Seminars: Fall 2014


Date      Speaker From Title
  Shlomo Shamai Israel Institute of Technology Information Theory: Old and New-A Personal View
Aug 13 Mischa Dohler Centre for Telecom Research 50 Billion M2M Devices in 5G?
Sep 11 Michael Rice Brigham Young University Space-Time Coding in Aeronautical Telemetry
Sep 11 Jie Xu University of California, Los Angeles Real-time knowledge discovery and decision making from Big Data
Sep 25 Yezekael Hayel University of Avignon, France Advanced Game Theoretical Models and Applications in Networks
Oct 23 Shlomo Shamai Israel Institute of Technology Information Theory: Old and New--A Personal View


50 Billion M2M Devices in 5G?

Speaker: Mischa Dohler, Centre for Telecom Research
Time: 11:00 am - 12:00 pm, Aug 13, 2014
Location: 2MTC, 10th floor, Room 10.099, Brooklyn, NY

A hyper-connected cyber-physical world, by some touted as the 4th Industrial Revolution with unprecedented economic and social opportunities, will heavily rely on the machine-to-machine (M2M) paradigm. Previous designs, which made us believe that low power radios or provisioning of horizontal platforms are driving factors, failed. This talk thus revisits the lessons we learned and how we apply them to invoke architectural and protocol changes to emerging 5G design efforts so that machine type communications (MTC) become a solid constituent of the future IoT connectivity landscape. The talk is based on first-hand experience gained from ETSI M2M, IETF ROLL and other standardization efforts; as well as the successful creation of the pioneering M2M company Worldsensing.

About the Speaker: Mischa Dohler is full Professor in Wireless Communications at King's College London, Head of the Centre for Telecommunications Research, co-founder and member of the Board of Directors of the smart city pioneer Worldsensing, Fellow and Distinguished Lecturer of the IEEE, and Editor-in-Chief of the Transactions on Emerging Telecommunications Technologies.

Dr. Hang holds 13 patents (Taiwan, US and Japan) and has published over 190 technical papers related to image compression, signal processing, and video codec architecture. He was an associate editor (AE) of the IEEE Transactions on Image Processing (1992-1994, 2008-2012) and the IEEE Transactions on Circuits and Systems for Video Technology (1997-1999). He is a co-editor and contributor of the Handbook of Visual Communications published by Academic Press in 1995. He is currently a Distinguished Lecturer and Board Member of the Asia-Pacific Signal and Information Processing Association (APSIPA) (2012- 2013, 2013-2014). He is a recipient of the IEEE Third Millennium Medal and is a Fellow of IEEE and IET and a member of Sigma Xi.

Space-Time Coding in Aeronautical Telemetry

Speaker: Michael Rice, Brigham Young University
Time: 11:00 am - 12:00 pm, Sep 11, 2014
Location: 2MTC, 10th floor, Room 10.099, Brooklyn, NY

In air-to-ground radio links, transmission can sometimes be blocked when the aircraft maneuvers place the fuselage between the airborne transmit antenna and the ground-based receive antenna. This problem is usually overcome by using two transmit antennas on the aircraft (say, on the top and bottom). But this creates a new problem: when the same signal is transmitted from both antennas, the communications link suffers from self-interference caused by destructive interference between the two copies of the transmitted radio signal. This talk describes a solution to this problem based on Alamouti space-time block code to overcome the problem. The organization of the talk is as follows: the basic principles of the space-time block code are presented, experimental hardware realizations of the transmitter and receiver are described, and the results of flight tests at Edwards AFB, California are summarized.

About the Speaker: Michael Rice received his PhD from Georgia Tech in 1991. Dr. Rice was with Digital Transmission Systems, Inc. in Atlanta and joined the faculty at Brigham Young University in 1991 where he is currently the Jim Abrams Professor in the Department of Electrical & Computer Engineering. Professor Rice was a NASA/ASEE Summer Faculty Fellow at the Jet Propulsion Laboratory during 1994 and 1995 where he worked on land mobile satellite systems. During the 1999-2000 academic year, Professor Rice was a visiting scholar at the Communication Systems and Signal Processing Institute at San Diego State University.

