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AbstractWe consider the problem of generating layouts of multi-level networks, in particular, switching, sorting, and inter-connection networks, as compactly as possible on VLSI grids.Besides traditional interest in these problems motivated byinterconnection topologies in parallel computing and switch-ing circuits in telecommunications, there is renewed interestin such layouts in the context of ATM (Asynchronous Trans-fer Mode) switches. Our results improve on the existing areabounds for these networks by factors of up to three.1 IntroductionWe study the problem of laying out multi-level networksin general, and various switching, sorting and interconnec-tion networks in particular, on a VLSI chip. The goal is toproduce compact layouts, that is, layouts with the smallestpossible grid area for realizing a given network. We presentlayouts for di�erent types of \mappings" (formally de�nedlater); they form building blocks for realizing any multi-levelnetwork. We use our building blocks and their special ge-ometry, and combine them with high-level reorganizationtechniques to obtain (near-)optimal layouts for various sort-ing, switching and interconnection networks.1.1 Speci�c Networks and MotivationThe speci�c networks that we consider are the buttery,the Benes network, the bitonic sorting network, and gen-eral sorting networks. The basic elements in these networksare comparators or switches. These networks have been�This research was partly supported by ESPRIT LTR Project no.20244 - ALCOM{IT.yAT&T Labs { Research, Florham Park, NJ, USA. Email:muthu@research.att.com.zDepartment of Computer Science, University of Warwick, Coven-try, UK. Email: msp@dcs.warwick.ac.uk.xDepartment of Computer Science, University of Warwick, Coven-try, UK; and Center for BioInformatics, University of Pennsylvania,Philadelphia, PA, USA. Email: cenk@dcs.warwick.ac.uk.{Computer and Information Science, Polytechnic University,Brooklyn, NY, USA. Email: suel@photon.poly.edu.To appear in the 31st ACM Symposium on Theory ofComputing, Atlanta, GA, May 1999.

studied in many contexts (see [17, 19, 20, 26]). They areused as interconnection networks, or as switching networksin telecommunications. Motivated by the potential for mas-sive parallelism, VLSI layouts of these networks have beenstudied extensively in the literature; see, e.g., [28, 20].There is renewed interest now in layouts of switchingand sorting networks on VLSI circuits within ATM (Asyn-chronous Transfer Mode), a promising network technology.Many ATM switches use the buttery network and its re-lated networks and sorters in order to route connections; see[30] for an overview, and [6] for generic ATM switch systemswith such networks. Such ATM switches have been designedor developed at Bellcore (named Sunshine [4]), AT&T BellLabs (named Starlite [13]), Lucent Technologies [16], Tele-com Australia Research Labs [23], and elsewhere (for exam-ple, Starburst [31]). For high speed and performance, theseATM switches are fabricated as VLSI chips, with layoutsbased on Batcher's sorters, Benes networks, or banyan net-works.Much of the research on VLSI layouts of such networkshas been inspired by the stringent need to be compact, andthe focus has therefore been on trying to optimize the con-stant factor in the area of layouts, rather than obtainingmerely big-O optimal bounds. Our results improve the arearequired by the best known constructions by factors rang-ing from 2 to 3. In practice, our results may translate toa smaller percentage of reductions in the actual chip area;however, even small reductions may be important.1.2 The VLSI Grid ModelA layout of a network on an integer grid GR;C is a map-ping of the nodes of the network to grid points in [1 � � �R]�[1 � � �C]. We concentrate on layouts whose input nodes areall on column 1 and whose output nodes are all on columnC. The connections in the network are mapped to edge-disjoint paths on the grid. Two paths are allowed to crossat a grid point. A turn of a path at a grid point is called abend.Note that at most two paths can meet at a grid point,which implies that networks are restricted to containing de-vices of degree at most 4. All our communication networksare of this form, as they are based on 2-input, 2-output com-parator and switching elements. When two paths meet ata grid point, the meeting may be straight or knock-knee: inthe former, neither path changes direction at the intersec-tion point, while in the latter, both paths change directions,that is, there are two bends. Our goal is to minimize thearea, RC, of the layouts. The grid model for layouts was1



formalized in [27] for the VLSI setting.1.3 Results for Speci�c NetworksWe present the following optimal or near-optimal lay-outs for well-known networks, which improve upon the bestpreviously known bounds.Buttery Networks. We present layouts of N -input but-tery switching/comparator networks of area1 (2=3)N2 and(1=2)N2 for the cases when the order of the inputs and out-puts is �xed or can be arbitrarily permuted, respectively; inboth cases, the leading constant is the best possible.The best previously known upper bound for the �xed-order case was the N2 result that follows from the work ofWise [29]. (See also [1] for bounds when the inputs andoutputs may be anywhere within the grid area.) Our �rstbound provides the standard interface of a stand-alone but-tery, while the second bound is useful when the buttery isused as part of a larger circuit in which we can optimize thewiring. For example, using the second construction, we ob-tain a layout of an N -input dual Benes network with optimalN2 layout area.Batcher's Bitonic Sorting Network. We present a lay-out of Batcher's bitonic sorter that uses a total area ofless than 1:39N2. Since these sorters are used in ATMswitches, some attention has recently been given to produc-ing compact layouts. However, the best previous layout ofthe bitonic sorter still required 3N2 area [8, 9], which im-proved upon earlier bounds in [7, 29].Optimal Sorters. We address the question of determin-ing the \best" sorter in general. There are known sortingnetworks of area N2, but they use 
(N2) comparators [14],and thus the (logical) depth of the network is 
(N). In con-trast, Batcher's sorters use only O(N log2N) comparatorswith O(log2N) comparators on any path. A lower bound ofN2 for the area is known from [9].We present a layout based on Columnsort that achievesN2 area, and that can be used with any sorter as a sub-routine. By combining Columnsort with a straightforwardlayout of the AKS sorter [2], we obtain a layout area of N2with O(logN) comparators on any path. Thus, this con-struction is optimal within a lower order additive term inthe area, and asymptotically optimal in terms of the sizeand depth of the network. In fact, using the more relaxedde�nition of layout area in [7] the bound becomes 2532N2,thus establishing a separation between the two di�erent def-initions of layout area.1.4 General Techniques for Multi-Level Network LayoutsWe develop the following general approach. First we de-sign layouts of arbitrary networks of one or two levels. Here,a level is a permutation wiring connecting two \columns"of active elements. Then, by using these as local buildingblocks, we generate layouts of entire multi-level networks.Both these steps are nontrivial, and an overview follows.Consider any network of one or two levels. We considerthree di�erent types of \mappings" from their inputs to theiroutputs (see Section 3). These mappings depend on whetherthe inputs and outputs are �xed or can be reordered arbi-trarily, and on whether intermediate nodes may be arbitrar-ily placed within the layout or not. We use novel and exist-ing algorithms to present layouts for each of these mappingswhich are tight up to at most two additional columns.1Throughout this paper, we usually state only the leading termand suppress the additive o(N2) term.

