varying 18 

travel conditions (16; 17). 19 

Day-to-day learning models in transportation literature can be broadly grouped into four 20 

major categories. The first and most commonly used method is the weighted average of previous 21 

choices. In this method experienced travel times are given weights and a cumulative weighted 22 

average is calculated as a learning measure to incorporate in a model framework. Several 23 

theoretical and empirical studies can be found using different forms of weighted average 24 

approach in transportation decision-making context (18-23). The second main avenue of learning 25 

models is the Bayesian learning which can be considered as a special form of weighted average 26 

model. The distinctive difference in Bayesian learning is that the previous travel times are 27 

represented as distributions and variance is considered as the driver’s confidence about past 28 

information. Therefore in Bayesian models perceived quality of travel time information is used 29 

as an attribute in the utility associated with the route choice (24-26). The third methodology is 30 

the reinforcement learning which addresses habitual behavior in decision-making. In particular, 31 

in reinforcement models as long as a choice of route does not result in very inconvenient travel 32 

times, perceived relative attractiveness of this choice increases (21; 27; 28). The final approach 33 

is stochastic learning automata (SLA) in which drivers’ day-to-day choice probabilities are 34 

updated based on their actual experiences in the system. The primary idea in SLA framework is 35 

that actions take place in an unknown random environment in which automation operates. 36 

Actions are categorized as favorable and unfavorable where rewards and penalties are used to 37 

update choice probabilities. Being very similar to Bayesian learning, the main difference in SLA 38 
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is that probability updating procedure is not only limited to Bayes’ rule (29). Several 1 

implementations of the SLA based learning models have been proposed in the transportation 2 

literature including route and departure time choice (17; 30; 31).    3 

Although there are many papers dealing with-day-to day learning behavior of drivers on a 4 

regular traffic network, only a limited number of studies attempted to empirically model day-to-5 

day learning of drivers in MLs. Yin et al. (23) developed a macroscopic simulation based tool to 6 

investigate HOT lane users’ learning behavior for two cases; pre-trip departure time choice and 7 

en-route lane choice. The reason for using a simulation framework was stated by the authors as 8 

“the lack of adequate observed data”(23). They have developed a weighted average 9 

methodology in which learning dynamics associated with travel time and toll are assumed to be 10 

independent. In their formulation weights are discounted exponentially with the most recent 11 

experience having the highest weight. Route costs for General Purpose (GP) and HOT lanes are 12 

defined as a function of departure time including attributes associated with travel time, toll, early 13 

and late arrival delay, all of which were assumed to have fixed coefficients. Each traveler was 14 

assumed to have a desired arrival time, which is calculated from a distribution, and any kind of 15 

delay, early or late, is assumed to be not preferable. It was also assumed that drivers choose 16 

optimal departure time to minimize their route cost. After departure time choice, en-route choice 17 

is considered with the newly available projected travel time information and users are allowed to 18 

change their lane options. Different user classes are considered in the simulation with various 19 

constraints for example some vehicles that are not equipped with toll tags could not use HOT 20 

lanes. Simulation results showed that depending on demand level system might exhibit 21 

hysteresis-like behavior. In particular, in case of an overloaded demand, users were observed to 22 

constantly change their departure time and lane choices on a day-to-day basis. 23 

 Alvarez (32) investigated learning process in MLs based on aggregated lane choice 24 

observations from I-95 HOT lanes. First, a correlation analysis is conducted between HOT lane 25 

user proportion and difference between travel times of HOT and GP lanes for different time 26 

windows. The results implied that prior experiences up to 60 days could be correlated with the 27 

lane choice. Second analysis used weighted averages for earlier travel times and it was found that 28 

users tend to give the same weight to all experiences within a given period of time. This results is 29 

not consistent with average weight approaches in the literature where most recent experiences 30 

are assumed to have higher weights (33). Finally, no evidence was found that worst experiences 31 

within a time window has a significant impact on learning process. 32 

 Xiong (34) developed a departure time choice model for MLs considering Bayesian 33 

