You must complete 30 credits to earn a Master of Science in Applied Physics at the School of Engineering.

The credits are distributed as follows:

- 6 credits of basic courses (a 3-credit course in quantum mechanics and 2 semesters of graduate seminar)
- Elective physics courses. The elective courses may include a 6-credit research project or a 9-credit thesis in physics. You should decide which you will pursue with your adviser.

With the approval of your adviser, you can transfer and apply as many as 9 credits of physics courses taken at another institution toward your the School of Engineering degree. A comprehensive examination is not required for the degree.

- 3 Credits Quantum Mechanics I PH-GY 6673
- Quantum mechanics with applications to atomic systems. The use of Schrodinger’s equations. Angular momentum and spin. Semi-classical theory of field-matter interaction.

Prerequisites: MA-UY 2122, PH-UY 3234 equivalents. - 1.5 Credits Graduate Seminar I PH-GY 9531
- Students presenting current topics in Physics in a seminar setting to other students and supervising faculty. Topics chosen by the student with guidance from faculty.
- 1.5 Credits Graduate Seminar II PH-GY 9541
- Students presenting current topics in Physics in a seminar setting to other students and supervising faculty. Topics chosen by the student with guidance from faculty.

Elective Courses, Credits: 24 (4 electives can be at the 5000 level)

- 3 Credits Physical Basis of Nanotechnology PH-GY 5343
- This course focuses on the underlying physical basis of nanotechnology. Introduction to nanotechnology, examples of nanoscale systems. Systematics in miniaturization from the mm to the nm scale. Limits to miniaturization. Quantum concepts and elementary Schrodinger theory. Quantum effects in the behavior of chemical matter. Examples of self-assembled nanosystems from nature and from contemporary industrial products.

Prerequisite: PH-UY 2004 or PH-UY 2033 - 3 Credits Physical Techniques and Application of Nanotechnology PH-GY 5443
- This course focuses on physical techniques and applications of nanotechnology. Scanning probe microscopes for observation and fabrication. Photolithographic methods of patterning, deposition techniques. Dense memory based on arrays of cantilevers. Magnetic Tunnel Junctions as elements of magnetic disc memory read heads and in Magnetic Random Access Memory. Nanoscale high-electric-field devices. Nanoscale confinement techniques and devices. Applications of carbon nanotubes and semiconductor nanowires. Assembly methods for nanoscale objects.

Prerequisite: PH-UY 2004 or PH-UY 2033 - 3 Credits Modern Optics PH-GY 5473
- The course covers the physics of optics, using both classical and semi-classical descriptions. Topics include the classical and quantum interactions of light with matter. Diffraction of waves and wave packets by obstacles. Fourier transform optics, holography, Fourier transform spectroscopy. Coherence and quantum aspects of light. Geometrical optics. Matrix optics. Crystal optics. Introduction to electro-optics and nonlinear optics.

Prerequisites: MA-UY 2122 and PH-UY 3234 equivalents. - 1 Credits Modern Optics Lab PH-GY 5481
- The modern optics laboratory includes experimental investigations into laser modes, velocity of light by time-of-flight, Fourier optics, holography, Fourier transform spectroscopy, crystal optics and nonlinear optics.

Corequisite: PH-UY 5473 or equivalent. - 3 Credits Physics of Nanoelectronics PH-GY 5493
- This course covers limits to the ongoing miniaturization (Moore’s Law) of the successful silicon-device technology imposed by physical limitations of energy dissipation, quantum tunneling and discrete quantum electron states. Quantum physical concepts and elementary Schrodinger theory. Conductance quantum and magnetic flux quantum. Alternative physical concepts appropriate for devices of size scales of 1 to 10 nanometers, emphasizing role of power dissipation. Tunnel diode, resonant tunnel diode, electron wave transistor; spin valve, tunnel valve, magnetic disk and random access memory; single electron transistor, molecular crossbar latch, quantum cellular automata including molecular and magnetic realizations. Josephson junction and “rapid single flux quantum” computation. Photo- and x-ray lithographic patterning, electron beam patterning, scanning probe microscopes for observation and for fabrication; cantilever array as dense memory, use of carbon nanotubes and of DNA and related biological elements as building blocks and in self-assembly strategies.

Prerequisites: PH-UY 2004 or PH-UY 2033. - 3 Credits Physics of Quantum Computing PH-GY 5553
- This course explores limits to the performance of binary computers, traveling salesman and factorization problems, security of encryption. The concept of the quantum computer based on linear superposition of basis states. The information content of the qubit. Algorithmic improvements enabled in the hypothetical quantum computer. Isolated two-level quantum systems, the principle of linear superposition as well established. Coherence as a limit on quantum computer realization. Introduction of concepts underlying the present approaches to realizing qubits (singly and in interaction) based on physical systems. The systems in present consideration are based on light photons in fiber optic systems; electron charges in double well potentials, analogous to the hydrogen molecular ion; nuclear spins manipulated via the electron-nuclear spin interaction, and systems of ions such as Be and Cd which are trapped in linear arrays using methods of ultra-high vacuum, radiofrequency trapping and laser-based cooling and manipulation of atomic states. Summary and comparison of the several approaches.