Any multi-level network can be laid out by combining(concatenating) these mappings; however, this does not au-tomatically lead to an optimal layout for the entire network.We use two additional techniques that lead to more compactlayouts. The �rst technique is to rearrange a multi-level net-work in an isomorphic manner. For example, if the networkcompares a set of far-apart inputs in several successive lev-els, one may permute the input and then have several levelsof comparisons between inputs that are close. We use suchremappings of the inputs repeatedly in our layouts, and ob-tain signi�cant savings in area. We point out that this ideais not really new, and that it has been used in the context ofthe buttery to improve the locality of the FFT and bitonicsorting algorithms on parallel machines; see, e.g., [5, 24].The second technique is to lay out building blocks (of oneor two levels) into non-rectangular geometric shapes, whichmay then be �tted together more e�ciently. We use thisprinciple with triangular and parabolic blocks, and this tooresults in signi�cant savings. The combination of these twoideas gives the best known results for the speci�c networksthat we consider, and should also prove useful for producingtighter layouts of other multi-level networks.We omit some details of the proofs and use �gures andgeometric intuition to illustrate some of our ideas. At thebeginning of his paper [29], Wise says, \This paper o�erstwo results that can both be described as pictures. Theyare Figures 1 and 3. The perceptive readers may stop here,since the remainder of this paper only describes them." Thesame is not quite true here since our structured approach toderiving our layouts should be of independent interest. Forexample, the problem of laying out one of the \mappings"for a level turns out to be the problem of �nding disjointpaths on grid graphs { another problem with a lot of history;see, e.g., [10, 12, 11, 15, 32].Note that all our constructions use knock-knees. Knock-knees have been used in many other papers on VLSI layouts(see Chapter 9 in [20], and [21]). From the VLSI technol-ogy point of view, the horizontal and vertical lines of thegrid model are laid out on two di�erent layers. Bends,knock-knees and switches all operate on both layers andhence, bends and knock-knees are no harder to fabricatethan switches. Nevertheless, like switches, bends and knock-knees are also a technological resource, and the number ofbends (and hence the number of knock-knees) in the con-structions that we use as building blocks for the layouts ofswitching and sorting networks is a small constant per con-nection.2 PreliminariesGiven M = 2m for some m � 1, a buttery interconnec-tion network Bm has M input nodes Im[0; : : : ;M � 1], andM output nodes Om[0; : : : ;M � 1], and consists of m levels,Bmm ;Bmm�1; : : : ;Bm1 . Each level Bm̀ is a bipartite graph withM input andM output nodes. Each input node Im̀[i] of Bm̀is connected to two output nodes Om̀[i], and Om̀[i`], wherei` is obtained by complementing the `th least signi�cant bitof i.The buttery interconnection network can be used as abuilding block in switching (or comparator) networks if eachnode is replaced by a two-input, two-output switch (or com-parator). In particular, this implies that the inputs and out-puts now each consist of N = 2M lines. Such a network iscalled a buttery switching (comparator) network. Switchingnetworks of particular interest are the Benes network and its2