learning. The model assumed that agents continuously search for optimal departure times until 34 

every agent in the systems stops searching and system reaches user equilibrium. Moreover, prior 35 

and posterior beliefs of users were assumed to follow a Dirichlet distribution from which random 36 

draws were taken. The approach was then applied in a hypothetical microsimulation framework 37 

of a toll road. The results showed that under the developed model system equilibrium was 38 
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reached after adequate number of iterations and lower number of changes in departure times was 1 

observed over time.    2 

This study aims to develop a better understanding of the effect of day-to-day experience 3 

in decision making of drivers using a longitudinal toll tag data. Observed individual decision 4 

making information is extracted from toll data over a six-month period. Bayesian-SLA approach 5 

proposed by Yanmaz-Tuzel et al. (31) is then applied for modeling the lane choice behavior of 6 

selected agents which are ensured to be the frequent users in SR-167 HOT lanes. 7 

METHODOLOGY 

 

FIGURE 1: Modeling Flowchart 

Modeling flowchart followed in this paper is shown in FIGURE 1. Route choice behavior 8 

modeling using SLA was first introduced by Ozbay et al. (17). In a following study, SLA model 9 

was extended to address combined departure time and route choice (30). Yanmaz-Tuzel et al. 10 

(31) further improved the SLA methodology to Bayesian-SLA model that also incorporates 11 

bounded rationality (BR) and analyzed the impacts of a network disruption using aggregated 12 

observed demand data as an empirical example.  13 

In this paper we adopt Bayesian-SLA methodology using an empirical setup with a 14 

longitudinal dataset where day-to-day disaggregated user behavior can be investigated. Therefore 15 

“agents” are real individuals who frequently use MLs and their observed behaviors are available 16 

over a certain time period for model parameters’ estimation.    17 

 18 

 19 
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Bayesian Stochastic Learning Automata 1 

Environment 2 

Two major elements of Bayesian-SLA are the environment and the stochastic automaton. The 3 

automaton basically operates in a random environment and it can perform a finite number of 4 

actions. In this study, transportation system is considered as the random environment and 5 

traveler as the automaton. When automaton performs a specific action, for example choosing to 6 

travel on the MLs, random environment responds by producing an output which is stochastically 7 

related to the action. The goal is to design an automaton that can determine the best action for 8 

itself based on this feedback. Throughout the process automaton is guided by its previous actions 9 

and corresponding responses by the environment which is basically the process of learning.  10 

Environment may be time varying and actions of other agents in the system, which are 11 

unknown to the automaton, may affect the responses of an environment. An environment is 12 

defined by a triplet { , , }c  . The term   represents the action set in which the traveler 13 

decisions are defined. The term c  represents the set of probabilities of receiving a penalty from 14 

the environment as a result of an action. Each element ic  in penalty probability set corresponds 15 

to an action i . If probability c is assumed to be constant for a specific action, the environment is 16 

called stationary. In the case at hand we assume non-stationary environments. The last term   is 17 

the output set which gives the utility obtained as a result of a choice. In a P-model the output 18 

values are considered to only take one of two values. In this study output takes value of 1 for the 19 

unfavorable outcomes and 0 for the favorable ones. Alternatively a continuous range of values 20 

may be defined for the outcome values, which is called S-model (29).  21 

Mathematically, the case when automaton is applied to the environment at time t n , for 22 

sets of size r , the relationship between the three components of environment can be given as: 23 

Pr( ( ) 1| ( ) )           (i=1,2,...,r)i in n c      (1) 

where i  is one of the possible actions (e.g. selecting GP or HOT) which is unfavorable. Action 24 

probabilities are updated based on the response from the environment at every stage using a 25 

reinforcement scheme.  26 

Reinforcement Schemes  27 

Penalty probabilities are updated based on linear reinforcement functions which are conditioned 28 

on whether the action is favorable or not. A general reinforcement scheme is defined as 29 