Prerequisites: PH-UY 2004 or PH-UY 2033 - 3 Credits Physics of Alternative Energy PH-GY 5663
- The course examines non-petroleum sources of energy including photovoltaic cells, photocatalytic generators of hydrogen from water, and nuclear fusion reactors. The advanced physics of these emerging technical areas are introduced in this course. Semiconductor junctions, optical absorption in semiconductors, photovoltaic effect. Energy conversion efficiency of the silicon solar cell. Single crystal, polycrystal, and thin film types of solar cells. Excitons in bulk and in confined geometries. Excitons in energy transport within an absorbing structure. Methods of making photocatalytic surfaces and structures for water splitting. Conditions for nuclear fusion. Plasmas and plasma compression. The toroidal chamber with magnetic coils as it appears in recent designs. Nuclear fusion by laser compression (inertial fusion). Small scale exploratory approaches to fusion based on liquid compression and electric field ionization of deuterium gas.

Prerequisites: PH-UY 2004 or PH-UY 2033 - 3 Credits Theoretical Mechanics I PH-GY 6153
- Principles of particle and rigid body dynamics. Lagrange's equations. Small vibrations of coupled systems, normal modes of oscillation.

Prerequisites: Graduate standing, or for undergraduates, PH-UY 2104 or equivalent and physics graduate advisor’s approval. - 3 Credits Theoretical Mechanics II PH-GY 6163
- Hamiltonian mechanics. Transformation theories of mechanics including the Poisson Bracket and Hamilton-Jacobi formulations. Lagrangian formulation of mechanics of continuous media.

Prerequisite: PH-GY 6153. - 3 Credits Electromagnetic Theory I PH-GY 6243
- Electro- and Magneto-statics. Boundary value problems in three dimensions. Green's functions and multipole expansions. Polarization and magnetization. Scalar and vector potentials and gauges. Maxwell's equations.

Prerequisites: Graduate Standing, or for Undergraduates, PH-UY 3234 or equivalent and Physics Graduate Advisor approval. - 3 Credits Electromagnetic Theory II PH-GY 6253
- Electromagnetic waves. Propagation in free space and in dielectric and conducting media. Polarization, dissipation and dispersion. Guided waves and cavities. Special Relativity. Scattering.

Prerequisites: PH-GY 6243 Electromagnetic Theory I - 3 Credits Physical Concepts of Polymer Nanocomposites PH-GY 6403
- This course presents fundamental aspects of polymer nanocomposites and updates on recent advancements and modern applications. Topics include nanostructured materials; assembly at interfaces; interactions on surfaces; properties of polymer nanocomposites; reliability; nanodevices.
- 3 Credits Introduction to Solid-State Physics I PH-GY 6513
- Phenomena and theory of physics of crystalline solids. Topics from thermal, magnetic, electrical and optical properties of metals, insulators and semiconductors.

Prerequisite: PH-UY 2344 or equivalent. - 3 Credits Introduction to Solid-State Physics II PH-GY 6523
- Phenomena and theory of physics of crystalline solids. Topics from thermal, magnetic, electrical and optical properties of metals, insulators and semiconductors.

Prerequisite: PH-GY 6513 - 3 Credits Advanced Quantum Computing PH-GY 6553
- Advanced topics in quantum computation are explored.

Prerequisites: PH-GY 5553. - 3 Credits Statistical Mechanics I PH-GY 6633
- Equilibrium distributions. Relationships to laws of thermodynamics. Quantum effects. Maxwell-Boltzmann, Fermi-Dirac, Bose-Einstein distributions. Applications to bulk properties phenomena using Boltzmann transport equation.

Prerequisites: PH-UY 4364 or PH-GY 6673 - 3 Credits Statistical Mechanics II PH-GY 6643
- Micro-, macro-, and grand-canonical ensembles and principles of classical statistical mechanics. Condensation phenomena. Treatment of fluctuation and transport phenomena. Density matrix formalism of quantum statistical mechanics. Many-body problems.

Prerequisites: PH-GY 6633. - 3 Credits Quantum Mechanics II PH-GY 6683
- Quantum mechanics with applications to atomic systems. The use of Schrodinger’s equations. Angular momentum and spin. Semi-classical theory of field-matter interaction.

Prerequisites PH-GY 6673. - 3 Credits Selected Topics in Advanced Physics PH-GY 8013
- Current or advanced topics of particular interest to graduate students are examined. Subject matter is determined each year by students and faculty. The course may be given in more than one section. Consult department office for current offerings.

Note: this course is not offered every semester. - 3 Credits Selected Topics in Advanced Physics PH-GY 8023
- Current or advanced topics of particular interest to graduate students are examined. Subject matter is determined each year by students and faculty. The course may be given in more than one section. Consult department office for current offerings.

Note: this course is not offered every semester. - PH-GY 9983 (Please refer to the bulletin)
- PH-GY 9993 (Please refer to the bulletin)

- Email / Network
- soehelpdesk@nyu.edu
- Website
- engineering.webteam@nyu.edu
- Login (Faculty + Staff)

© NYU Tandon

Follow Us:Facebook Twitter InstagramYouTube