dual. A Benes network of N = 2M input and output linesis a concatenation of buttery levels Bmm;Bmm�1; : : : ;Bm1 ;Bm1 ;Bm2 ; : : : ;Bmm in that order, that is, it consists of two completebuttery networks connected end to end, in which the sec-ond buttery has reversed levels. The dual Benes is formedsimilarly by a reversed buttery followed by a buttery.These Benes networks are of interest since they are rear-rangeable (see, for example, [26]). We omit the standardde�nition of Batcher's bitonic sorter; see, e.g., [3, 17].3 Optimal Basic LayoutsIn this section, we identify three layout problems de�nedby \mappings". These mappings model one or two levels ofwiring and comparators (or switches) in a multi-level net-work. The mappings model: (1) an arbitrary wiring fromthe outputs of one level of comparators to the inputs of thenext, when the comparators at each level are �xed withintheir respective grid columns (Section 3.1); (2), the same as(1), but the comparators at the second level may be movedarbitrarily within their grid column (Section 3.2); and (3)an arbitrary wiring from the outputs of level ` to the in-puts of level ` + 2, when the comparators at levels ` and`+2 are �xed within their respective grid columns, but thecomparators at level `+1 may be moved around arbitrarily(Section 3.3).23.1 Permutation NetworksThis problem is de�ned as follows. On an integer grid,we have n inputs and n outputs, whose rows are speci�ed asr1; : : : ; rn and s1; : : : ; sn respectively. Let f denote such aninput-output speci�cation and a permutation on f1; : : : ; ng.The goal is to produce a layout of this permutation (that is,connect each input i to output f(i) via a set of edge-disjointpaths) such that all inputs, and all outputs, respectively, areon the same column. Such a network is called a permutationnetwork.Given f , de�ne the cutwidth under row i, denoted Ci(f),as jfj j rj � i < rf(j) or rf(j) � i < rjgj. The cutwidth ofthe permutation f , denoted by C(f), is de�ned as maxiCi(f).We have C(f) � n. The following holds (see [10] for aproof): any grid layout of f needs at least C(f) columns,independent of the number of rows used. Since any non-trivial permutation on n inputs requires at least n+1 rows,we get a lower bound on the area of any layout of at least(n+ 1)C(f).The best known algorithms to lay out a given permuta-tion network in optimal area run in O(n � C(f)) time andresult in O(n �C(f)) bends [10, 32]. What we show below isthat for any permutation one can construct a layout whichresults in only O(1) bends per connection; for some of thepermutations used in our switching and sorting networks,our layout results in optimal (n+ 1)C(f) area. To simplifythe rest of the discussion we assume that all inputs and out-puts are located on n contiguous rows of the grid, althoughour results apply to all possible row placements of inputsand outputs.Faster construction, using fewer bends. We considerlayouts in which we limit the number of bends used. Forall but the simplest permutations, most of the connectionsrequire at least two bends, independent of the number of2An alternative problem considered in [12] allows exibility on therows the input and outputs are located, provided that their relativeorderings do not change. Computing an optimal area layout for thisproblem is NP-hard [12].

rows and columns used. In what follows, we show layouts inwhich we use at most four bends per connection.Given a permutation f on f1; : : : ; ng, consider the di-rected graph G(f) with vertices V = f1; : : : ; n + 1g andedges E = f(i; f(i) + 1) j 1 � i � ng. In G(f), every vertexexcept n + 1 has outdegree one and every vertex except 1has indegree one. For n + 1 the outdegree is zero, and for1 the indegree is zero. Clearly, if G(f) has a Hamiltonianpath, then that path goes from 1 to n+ 1.In G(f), a path p is maximal decreasing (maximal in-creasing) if the sequence of vertex numbers along p is de-creasing (increasing) and no extension of p has this property.We are interested in the total number of maximal de-creasing and maximal increasing paths, which we denote bym(f); trivially, m(f) � n. The following result proves use-ful since m(f) � C(f) for a number of permutations thatwe consider later.Theorem 1 There is an O(n) time algorithm to produce alayout of f using n+1 rows and at most m(f)+2 columns.Each connection has at most four bends.Proof: The layout uses rows 1; : : : ; n + 1, where row icontains input node Ii and output node Oi. We use thegraph G(f) to determine an assignment of columns to con-nections so that no two paths assigned to connections over-lap. The layout is in two parts: the �rst part produces itsoutputs O01; : : : ;O0n in rows 2; : : : ; n + 1 respectively, whilethe second part uses a single column to restore the outputsto their proper �nal positions.If G(f) has (i.e., is) a Hamiltonian path, the column as-signment to connections is as follows. Consider the maximalincreasing path ending at n+1, and starting at some j1. Foreach edge (i; f(i) + 1) on this path, we assign column 1 tothe connection from Ii to O0f(i) (in row f(i) + 1). Next we�nd the maximal decreasing path ending at j1, and startingat some j2. We assign column 2 to the connections corre-sponding to edges on this path, and so on. The structureof G(f) ensures that this procedure proceeds smoothly andthe resulting assignment is non-conicting; the number ofcolumns used is clearly m(f). The output connections cannow be shifted back one row using a single extra column.If G(f) does not have a Hamiltonian path, we determinean intermediate permutation g, such that (1) G(g) has aHamiltonian path, (2) m(g) � m(f) + 1, and (3) f is thecomposition of g and a permutation h, which has a layoutthat uses a single column and which restores the outputs torows 1; : : : ; n.The permutation g is computed as follows. Considerthe path p in G(f) that starts from vertex 1 and ends atvertex n + 1. If G(f) is not Hamiltonian there are nodeswhich are not on this path. Because each such node hasboth indegree and outdegree 1, it has to be on a cycle. Ourmethod relies on incorporating each such cycle into path p asfollows. We �nd the maximum j which is not on path p andincorporate it into the path as follows. The edges (k; j + 1)and (k0; j) in E are replaced by the new edges (k0; j + 1)and (k; j). Thus the path from 1 which went along edge(k; j + 1), now takes the detour k; j; then around the cyclethat contained (k0; j),then k0; j + 1. This corresponds toswapping the neighboring destination outputs j � 1 and j,i.e., whereas f(k) = j and f(k0) = j � 1, we have a newpermutation f 0 where f 0(k) = j � 1 and f 0(k0) = j.After this swap, we claim that all nodes on the originalcycle of node j will now be on p. We iteratively apply swapsuntil all cycles are incorporated into p. This new graph G0provides the permutation g and is Hamiltonian. Because3