( 1) [ ( ), ( ), ( )]p n T p n n n   where T is the mapping function. Optimality is achieved in the 30 

case when an action m  with the minimum penalty probability mc  is chosen asymptotically with 31 

probability one. However, for most of the cases it is not possible to achieve optimality, therefore 32 

sufficiently close asymptotic behavior is generally considered as an acceptable solution (29). 33 
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In this paper, following linear reinforcement scheme is used: 1 

      2 

 (n)=

( 1) (1 ) ( )           
( ) 0

( 1) ( ) [1 ( )]

( 1) +(1- ) (n)    
( ) 1 1

( 1) (1 ) ( )

i

j j j

i i i

j j j

i i

if

p n a p n i
n

p n p n a p n

b
p n b p i

n r

p n b p n

 





    
  

   


   

  
   

 

(2) 

 3 

In above formulation a  and b  are reward and penalty parameters both of which are 4 

defined in [0,1]. This set of equation is also called linear reward-penalty learning (LR-P) scheme 5 

(29). The estimation of parameters a  and b is generally performed with trial and error (17; 30).  6 

The effect of penalty parameter b  Following Yanmaz-Tuzel et al. (31), heterogeneity in learning 7 

parameters is incorporated using Bayesian Inference theory. In other words joint posterior 8 

distribution of learning parameters are calculated instead of using a unique set of learning 9 

parameters for the entire population.  Parameter r  represents the choice set which generalizes 10 

model for multi-action choice frameworks.  In case at this paper r  is equal to two since only 11 

choice considered is selection between HOT and GP lanes. 12 

Interpretation of Equation 2 in route choice context is straightforward. If travel time of first 13 

alternative (i.e. HOT lane) at day n  is less than travel time of second alternative (i.e. GP lane) 14 

and traveler selects the first alternative, the outcome becomes favorable and using reward 15 

parameter a  the probability of selecting first alternative increases at day 1n . For the reverse 16 

case, outcome becomes unfavorable and probability of choosing the same alternative next day 17 

decrease using penalty parameter b  .  18 

Posterior Distribution of Learning Parameters 19 

The main motivation for using Bayesian analysis for the learning parameter estimation is to 20 

address the differences in user perceptions in the population. Earlier studies used fixed learning 21 

parameters, usually by selecting an average of a range of acceptable values after several 22 

iterations (17). In Bayesian approach, given the likelihood function of observations and assumed 23 

prior information of learning parameters, a joint posterior distribution of learning parameters is 24 

estimated. Based on Equation (2), likelihood function ( | , )p D a b  of the observations D given 25 

learning parameters ( , )a b   is given as follows: 26 

1 1 1

( | , ) ( ),
K N r

ki
k n i

p D a b p n
  

   

 

(3) 
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  (4) 

 1 

where k  and n  are the index numbers of the user and choice occasion i.e. days, respectively. 2 

Probability of choosing alternative i  for user k  on choice occasion ( 1)n  is represented by3 

( 1)kip n  .  Parameters   and   are binary variables which are defined as: 4 

  5 

1 if user  selects alternative  on choice occasion ( -1)
( 1)

0 otherwise
ki

k i n
n


  


  

 

(5) 

 

1 if user  experiences a favorable action on choice occasion ( -1)
( 1)

0 otherwise
k

k n
n


  


 (6) 

 6 

In Bayesian framework posterior distribution is simply proportional to the product of 7 

likelihood function and prior distribution. Joint prior distribution of learning parameters, ( , )p a b , 8 

is assumed to follow Normal distribution with mean   and covariance matrix  . 9 

Mathematically, 10 

  1

1/2

1 1
( , ) exp ( ) ( )

2 | | 2

Tp a b x x 


 
    

  
  

 (7) 

 

where 
a

b






 
  
 

  

2

2

  0

0    

a

a





 
   

  

  ( , )x a b   

 11 

Finally, joint posterior distribution of learning parameters given the observations is 12 

defined as: 13 

( , | ) ~ ( | , ) ( , )p a b D P D a b p a b   

 