He was the chair of the Communication Theory Technical Committee in the IEEE Communications Society from 2009 -- 2010. He is currently serving and as Technical Editor for Command, Control and Communication Systems for IEEE Transactions on Aerospace and Electronic Systems. In addition, he is an associate member of the Range Commanders Council, and is the chair of the Signal Processing and Communications Society Chapter in the Utah Section of IEEE.

Real-time knowledge discovery and decision making from Big Data

Speaker: Jie Xu, University of California, Los Angeles
Time: 1:30 pm - 2:30 pm, Sep 11, 2014
Location: 2MTC, 9th floor, Room 9.101, Brooklyn, NY

As the world becomes ever more connected and instrumented, decision-makers have ever more rapid access to ever changing and growing streams of data – but this makes the decision-maker’s problems ever more complex as well, because it is impossible to learn everything in the time frame in which decisions must be made. What the decision-maker must do, therefore, is to discover in real time what is relevant in the enormous stream of data and use the relevant information to make good decisions. This talk presents a systematic framework and associated algorithms that enable a decision-maker to do this, and shows how to use them in real-time traffic prediction as an application scenario. With the vast availability of traffic sensors from which traffic information can be derived in real-time, a lot of research effort has been devoted to developing traffic prediction techniques, which in turn improve route navigation, traffic regulation, urban area planning and etc. One key challenge in traffic prediction is how much to rely on prediction models that are constructed using historical data in real-time traffic situations. Our decision framework learns from the current traffic situation in real-time and predicts the future traffic by matching the current situation to the most effective prediction model. When the traffic prediction involves multiple distributed learners but only the feedback about the overall effect of their decisions is available, we also propose fast learning algorithms by exploiting the informativeness of the global feedback. The algorithms we propose yield strong performance guarantees for both the long run and the short run. The applications are numerous besides traffic prediction, including patient monitoring, surveillance, social networks etc.

About the Speaker: Jie Xu is a final year PhD student at University of California at Los Angeles. He is advised by Prof. Mihaela van der Schaar in the Department of Electrical Engineering. Prior to attending UCLA, he received his BS and MS degrees in Electrical Engineering from Tsinghua University in China and graduated with honor. His research spans the area of machine learning, data mining and game theory, with an emphasis on learning and incentive design in networks.

Advanced Game Theoretical Models and Applications in Networks

Speaker: Yezekael Hayel, University of Avignon
Time: 11:00 am - 12:00 pm, Sep 25, 2014
Location: 2MTC, 10th floor, Room 10.099, Brooklyn, NY

Abstract: New communication networks are more and more complex (heterogeneous, dynamic, etc) and mainly more decentralized. Performances of those networks are difficult to determine, even more when the network is composed of non-cooperative agents. Examples of such networks are: new wireless networks like « self-organized networks », social networks, transportation networks, etc. In the last ten years, Game Theory has become one of the more suitable mathematical tools to study and to optimize those decentralized complex networks. In this presentation, I will expose some works related to advanced game theoretical models and applications to decentralized resource allocation problems in networks. In fact, some particular networks assume strong properties about the interactions between the agents and on the network characteristics. Hierarchical games assume a multi-level structure between the decision makers. Important results can be obtained using this type of non-cooperative game for new wireless networks like Cognitive Radio Networks, based on opportunistic spectrum usage. Evolutionary games, inspired by Darwin's evolution principle, are able to propose models for complex networks with large number of players. Particularly, those models take into consideration robustness of the equilibrium against deviations of a fraction of individuals and also can serve as basement to build learning procedures that converge to equilibrium. Finally, routing games, initiated in transportation networks, propose facilities to model management problems in networks dealing with content distribution and to understand how pricing mechanisms can be used to control/to influence usage in different types of networks (social networks, transportation, content, etc).