the swaps are local, we can show that m(g) � m(f) + 1,and that the permutation h can be laid out using a singlecolumn, since we only need to reorder the swapped outputnodes, and these do not overlap.There are permutations f that have layouts using fewerthan m(f) columns; hence, our construction is not alwaysoptimal in area. Nevertheless, we will see that the con-struction above is optimal for certain important classes ofpermutations that are of particular interest to us (see Sec-tion 4).3.2 Pairing NetworkWe are given a grid with the inputs on the left sidenumbered I1; I2; : : : ; I2M , and the outputs on the right sidenumbered O1;O2; : : : ;O2M , where Ii and Oi are in row i.A set of M disjoint input pairs (lui; ldi), where lui; ldi 2fI1; : : : ; I2Mg is given. The goal is to determine a one-to-one mapping f of I1; : : : ; I2M to O1; : : : ;O2M such that, foreach i, f(lui) and f(ldi) are adjacent (that is, they di�er byone); furthermore, we must �nd a layout of the permutationnetwork f . Such a network is called a pairing network. Wewrite N = 2M .Consider the graph G on a linear array of N vertices, inwhich there is an edge between nodes i and j if and only if(Ii; Ij) is an input pair for the pairing network; thus thereare M edges in all. The pair-cutwidth P (G) of the inputinstance is the maximum number of crossing edges of Gbetween any pair of rows i and i+ 1.Theorem 2 In any layout of a pairing network, the numberof columns used is at least P (G) � 1, independent of thenumber of rows used. There is an algorithm to produce alayout of any pairing network in which the number of rowsis at most N + 1 and the number of columns is at mostP (G) + 3; this algorithm takes time O(N � P (G)).Proof: For the lower bound, we consider any i such thatP (G) edges of G cross between rows i and i+ 1. Each edgecorresponds to a pair of inputs, of which at least one needsto be taken across a vertical edge between rows i and i+ 1to bring them together, with the possible exception of onepair which could be mapped to rows i and i+ 1.For the upper bound, we �rst produce a mapping f thatsatis�es the requirement that the cutwidth of f is nearly thesame as the pair-cutwidth of the input. Then, we apply oneof the algorithms for laying out a permutation in optimalarea. For the �rst step, Lemma 3 establishes the boundsneeded.Lemma 3 For any input to the pairing network, there is anO(N) algorithm to �nd a satisfying permutation f such thatC(f) � P (G) + 1.Proof: We construct f iteratively. Here, we simply out-line the algorithm. Consider the pair (lui; ldi) where (with-out loss of generality) lui = 1. We assign f(1) = 1 andf(ldi) = 2. Now we have two cases. If ldi is even, we con-sider the pair (luj; ldj) where (without loss of generality)luj = ldi � 1; we assign f(luj) = ldi � 1 and f(ldj) = ldiand continue iteratively with ldj. On the other hand, if ldiis odd, we consider the pair (luj ; ldj) where (without lossof generality) luj = ldi + 1; we assign f(luj) = ldi andf(ldj) = ldi + 1 and continue iteratively with ldj. We canset up an appropriate directed graph, with in- and outde-grees being one, on which this process corresponds to a walk;since such a graph has a cycle decomposition, this iterative

process goes smoothly and terminates at row 2. If the graphis not Hamiltonian, we �nd the topmost input row which isnot assigned an output row and iterate. The argument thatC(f) � P (G) +1 can be outlined as follows | f essentiallyrealizes a pairing network in which at most one endpoint ofeach input pair is changed by one: the output rows of a pair(luj; ldj) are within (luj � 1; ldj + 1). The pair-cutwidth ofthe graph G0 that is obtained from this pairing is at mostP (G) + 1.3.3 Pair-Permute NetworkFor the grid as before, with Ii and Oi in row i, a set ofMdisjoint input pairs (lui; ldi), for lui; ldi 2 fI1; : : : ; I2Mg isgiven, with theM associated disjoint output pairs (rui; rdi),where rui; rdi 2 fO1; : : : ;O2Mg. Our goal is to determinethe layout of a network in which each input pair is connectedto a comparator (or switch), the outputs of which are con-nected to the output pair. The entire network is called thepair-permute network. We set N = 2M .Consider the graph G on a linear array of N verticesin which, for each input-output 4-tuple (lui; ldi; rui; rdi) =(Ii; Ij;Ok;Ol), we put edges between vertices maxfi; jg andminfk; lg and between vertices minfi; jg and maxfk; lg; thusthere are N edges in all. The pair-permute-cutwidth of theinput instance, PP (G), is the maximum number of crossingedges of G between any pair of rows i and i+ 1.Theorem 4 Any layout of a pair-permute network requiresat least PP (G) columns, independent of the number of rowsused. There is an algorithm to compute a layout of any pair-permute network using at most PP (G) columns and N + 1rows; this algorithm takes time O(N � PP (G)).We sketch the proof here. Consider any input-output 4-tuple (Ii; Ij ;Ok;Ol). We de�ne a mapping f as follows:f(Imaxfi;jg) = Ominfk;lg and f(Iminfi;jg) = Omaxfk;lg. Forthis f , we apply any of the algorithms for laying out a per-mutation in optimal area. This produces a layout in whichthe two routes from the input pair to the output pair cross,and we can put the intermediate comparator (or switch)at that intersection. This completes the construction. Weclaim that C(f), the cutwidth of f , is at most PP (G); thisrequires a proof that is not very di�cult, and it is omittedhere.4 Layouts of Classes of PermutationsIn the constructions in Section 5, we use two specialclasses of permutation, called bit reversal and unshu�e per-mutations. In this section, we de�ne these classes and de-scribe their properties.De�nition 4.1 Let N = 2n and k � n. The k-bit rever-sal permutation (or k-bit reverser) is the permutation onf0; : : : ;N�1g that connects each element x with the elementx0 obtained by reversing the order of the k least signi�cantbits of the binary representation of x. E.g., the 3-bit reversalof 1011 is 1110.De�nition 4.2 Let N = 2n and k � N , and assume forsimplicity that N=k is an integer.(a) The k-way unshu�e permutation is the permutationthat connects each x with x0 = (x mod k) � Nk + �xk �.(b) The k-way shu�e permutation is the permutation thatconnects each x with x0 = (x mod Nk ) � k+ �kxN �.4