(8) 

 

Algorithms such as Metropolis-Hasting (M-H) (35) or Gibbs Sampling (36) are employed 14 

to generate samples from the complex multidimensional joint posterior distributions. In this 15 

study M-H algorithm is used which basically generates samples using Markov Chain Monte 16 

Carlo (MCMC) procedure. Convergence of Markov chains is tested with Heidelberger et al. 17 
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(37)’s convergence diagnostic which uses Cramer-von-Mises statistic to compare observed 1 

sequence of samples to a hypothetical stationary distribution. The null hypothesis is that 2 

sequence of samples is similar to the stationary distribution. First, stationary test iteratively 3 

eliminates first 10% of the chain until either the null hypothesis is not rejected or 50% of the 4 

original chain remains. A second test, half-width test, by calculating half-width of the confidence 5 

interval, (1 ) 100%c   in which c is a level for confidence, is then applied for the samples which 6 

pass the stationary test. If the ratio of the mean of the sample to the half-width of confidence 7 

interval is smaller than some threshold then the second test succeeds. Final estimated group of 8 

parameters are the ones which pass both tests (37).  9 

 10 

Action Outcome Evaluation 11 

Outcomes of actions are classified as favorable and unfavorable depending on experienced 12 

schedule delays associated with the selected alternative route. A utility framework is used to 13 

evaluate outcomes of each action. In proposed Bayesian-SLA, users are assumed to seek for 14 

satisfying choices. A satisfying choice is not necessarily the best choice. Therefore proposed 15 

framework does not assume that users have cognitive ability to process all the available 16 

information simultaneously. The coefficients of parameters included in the utility function are 17 

estimated using Mixed Logit (MXL) model which allows heterogeneity among population by 18 

assigning random coefficients to different users (38; 39). Random coefficients of selected 19 

attributes can be assumed to have any kind of distribution, however to avoid unrealistic WTP 20 

estimations (e.g. negative valuation of travel time savings) bounded distributions are 21 

recommended (40). In this study we use one-sided triangular distribution for the behavioral 22 

profile for preference heterogeneity for model attributes travel time, toll cost and schedule 23 

delays. Consistent with literature, early and late delays are treated differently in model structure 24 

and separate coefficients are estimated for each 25 

In MXL model specification attributes that are assumed to have random coefficients are 26 

travel time (in minutes), toll rate (dollars), early and late schedule delays (in minutes). Non-27 

random attributes include binary variables for date and time of trips, a lagged variable which 28 

holds the immediate previous decision as a variable. The reason for including a lagged variable is 29 

to control for state dependency and the effect of earlier choices. Since lagged variables are not 30 

available for the very first choices, first observation of each user is excluded in the estimation 31 

sample. Utility function of an alternative i  for user k  on choice occasion n  is described as: 32 

    ikn i k ikn k iknU X I       

 

(10) 

 

where i  is alternative-specific constant, k  is the individual-specific random parameter vector,  33 

iknX  are attributes that are assumed to have random coefficients, k  is the vector of non-random 34 

parameters and iknI  are the attributes associated with non-random parameters. After investigating 35 
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several constrained distribution specifications, the values of random parameters are drawn from a 1 

one-sided triangular distribution due to superior model fit performance. Maximum simulated 2 

likelihood method is used for estimation by setting 1500 Halton draws.  3 

DATA  4 

Data Source 5 

Proposed methodology is implemented based on observed data from SR-167 HOT lanes in 6 

Washington, USA. Toll tag reader records of approximately six months, between January 15, 7 

2013 and June 30, 2013, are used for the analysis. HOT lanes include six northbound segments 8 

with a total length of 10.76 miles and four southbound segments with a total length of 7.69 miles. 9 