About the Speaker: Yezekael Hayel is an Assistant Professor with tenure position at University of Avignon in France. He received one M.Sc. in Computer Science and one in Applied Mathematics from the University of Rennes 1, in 2001 and 2002 respectively. He had a Ph.D. in Computer Science from University of Rennes 1 and INRIA in 2005 on Network pricing. His research interests include performance evaluation of networks based on game theoretic and queueing models. He looks at applications in communication and transportation networks like: wireless flexible networks, bio-inspired and self-organizing networks, economics models of the internet and yield management. Recently, his application domains enlarge to transportation networks, social networks and complex networks. Since he has joined the networking group of the LIA/CERI, Yezekael Hayel participates in several national (ANR) and international projects (European, cefipra, etc) with industrial companies like Orange Labs, Alcatel-Lucent, IBM and academic partners like Supelec, CNRS, UCLA. For the academic year 2014-2015, he is a visiting professor at NYU School of Enginerring.

Information Theory: Old and New--A Personal View

Speaker: Shlomo Shamai, Israel Institute of Technology
Time: 11:00 am - 12:00 pm, Oct 23, 2014
Location: Pfizer Auditorium, Bern Dibner Library of Science & Technology, 5 MetroTech Center, Brooklyn, NY

Part of Jack Keil Wolf Lecture Series

The presentation starts by demonstrating in a descriptive way the origin of information theory in Shannon’s 1948 monumental work, and pointing some interdisciplinary aspects within general areas of electrical engineering and beyond. We discuss a change of paradigms in information theory from being a pure mathematical theory of communications to a theory with widescope direct practical implications and applications. To demonstrate the rich aspects of the problems considered and their implications as well as some inter disciplinary connections, we focus on a simple matrix based linear additive Gaussian model. We elaborate on the information-estimation intimate connection, mentioning its impact on non-linear filtering and on recent views of efficient coding in single and multi-terminal channels. Possible extensions to general channels and a short outlook conclude the presentation.

About the Speaker: Shlomo Shamai received the B.Sc., M.Sc., and Ph.D. degrees in electrical engineering from the Technion—Israel Institute of Technology, in 1975, 1981 and 1986 respectively. Since 1986 he is with the Department of Electrical Engineering, Technion-Israel Institute of Technology, where he is now a Technion Distinguished Professor, and holds the William Fondiller Professor of Telecommunications chair. His research interests encompass a wide spectrum of topics in information theory and statistical communications.

Dr. Shamai is an IEEE Fellow and a Member of the Israeli Academy of Sciences and Humanities and a Foreign Member of the US National Academy of Engineering. He is the recepient of the 2014 Rothschild Prize in Mathematics/Computer Sciences and Engineering and the 2011 Claude E. Shannon Award. He has been awarded the 1999 van der Pol Gold Medal of the Union Radio Scientifique Internationale (URSI), and is a co-recipient of the 2000 IEEE Donald G. Fink Prize Paper Award, the 2003, and the 2004 joint IT/COM societies paper award, the 2007 IEEE Information Theory Society Paper Award, the 2009 European Commission FP7, Network of Excellence in Wireless COMmunications (NEWCOM++) Best Paper Award, and the 2014 EURASIP Best Paper Award for the EURASIP Journal on Wireless Communications and Networking. He is the recipient of the 2010 Thomson Reuters Award for International Excellence in Scientific Research and is listed in the 2014 Thomson Reuters "The World's Most Influential Scientific Minds". He is also the recipient of the 2000 Technion Henry Taub Prize for Excellence in Research. He has served as Associate Editor for the Shannon Theory of the IEEE Transactions on Information Theory, and has also served on the Board of Governors of the Information Theory Society. He has served on the Executive Editorial Board of the IEEE Transactions on Information Theory'.