Note that a k-way shu�e permutation is equivalent to an Nk -way unshu�e permutation. If k = 2r, then a k-way shu�e(unshu�e) permutation corresponds to a rotation of the bitrepresentation of each position by r positions to the right(left).De�nition 4.3 A bit-permutation is a permutation on aset of elements induced by a permutation on the bits of theirbinary addresses.For example, a bit-reversal or any 2r -way shu�e or unshu�eis a bit permutation.We now consider the area and shape of layouts of someof these permutations. Given a partitioning of N elementsinto N=b disjoint blocks with b elements each, we say thata permutation is an all-to-all permutation with block size b,b � pN , if exactly b2=N elements in block i are connectedto elements in block j, for all i, j. It is easily seen that then-bit reverser on N = 2n elements, as well as any k-wayshu�e and unshu�e with k = !(1) and k = o(N), is anall-to-all permutation for some block size o(N). Also, for agiven block size, any all-to-all permutation can be reduced toany other all-to-all permutation by performing appropriatelocal permutations inside the blocks, resulting in at most alower order additive di�erence in layout area.It is easily shown that there exists an all-to-all permu-tation � for which G(�) de�ned in Section 3.1 has a Hamil-tonian path, and hence Theorem 1 can be applied. By per-forming an additional analysis of the shape of the resultinglayout, we can show the following lemma.
(c)(b)(a)
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NFigure 1: Layout shapes of (a) a left-oriented and (b) right-oriented k-way unshu�e or n-bit reverser, and (c) of a (right-oriented) (n� 1)-bit reverser.Lemma 5 The n-bit reverser and any k-way unshu�e orshu�e with k = !(1) and k = o(N) can be laid out inN=2 + o(N) columns, with only a constant number of bendson any path. The layout has a parabolic shape such that rowi of the layout occupies only 2i(N � i)=N + o(N) columns.We can use both left-oriented and right-oriented parabolas,as shown in parts (a) and (b) of Figure 1, respectively. Notethat a k-bit reverser with k < n is equivalent to applying ak-bit reverser separately to each of the 2n�k disjoint blocksof 2k elements. Thus, for k = n� 1 one possible layout hasdepth N=4 and a shape as shown in Figure 1(c).5 Speci�c Networks5.1 ButteriesWe present a triangular layout for the buttery switchingnetwork with N = 2M = 2m+1 inputs.
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M M/4

2M+o(M)

4M/3+o(M)Figure 3: Sketch of layout of a buttery network using triangles.The triangular layout yields a considerable advantage inlaying out a complete buttery network. We can lay out aBmm�1 in the same way, as a pair of half-size triangles oneabove the other. If the layout is done with the trianglespointing the opposite way from that of the Bmm then the5



two layouts can be �tted together snugly within about Mcolumns. Similarly, the Bmm�2 and the Bmm�3 �t togetherin about M=4 columns. The total width required for thecomplete buttery network is therefore only M(1 + 1=4 +� � �) � 4M=3 = 2N=3. See Figure 3.Theorem 6 The optimal area for a layout of the butteryswitching network with N inputs is 2N2=3 + o(N2).Proof: A construction for the upper bound was de-scribed above. For a matching lower bound on the layoutarea, we make use of one property of the buttery compara-tor network which is used when it occurs as a component ofa bitonic sorter. It can perform a merge of a pair of sortedsequences, when they are presented at the inputs in inter-leaved fashion, with their sorted orders running in oppositedirections. As a consequence, for any i, the input sequence1(N�2j)(10)j (an interleaving of 1N=2 and 1N=2�j0j) can betransformed into the output sequence 0j1(N�j).Consider any layout of a buttery comparator (or switch-ing) network. We can �nd a row r such that i inputs andj outputs appear above r, and N � 1 � i + 2j � N + 1.From the above merging property, we can see that at leasti + j edge-disjoint paths cross from row r � 1 to row r, ifrom above carrying 1's and j from below carrying 0's. Ifi > j then i+ j > 2i=3 + 4i=3 � 2(N � 1)=3, giving a lowerbound of b2N=3c columns. Similarly we could look for arow r0 with i0 inputs and j0 outputs occurring below r0 andi0+2j0 � N . If i0 � j0 then the b2N=3c lower bound followsas before.Let us suppose therefore (without loss of generality) thatj � i � j0 � i0, and that j� i = a � 0. It is easy to see thatthere are at least 2a rows between r and r0 not containingoutputs, and so the height of the layout is at least N + 2a.The area A satis�esA � (N+2a)(i+j) � (N+2a)(2N�2�a)=3 � 2N2=3+o(N2)provided that a � 3N=2. Values of a above 3N=2 cannot giveany lower area since we have an independent lower boundon the width of N=2 from Theorem 7.5.2 Permuted Butteries and Dual Benes NetworksSometimes we can tolerate a permutation of the inputnodes or the output nodes of a layout to save space. In astandard layout of a buttery interconnection network, thetotal area is dominated by the �rst few levels Bmm;Bmm�1; : : :,and the contribution of the second half of the sequence ofm levels is negligible. Consider the e�ect of permuting theorder of the M input nodes using the m-bit reversal permu-tation. Now, the initial levels can be laid out as Bm1 ;Bm2 ; : : :,and the contribution of the �rst half is negligible. At themiddle of the layout we restore the original order of thenodes, so that now the second half of the layout retains itsnegligible area. The required permutation of the 2M linesis the reversal of the leading m bits, which can be laid outlike the m-bit reverser but with pairs of adjacent lines beingrouted in parallel. We �nd then that the total area of thislayout is dominated by the bit permutation in the middle.Only M + o(M) columns are required, with a rectangulararea of about 2M2 = N2=2. We will later take advantage ofthe parabolic shape of the layout.The dual Benes network consists of a left-to-right-reversedbuttery network followed by a normal buttery. So the cor-responding juxtaposition of two input-permuted butteriesalso gives the same network, since the two permutations