HOT lanes operate all days of the week between 5 a.m. to 7 p.m (41; 42). During the time frame 10 

of available data, daily average traffic flow detected by loop detectors was about 2500 vehicles 11 

per hour (43). According to the total number of trips in toll reader data, about 20 per cent of all 12 

travelers employ toll tag readers in their cars. The user group analyzed in this study are the 13 

paying HOT lane users who are detected by the tag readers when traveling in either HOT and GP 14 

lanes. Over 1.2 million trip records are available in the raw dataset. 15 

Toll tag reader data has several advantages for investigating observed learning behavior 16 

in MLs. First and foremost, none of the previous studies were able to investigate actual lane 17 

choice behavior at individual level. This brings a major improvement in external validity of 18 

results over hypothetical simulation based analysis that works with aggregated data (33). Second, 19 

time-varying trip attributes such as actual toll rate paid and experienced schedule delays can be 20 

incorporated in a utility framework to evaluate user satisfaction as a result of the trip. This may 21 

also bring a better understanding of habit formation of users based on route characteristics 22 

perceptions (27). Third, calibration of learning parameters of employed methodologies can be 23 

improved with large-sized, heterogeneous and more granular data which leads to overall better 24 

model performance (33).  25 

Data Processing 26 

Raw dataset includes toll tag identification numbers (IDs) for individual vehicles.  Toll tag IDs 27 

are anonymized for privacy reasons but it is still possible to track behaviors of users over the 28 

time-frame of available data. The lists of traversed segments for each trip are extracted. Since 29 

there exist multiple segment records for most of the trips (i.e. if a user is traveling in more than 30 

one segment in a single trip occasion), these records are reduced to single trips are by merging 31 

segment records for each trip occasion. Final processed data included the choice of lane, travel 32 

time information for both alternatives and toll rate when the trip took place.  33 

Since true desired arrival time information of users is not available, schedule delays are 34 

calculated based on the assumption that every user has their specific reference travel speeds for 35 

each alternative based on their own experiences. For each user median travel speeds for HOT 36 
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and GP lanes are calculated based on the six-month data. If experienced travel time deviates 1 

from the base travel time calculated using reference speeds it is assumed that traveler is delayed.   2 

Sample Selection 3 

In order to observe temporal evolution of lane choice behavior in MLs, only toll tag IDs that 4 

regularly use the facility are included in the analysis. Northbound (NB) and southbound (SB) 5 

trips are modeled separately since they show significantly different traffic flow patterns 6 

throughout the day (43).  In particular, northbound traffic volumes make peak hours during 7 

morning hours (6-8 am) and southbound volumes are highest during afternoon peak hours (4-6 8 

pm). One implication could be the impact of work trips but there is no solid evidence for trip 9 

purposes in the dataset at hand.  10 

Number of drivers that repeatedly traveled throughout the six-month time window is 11 

depicted by travel direction in FIGURE 2, for northbound and southbound respectively. It should 12 

be noted that not all users regularly appear on similar days and choice sequences differ for every 13 

traveler. Therefore it is not possible to obtain adequate amount of daily sample to show day-to-14 

day choice behavior. Instead, choice occurrences or consecutive choices of travelers are 15 

considered which do not necessarily take place day-by-day.  16 

 17 

 FIGURE 2: Sample Size Selection a) Northbound b) Southbound 18 

Finally, 490 tag IDs in northbound and 630 tag IDs in southbound for 50 choice occurrences 19 

each are considered as balanced in terms of sample size and number of occurrences. In 20 

particular, every user is evaluated separately starting from their first choice up to their 50th 21 

choice during six month period. Based on the responses they receive feedback from the 22 

environment and they update their alternative-specific choice probabilities for their next choice 23 

occasion which may take place in different days for each user.  24 
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Calibration and Validation 1 

Model calibration is performed to ensure the consistency of probability estimations with the 2 

observed data. Set of learning parameters, ( , )a b , iteratively modified to find the minimized 3 

difference between observed and estimated lane choices. Mathematically, 4 

    

2

min  
est obs

n n
n obs

n

q q
F

q


  
     
   

  

 

(9) 