meeting in the center cancel each other. Hence the dualBenes network can be laid out in an area of about N2.Theorem 7 (i) The optimal area for a layout of the dualBenes network with N inputs is N2 + o(N2) and at leastN � 1 columns are required in any layout.(ii) The optimal area for a layout of a permuted butteryswitching network with N inputs is N2=2 + o(N2) and atleast N=2 columns are required in any layout.Proof: The constructions are described above. Thelower bounds for the Benes network follow from the rear-rangeability property of this network. For any layout wecan �nd a row r such that i inputs and j outputs lie abover, and N � 1 � i + j � N . Since the Benes network canpermute the input sequence 1i0N�i to the output sequence0N�i1i, the lower bound of N � 1 columns is immediate.The lower bounds for the permuted buttery switchingnetwork follow from our construction of the Benes networkusing a pair of adjacent buttery networks.
1 2 1 3 2 1 4 3 2 1 5 4 3 2 1

Binary levelsFigure 4: A bitonic sorting network for 32 inputs.5.3 Bitonic Sorting NetworksA conventional comparator network for bitonic sort withN = 2n inputs can be represented, as for example in [17],with 2n horizontal lines representing the inputs, and com-parators shown as arrows linking the pairs of inputs whichare to be compared at each time step (see Figure 4). Thenetwork consists of n successive merging phases. In the ithphase, for 1 � i � n, pairs of sorted sequences of length 2i�1are merged. In each pair the two sequences are presented inoppositely sorted order.A naive layout of this network would involve bringinginto adjacent lines the pairs of inputs to be compared andthen returning them in the appropriate order to their origi-nal pair of positions. One obvious improvement would be tobring the required inputs together but not to return themafterwards, merely remembering their logical positions. We6



adopt an alternative strategy here. Any comparator layercorresponding to lower-order bit positions requires only fewcolumns. We introduce bit permuters at suitable places inthe layout so that every comparator layer now correspondsto a low-order bit. The layout area is now dominated by thelayout of the bit permuters.As illustrated in Figure 4, the sequence of bit positions(the bits running from 1 (low) to n (high)) corresponding tothe sequence of comparator layers is:1; 2; 1; 3; 2; 1; : : : ;n� 1; : : : ; 3; 2; 1; n; : : : ; 2; 1:The \;"s mark successive merging stages. Corresponding tobit i+ 1, we use a B(n�1)i to bring together inputs with ad-dresses that di�er in the (i+1)st bit. In terms of bit permu-tations, the (i+1)st bit and the �rst bit are exchanged. Thena line of comparators is used, followed by another B(n�1)i torestore the previous order.We choose k such that pn > k � 2 log n+ !(1), so thatn22n�k = o(N) and k2 < n. By using bit permuters we willensure that we only require B(n�1)` 's for ` � n� k and thechoice of k ensures that the total width of all these butterylevels is o(N). We will need two n-bit reversers, one (n� `)-bit reverser for each of ` = 1; 2; 3; : : : k, and in addition O(n)smaller bit reversers. The results of Section 4 show that thetotal width of all of these is only N(1=2+1=2+1=4+1=8+� � �) + o(N) = 3N=2 + o(N).In the following outline of the construction we will referto component parts with O(N=2k) columns as small andother components as large. Described from right to left,our layout �rst uses n � k small buttery levels, but thena bit permutation is used to interchange the k bits (n �k + 1; : : : ; n) about to be encountered with the k bits mostrecently dealt with, i.e., n � 2k + 1; : : : ; n � k. This bitpermutation is easily achieved using a constant number ofsmall bit reversers and one n-bit reverser. Now, the onlylarge buttery levels are those operating on (what were) bitsn� 2k+1; : : : ; n�k, and so the next n�k levels are small.When a large level is about to be encountered again, anotherbit permutation is used to move the most recently processedbits into the top k positions. This involves a second n-bitreverser.This seems to be becoming expensive, but now a smalladjustment allows us to meet the claimed bound. In thesecond bit permutation from the right, we move bit n backinto the most signi�cant position, as well as moving the k�1most recently encountered bits into the other k � 1 mostsigni�cant positions. The point of this is that bit n is usedin a buttery level just once, at the beginning of the �nalmerge phase. Therefore at this point, running backwardsthrough the network, there is no further use of this bit. Itcan remain always now in the most signi�cant position, andthe width of an (n � 1)-bit reverser is only about N=4. Ina similar way at the third-last bit permutation, bit n � 1can be lodged permanently in the second-most-signi�cantposition, reducing the width of the next large bit reverser toonly N=8, and so on.One further detail needs attention. The rightmost bitpermutation comes just to the left of bit n � k in the �nalmerge phase, the next bit permutation comes to the left ofbit n�2k in the previous merge phase, the next is to the leftof bit n� 3k+1, and so on. Since k2 < n, there is space forat least k phases in this pattern before a change is needed.Beyond this point (to the left of the �nal k merge phases)all buttery levels will be small, since the k most signi�cant

bits are in their natural positions and are not used by thecomparators.A Further Improvement. The 1:5N2 bound of the previ-ous subsection was obtained by simply adding up the num-ber of columns needed for each of the bit reversers. Wenow show how the layout area can be further improved toabout 1:39N2 by \packing" the components in a more space-e�cient way. To do this, we need to exploit the parabolicshape of the bit reverser layouts shown in Figure 1.
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