 

where est

nq  is the link flows estimated in the model and obs

nq observed link flows in choice 5 

occasion n . After calibration of model parameters, mean standard errors are calculated for 6 

validation of travel volumes in the two lane alternatives for each choice occasion. 7 

RESULTS 8 

MXL model Estimation results are given in Table 1. The variables used in this model are 9 

selected with regard to best model fit and in consistent with an earlier study of valuation of 10 

reliability with the same dataset (43). A satisfactory model fit is obtained considering the 11 

McFadden pseudo r-squared statistic of 0.544. Signs of estimated random parameters are all 12 

negative as expected since increasing toll, travel time and delays would decrease overall utility. 13 

It is seen that among random parameters only early schedule delay is not a significant estimator 14 

for lane choice for the sampled group. Other random parameters, toll, travel time and late delays, 15 

both means and standard deviations are all significant at 1% level. Significance of standard 16 

deviations indicates unobserved user heterogeneity associated with random parameters is 17 

important in explaining driver behavior in MLs. Another interesting finding is the significance of 18 

state dependency which is captured by the lagged variable. This indicates that recency effect (i.e. 19 

emphasis on the most recent experience) or stickiness for experienced users has considerable 20 

impact on lane choice probability. Similar findings were reported in the literature for route 21 

choice behavior from SP experiments (33). Alternative specific constants for both HOT and GP 22 

lane options, day- and month-specific binary variables are found to have no explanatory power 23 

on choice behavior for the sample group.  24 
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TABLE 1: MXL Model Results 1 

 

Coefficient Standard Error 

Standard Deviation 

of Random 

Parameters 

Random Parameters    

Toll Price -2.179*** 0.699    -2.179*** 

Travel Time -1.409***       0.197     -1.409***       

Schedule Delay Early        -0.201 0.240               -0.201 

Schedule Delay Late -1.164***       0.235      - 1.164***       

Non-Random Parameters    

ASC GP         -0.746 0 (Fixed Parameter)  

ASC HOT          0.746     0 (Fixed Parameter)  

Lagged Variable   0.321*** 0.087       

Day    

Monday           0.092          1.073       

Friday 0.0012          0.101     

Month    

January 2.649     0 (Fixed Parameter)  

February 2.504      0 (Fixed Parameter)  

March 2.398     0 (Fixed Parameter)  

April 2.442      0 (Fixed Parameter)  

May 2.510     0 (Fixed Parameter)  

June  2.452      0 (Fixed Parameter)  

Goodness-of-Fit Statistics    

Log-likelihood -11558.562  

AIC 23147.1  

McFadden Pseudo R2 0.544  

Number of observations 36,598  

***: Significance at 1% level 

 2 

Estimation of Learning Parameters 3 

Action probability updating algorithm given in Equation 2 is used to estimate the next choice of 4 

individuals in SR-167 HOT lanes. Since ( )jp n  is a discrete-time Markov process whose state 5 

space is the unit interval [0,1], asymptotic behavior of action probabilities can be calculated for 6 

assumed learning reward-penalty parameters (a,b) (29). Instead of single point estimates for 7 

learning parameters, Bayesian Inference approach is combined with SLA methodology and joint 8 

posterior distributions of learning parameters are estimated. Prior distribution is approximated by 9 

a normal distribution with the following parameters chosen on a trial-error basis: 10 

    
0.02

0.02

a

b






   
    

  
  

2

2

  0 0.06  0

0    0.060    

a

a





   
     

    

 
(11) 
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Joint posterior distribution is computed for a case where traveler behavior is mimicked as 1 

accurately as possible by minimizing the difference between observed share of travel volumes in 2 

GP and HOT lanes. A pool of random learning parameters is generated using Metropolis-Hasting 3 

algorithm. Then, learning parameters are iteratively simulated to achieve an acceptable mean 4 

standard error (i.e. lower than 0.03) in traffic volume percentages. FIGURE 3 gives scatter plots 5 

of converged reward and penalty parameters for northbound and southbound directions. One 6 

observation is that there is no certain concentration of parameters for both directions. As also 7 

pointed out by earlier research the effect of reward parameter on the learning rate is much larger 8 

than the penalty parameter (17). This indicates a choice that yields a satisfactory result increases 9 

a repetition probability by a higher magnitude compared to a decrease in repetition probability as 10 

a result of a not satisfactory outcome.  11 

 

FIGURE 3: Sample Plots for Posterior Distributions of Learning Parameters 

Mean values for learning parameters (a,b) are estimated as (0.026,0.003) for northbound and 12 

(0.025,0.003) for southbound directions. These estimations are considerably lower than other 13 

empirical findings using SLA methodology. For example, Yanmaz-Tuzel et al. (31) found an 14 

average set of values of (0.062, 0.0067) for frequent users in New Jersey Turnpike which is a 15 

tolled freeway. Sample group used in study showed comparably slower learning rates which 16 

might support Burris et al. (10)’s finding that the majority of users prefer to pay tolls only for 17 

only rare occasions. In other words, for the case in SR-167 HOT lanes, tendency to frequently 18 

change behavior to find the best alternative is not as strong as it was found in other tolled 19 

facilities. More generally, other factors such as habits and inertia in choices as discussed in 20 

Bogers et al. (27) might have a strong influence on user decisions for the case at hand. Such 21 

factors are also supported by the significance of lagged variable in MXL model estimated from 22 

the same sample.  23 

Histograms of estimated learning parameters are given in FIGURE 4. Posterior 24 

distribution of each parameter can be approximated with Beta distribution as depicted. Learning 25 
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parameter constraints are naturally met for all cases since Beta distribution is defined in domain 1 

[0,1].   2 

 

FIGURE 4: Histograms for Posterior Distributions of Learning Parameters 

Probability functions using Beta Distribution, B(.),  are given as follows:  3 

 NB Reward Parameter:     
2.41 3.09

4.5

1 ( 0.0041) (0.0668 )
( )

(3.41,4.09) 0.0709

a a
P a

B

 
   

NB Penalty Parameter:     
4.34 4.35

61.79

1 ( 0.0008) (0.007 )
( )

(5.34,5.35) 0.0078

a a
P a

B

 
  

(12) 

 
SB Reward Parameter:     

2.08 3.58

6.66

1 ( 0.0022) (0.0682 )
( )

(3.08,4.58) 0.0704

a a
P a

B

 
  

SB Penalty Parameter:     
5.74 4.66

11.4

1 ( 0.0015) (0.0077 )
( )

(6.74,5.66) 0.0092

a a
P a

B

 
  

  

The results show that proposed Bayesian-SLA framework can successfully model 4 

frequent users’ lane choice behavior in SR-167 HOT lanes. The distributions of learning 5 
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parameters reveal the fact that users are less reactive in adapting their behavior. This could either 1 

mean or users do not consider actively changing their behavior or the system is operating close to 2 

equilibrium conditions that majority of the users have already learnt from their past behavior and 3 

found their quasi-optimal behavior. To test the latter hypothesis, Bayesian-SLA analysis is 4 

repeated with a subsample group. Since SR-167 HOT lanes pilot project had started five years 5 

prior1 to time period that available data was collected, for long-time users there is a possibility 6 

that the effects of learning may be less apparent. 7 

Modeling of New Users 8 

A subsample which can also be called as “new users” is extracted using the timestamp records 9 

for toll tag ID readings. Among the earlier user sample with 50 choice occasions, tag IDs for 10 

whom at least 75 percent of their trips took place in the last three months are determined. In 11 

other words, during the first three month period these users only showed up occasionally and 12 

then they became frequent users within the last three month period. Moreover, starting 13 

conditions of these users are clearer since their experience with the facility is comparably limited 14 

before they started traveling regularly. Extracted subsamples constitute only 4% of previously 15 

used sample (19 out of 490 users) in southbound and about 2% (15 out of 630 users) in 16 

northbound.   17 

Histogram plots show the distribution of learning parameters for this subsample of users 18 

in FIGURE 5.  Set of mean values of reward and penalty parameters are (0.03,0.003) for 19 

northbound and (0.028,0.003) for southbound. Mean of reward parameters are slightly higher 20 

compared to the overall sample meaning that users in subsample group are more sensitive to 21 

positive changes in action outcomes. Penalty parameters, on the other hand, are the same.  22 