2/3 N 1/2 N1/6 NFigure 5: A layout of the bitonic sorting network with area2518N2.To get the improved bound, we lay out the last of the twon-bit reversers in the straightforward way, We then groupthe other n-bit reverser with the (n � 1)-bit reverser, andthe (n� 2)-bit reverser with the (n� 3)-bit reverser, and soon, and lay out each of the groups in a more area-e�cientway by using the left-oriented and right-oriented layouts ofthe bit reverser, as introduced in Section 4.Recall that an n-bit reverser can be laid out such that theith row of the layout uses 2i(N � i)=N columns. By simplecalculus, we can show that we can lay out a right-oriented(n� 1)-bit reverser followed by a left-oriented n-bit reverserin a total of 23N columns (instead of the trivial 34N). For thegroup containing the (n� 3)-bit reverser and the (n� 2)-bitreverser, we get a layout with 212N columns, and continuingthis we get a total of12N + nXi=0 23 � 4iN = 2518Ncolumns for the entire network. The resulting overall struc-ture is shown in Figure 5, and we get the following result.Theorem 8 The bitonic sorting network can be laid out inarea 2518N2 + o(N2).5.4 A Sorting Network with Optimal Layout AreaIn this section, we describe a layout of a sorting networkbased on the Columnsort algorithm [18] with area N2 +o(N2). We �rst sketch the Columnsort algorithm, and thendescribe the layout of the corresponding sorting network.5.4.1 Columnsort in a NutshellColumnsort is a simple parallel sorting algorithm pro-posed by Leighton [18]. The basic idea is to reduce theproblem of sorting N elements to that of (repeatedly) sort-ing subsets of N2=3 elements.7



In the following, we assume that the input is given asan array A[0 : : :N � 1] of size N , on which the algorithmoperates by means of comparisons and permutations. Forsimplicity we assume that N = B3 for some integer B. Wethink of A as being partitioned into B blocks of size B2,where block i consists of A[i �B2] to A[(i+1) �B2 � 1], andwe refer to A[i � B2 + j] as element j of block i. Then thealgorithm runs in the following six steps:(1) In each block, sort the B2 elements into ascending or-der.(2) Perform a B-way unshu�e permutation on A, movingelement Bj + k of block i to element iB + j of blockk, for all i; j; k 2 [0 : : :B � 1].(3) In each block, again sort the B2 elements into ascend-ing order.(4) Perform a B-way shu�e permutation on A, movingelement iB + j of block k back to element Bj + k ofblock i.(5) In each block, again sort the B2 elements into ascend-ing order.(6) Perform two merging steps, �rst between blocks 2i and2i+1, for 0 � i < B=2, and then between blocks 2i�1and 2i, for 0 < i � B=2.For a proof of correctness, we refer the reader to [18]. Forsome basic intuition, observe that Step (2) distributes the el-ements of each sorted block in a round-robin fashion amongall B blocks. As a result, each block receives an \approx-imately evenly" spaced subset of all input elements. Thismeans that after Step (3), the relative position of each ele-ment inside a block can be used to estimate an approximatedestination block, to which it is routed in Step (4). At thispoint, it can be shown that every element is at most oneblock away from its �nal destination, and hence Steps (5)and (6) su�ce to �nish the sort.5.4.2 An E�cient LayoutOur layout of Columnsort implements the six steps ofthe algorithm from left to right. Each element of the arrayA corresponds to a row of the layout.Note that a variety of algorithms can be used to imple-ment the sorting in Steps (1), (3), and (5), for example AKS,bitonic sort, or the present algorithm used recursively. Inall of these cases, the number of columns needed for the lay-out of these steps is at most O(N2=3polylog(N)) even undervery naive layouts. The same is also true for the mergingnetworks needed for Step (6).Thus, the layout area of the network is determined by thelayout area of the permutations that are routed in Steps (2)and (4). Since these unshu�e and shu�e permutations canbe implemented in N=2+o(N) columns, we get the followingresult if we use AKS in Steps (1), (3), and (5).Theorem 9 There exists an O(logN) depth sorting net-work with layout area N2 + o(N2).We point out that this matches the N2 lower bound forthe area of any sorting network shown by Even [7] to withinan additive lower order term. We note that the area in-side the bounding rectangle that is actually occupied by ourlayout is even smaller than that, 23N2 + o(N2), and that it

has the shape of a symmetric parabolic lens, formed pre-dominantly by the juxtaposition of two opposite paraboliclayouts of bit reversers.It can also be shown that this Columnsort layout achievesan area of 2532N2+o(N2) under the more relaxed de�nition oflayout area considered in [7], where the bounding rectanglecontaining the circuit does not have to be aligned with thecoordinate axes. For this de�nition of layout area, Even[7] has proved a lower bound of 12N2, and hence our resultestablishes a separation between these two de�nitions of areacomplexity. See Figure 6 for an illustration of this layout.
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Figure 6: Layout of Columnsort using two all-to-all permuta-tions. Shown is the standard layout area of N2 as well as thelayout area of 2532N2 if the bounding box does not have to beparallel to the axes.6 Extensions and DiscussionsDue to space constraints, we have to leave a detaileddiscussion of our results to the full paper. Here, we onlymention briey several extensions and open problems.� Our results on butteries can be used to obtain tightbounds for the layout of merging networks. If the twosorted lists are input into the circuit in an interleavedfashion, then about N=2 columns su�ce; this is alsothe best possible under any ordering of inputs and out-puts. If the two lists are supplied separately, thenabout N columns are needed.� An interesting open problem is whether we can gettight bounds for the bitonic sorter, and for generalsorting under the relaxed de�nition of VLSI layoutarea assumed in [7]. In the latter case, the problemboils down to closing the gap between our back-to-back parabolic upper bound and the diamond-shapedlower bound given by the argument in [7].� If the comparators are larger than unit size, say, occu-pying a (k�k) area, then we can replace each \layer" ofO(N) comparators by O(N=r) successive layers with rcomparators in each. These layers follow the appropri-ate shape (rectangular, triangular or parabolic) of theoriginal layer, and if rk = o(N) then the additionalnumber of extra rows required is negligible. If therewere L original layers then the total number of extracolumns required will be O(LkN=r). Because the net-works we consider in this paper have L = O(log2N),if we choose r = pN logN then the total additionalarea is o(N2) for any k = o(pN= logN).8