Two-sample Kolmogorov-Smirnov statistics are calculated to test whether estimated 23 

learning parameter distributions are identical for the entire sample and subsample. The null 24 

hypothesis that two samples follow same continuous distribution is strongly rejected for reward 25 

parameters2. For the penalty parameters null hypothesis is still rejected3, however the calculated 26 

p-value is higher in magnitude. These findings provide support to the notion that user familiarity 27 

with the facility is one of the key factors to take into account when modeling learning effects in 28 

route/lane choice (44; 45).      29 

 

                                                 
1 SR-167 HOT lanes Pilot project started in 2008 (41). Available dataset is from the first half of year 2013. 
2 Kolmogorov-Smirnov P-values reward parameter distributions for NB: 1.5e-06, and for SB: 7.2e-06 
3 Kolmogorov-Smirnov P-values penalty parameter distributions for NB: 0.0012 for SB: 0.0728 
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FIGURE 5: Subsample Group Histograms for Posterior Distributions of Learning 

Parameters 

User heterogeneity can be investigated in more detail when socio-demographic factors 1 

such as gender, age, income information can be imputed into toll tag reader data. The lack of 2 

such information is one of the drawbacks of current analysis. For example a number of studies 3 

showed that women are more risk-averse than male and they are more reluctant to change their 4 

behavior in response to provided traffic information (16; 46).  It is a fact that obtaining socio-5 

economic data for such a large sample is quite difficult due to consumer privacy issues. It is also 6 

expected that data size would be significantly lower than the size used in current study in a case 7 

of voluntary participation which might possibly result in a biased sample. Although the effect of 8 

learning is clearly seen with action probability updating with Bayesian-SLA model, several other 9 

factors which are not observable with the existing data are yet to be explored. 10 

CONCLUSIONS 11 

This paper presents a modeling framework for investigating learning effects in lane choice 12 

behavior in MLs. Toll tag reader data for an approximately six-month period are used to analyze 13 

sequential choice behavior of users. Bayesian-SLA model is implemented with a MXL model 14 
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and reward/penalty parameters are estimated for updating action probabilities of users. 1 

Developed model successfully simulates the observed traffic flow conditions. Estimated learning 2 

parameters indicate that ML users are less reactive to the feedback from previous experiences 3 

compared to the earlier estimations for other tolled facilities. Two possible explanations for this 4 

might be 1) Effects of habits and inertia in choices of users or 2) Quasi-equilibrium conditions in 5 

the facility in which most users are well informed and familiar with the traffic conditions. To test 6 

the second explanation, a subsample of non-familiar users is used to re-estimate learning 7 

parameters and reward parameter is found to be slightly higher for this subsample of new 8 

frequent users. Therefore it can be concluded that with increasing experience, users have less 9 

tendency to change their behavior.  10 

Present study also supports the evidence of the usefulness of RP data in exploring driver 11 

behavior in MLs. One caveat of this data source, however, is the lack of information about 12 

differences in user socio-demographic characteristics. Thus, there is room for improvement in 13 

the provided approach in terms of implications of learning behavior, for example revealing 14 

possible causes for state-dependency in choices which is found in the MXL model. 15 

For future directions, a longer time-span may be considered and more user groups can be 16 

identified depending on their familiarity with the system. Larger longitudinal data expectedly 17 

improve statistical explanatory power of similar learning models with more data points for the 18 

same users. An interesting case might be the effect of learning after a network disruption, i.e. 19 

addition of new ML segments, which can show the adaption process for various user groups. In 20 

such a case habit formation as a supporting factor and learning duration after which driver 21 

behavior will not change dramatically can also be examined.  22 
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