� Finally, one could try to show upper bounds for prac-tical instances of the problems, e.g., a bitonic sortingnetwork with 1024 input nodes, for which a trivial lay-out would give an area of 2522K. Here one may at-tempt to get the best combination of the layouts fromSections 3.1, 3.2 and 3.3.References[1] A. Avior, T. Calamoneri, S. Even, A. Litman, andA. Rosenberg. A tight layout of the buttery network. InProc. of the 8th ACM Symposium on Parallel Algorithmsand Architectures (SPAA '96), pages 170{182, 1996.[2] M. Ajtai, J. Koml�os, and E. Szemer�edi. An O(n log n)sorting network. Proc. of the 15th ACM Symposium onTheory of Computing, pages 1{9, Boston, Massachusetts,1983.[3] K. Batcher. Sorting networks and their applications.Proc. of the AFIPS Spring Joint Computer Conference,pages 307{314, 1968.[4] E. Biersack, C. Cotton, D. Feldmeier, A. McAuley, andW. Sincoskie. Gigabit networking research at Bellcore.IEEE Network, 6(2):30{40, 1992.[5] A. C. Dusseau, D. E. Culler, K. E. Schauser, andR. P. Martin. Fast parallel sorting under LogP: Experi-ence with the CM-5. IEEE Transactions on Parallel andDistributed Systems, 7(8):791{805, 1996.[6] K. Eng and M. Karol. Gigabit-per-second ATM packetswitching with the growable switch architecture. Proc.of IEEE Globecom 91, 3:1075{1081, 1991.[7] S. Even. Layout of sorting networks. Bell Labs TechnicalNote, 1997.[8] S. Even. Layout of the sorting net in grid-area 3n2. BellLabs Technical Note, 1997.[9] S. Even, S. Muthukrishnan, M. Paterson and S. Sahi-nalp. Grid layout of the bitonic sorter. Proc. of the 10thACM Symposium on Parallel Algorithms and Architec-tures (SPAA '98), pages 172{181, 1998.[10] A. Frank. Disjoint paths in a rectilinear grid. Combi-natorica, 2:361{371, 1982.[11] A. Frank. Packing paths, circuits, and cuts - a survey.In B. Korte, L. Lovasz, and A. Schrijver. Paths, Flowsand VLSI Layout, Springer Verlag, 1991, 47{100.[12] I. S. Gopal and D. Coppersmith and C. K. Wong. Op-timal wiring of movable terminals. IEEE Transactionson Computers, C-32:845{858, 1983.[13] A. Huang and S. Knauer. STARLITE: A widebanddigital switch. Proc. of IEEE Globecom 84, pages 121{125, 1984.[14] W. Kautz, K. Levitt, and A. Waksman. Cellular inter-connection arrays. IEEE Transactions on Computers,C-17:443{451, 1968.[15] M. Kaufmann and K. Mehlhorn. Routing problems ingrid graphs. In B. Korte, L. Lovasz, and A. Schrijver.Paths, Flows and VLSI Layout, Springer Verlag, 1991,165{184.

[16] J. Kneuer. Personal communication. 1998.[17] D. Knuth. The Art of Computer Programming 3: Sort-ing and Searching. Addison-Wesley, Reading, MA, 1973.[18] T. Leighton. Tight bounds on the complexity of parallelsorting. IEEE Transactions on Computers, 34:344{354,1985.[19] T. Leighton. Introduction to Parallel Algorithms andArchitectures: Arrays - Trees - Hypercubes. MorganKaufmann, San Mateo, 1992.[20] T. Lengauer. Combinatorial Algorithms for IntegratedCircuit Layout. B.G. Teubner, Stuttgart, 1990.[21] K. Mehlhorn, F. Preparata, and M. Sarrafzadeh. Chan-nel routing in knock-knee mode: Simpli�ed algorithmsand proofs. Algorithmica, 1(2):213{221, 1986.[22] H. Okamura and P. Seymour. Multicommodity ows inplanar graphs. J. Combin. Theory, 31:75{81, 1981.[23] R. Palmer. An experimental ATM switch for BISDNstudies. International Journal of Digital and AnalogCommunication Systems, 3(4):341{349, 1990.[24] C. H. Papadimitriou and M. Yannakakis. Towards anarchitecture-independent analysis of parallel algorithms.SIAM Journal on Computing, 19(2):322{328, 1990.[25] R. Y. Pinter. On routing two-point nets across a chan-nel. Proc. of the 19th Design Automation Conference,pages 894{902, 1982.[26] N. Pippenger. Telephone switching networks. AMSProc. Symposia in Applied Mathematics, 26:101{133,1982.[27] C. D. Thompson. Area-time complexity for VLSI. Proc.of the 11th ACM Symposium on Theory of Computing,pages 81{88, 1979.[28] C. D. Thompson. A complexity theory for VLSI. Tech-nical Report CMU-CS-80-132, Carnegie-Mellon Univer-sity, Pittsburgh, PA, 1980.[29] D. S. Wise. Compact layouts of banyan/FFT networks.VLSI Systems and Computations, pages 186{195, 1981.[30] E. Witte. A quantitative comparison of architecturesfor ATM switching systems. Technical Report WUCS-91-47, Washington University, St. Louis, MO, 1991.[31] I. Widjaja and A. Leon-Garcia. Starburst: A exibleoutput-bu�ered ATM switch with N log2N complexity.Proc. of the 14th International Switching Symposium,Vol. 2, pages 226{230, 1992.[32] D. Wagner and K. Weihe. A linear time algorithmfor edge-disjoint paths in planar graphs. Combinator-ica, 15:135{150, 1995.
9


