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Abstract—Static index pruning techniques remove postings
from inverted index structures in order to decrease index size
and query processing cost, while minimizing the resulting loss
in result quality. A number of authors have proposed pruning
techniques that use basic properties of postings as well as results
of past queries to decide what postings should be kept. However,
many open questions remain, and our goal is to address some
of them using a machine learning based approach that tries to
predict the usefulness of a posting. In this paper, we explore
the following questions: (1) How much does an approach that
learns from a rich set of features outperform previous work that
uses heuristic approaches or just a few features? (2) What is
the relationship between index size and query processing speed
in static index pruning? We show that an approach that prunes
postings using a rich set of features including post-hits and doc-
hits can significantly outperform previous approaches, and that
there is a very pronounced trade-off between index size and
query processing speed for static index pruning that has not
been previously explored.

Index Terms—static index pruning, web search engine, search
engine performance, search optimization

I. INTRODUCTION

Large search engines receive billions of queries per day
that are evaluated over many billions of documents, leading
to significant hardware and energy costs for executing queries.
Current engines are based on inverted index structures, and
storing and accessing these indexes accounts for a significant
fraction of the overall query processing costs. This has moti-
vated a lot of research on improving the efficiency of inverted
indexes. In this paper, we focus on one of many proposed
approaches, called static index pruning.

The basic idea in static index pruning is simple: remove
index entries (postings) from the inverted index that are
unlikely to be useful, thus obtaining a smaller index that can
still achieve a result quality close to that of a full index. A
smaller index then implies less memory needed to hold the
index in main memory, and faster traversal of the now much
shorter inverted lists for query terms. As argued, e.g., in [15],
even with billions of queries per day, the vast majority of index
postings never lead to a top-10 result in a given month; thus,
many postings could potentially be pruned if we can predict
which postings are unlikely to be useful for real user queries.

Static index pruning was first proposed in [14], and since
then a number of authors have proposed methods for pruning

[1], [5], [6], [8]–[15], [17], [18], [21], [24]. This includes
various heuristics that use basic properties of the postings or
documents, approaches that use observations from past queries
to identify particularly useful postings or documents [1], [4],
plus a few other methods. While overall a lot of progress
has been made, with significant improvements in the trade-
off between index size and result quality, there are still many
open problems and possibilities for improvements. Our goal
here is to address several of these issues.

Our main contributions are as follows:
• We approach pruning as a learning problem, where the

goal is to predict for each posting how likely it is to
lead to top results on future queries. This allows us to
combine many basic and advanced features for improved
pruning decisions. We show that by including features
based on query language models and based on past
occurrences of postings and documents in top results, we
can significantly outperform previous work that mostly
uses heuristics based on only one or two features.

• We study the problem of how to prune an index to mini-
mize query processing cost. Previous work has focused on
minimizing index size, with the expectation that a smaller
index also reduces query processing cost. We study how
to optimize for speed using an approach based on linear
programming, and explore the trade-off between size and
speed. Our experimental results show that focusing only
on index size often gives only limited reductions in query
processing costs, but that query processing costs can be
significantly reduced if we allow a moderate increase in
index size over the minimum size case.

This paper is organized as follows. Section II gives some
technical background and discusses related work. Section III
describes the basic setup for our approach. Section IV details
our experimental setup, and section V explains the results of
our work. We present our closing remarks in Section VI.

II. Background and Related Work

A. Inverted Indexes
Suppose we have a set D of n documents d0, d1, . . . dn−1

where each di is a sequence of words (terms). Then an
inverted index for D contains one inverted list Lt for each



distinct term t that occurs anywhere in D. Each inverted list
Lt is a sequence of postings, where each posting p contains
information about the occurrences of term t in some document
di.

We assume that postings are of the form (d, f), where d
is a document ID, and f is the frequency of the term in that
document. However, the approach does not require this exact
format, and we could have additional data such as impact
scores or position data in the postings.

We also assume that queries are run as disjunctive top-k
queries, where k is typically between 10 and 1000. While
the basic approach can be also applied to conjunctive queries,
some changes would be needed to get best results. (In particu-
lar, the query cost model would have to be changed to account
for the conjunctive case.)

We run our experiments using BM25 as a ranking function,
other functions could also be used. An end-to-end evaluation
of static pruning under complex ranking functions (with top-k
disjunction as an initial filter) is deferred to future work.

B. Previous Work on Static Index Pruning
Static index pruning was first proposed in [14] in 2001,

and since then a number of authors have studied the problem
[1], [3], [5], [6], [8]–[13], [15], [17], [18], [21], [22], [24].
The focus of previous work is on achieving the best possible
result quality given a limit on index size. While some papers
also report running times for queries on the pruned index, they
do not attempt to directly model and optimize for speed.

Previous work can be divided into several groups. Posting-
oriented pruning techniques decide whether to keep individual
postings, document-oriented pruning techniques keep or delete
complete documents, and list-oriented pruning techniques keep
or remove entire inverted lists. We can also group methods by
their approach as follows:

Impact-Based Methods: Several papers consider posting
pruning rules based on the impact or within-list rank of a
posting according to a given ranking function, e.g., BM25 or a
Cosine measure. Rules are designed to preserve as many of the
top results obtained by that ranking function on the full index.
Carmel et al. proposed two methods, UP, which uses a global
cut-off on the impact scores of postings, and TCP, which
selects the highest impact postings from each inverted list.
Büttcher et al. [9] also evaluated TCP as part of TREC 2006,
with promising results. Work by Chen and Lee [10] revisited
the UP method, providing a theoretical foundation. Other
work by Chen et al. [11] improves on [10] by refining the
mathematical foundation and optimization objective. Nguyen
[18] showed how to improve pruning by combining features
to determine which postings should be kept.

Retrieval Quality-Oriented Methods: Another set of ap-
proaches try to select postings such that retrieval quality,
measured in terms of measures such as P@10 or MAP, is
optimized. An example is the work by Büttcher and Clarke
[8], which selects postings based on KL-divergence, where
the postings are selected based on their likelihood to result
in the document being highly relevant under a query. Other

approaches by Blanco and Barreiro [6], de Moura et al.,
and Thota and Carterette [21] use language models to select
postings. Yet other approaches try to remove entire documents
[22], [24] or inverted lists [5], [20] that are unlikely to be
useful from the index.

Using Query Traces: Another approach is to use past
queries to decide which postings should be kept. Work by
Lam et al. [17] combines the impact-based approach in [14]
with a query-based approach that looks at how often a posting
appears in the result set. Altingovde et al. [1] introduce
an approach called QueryView (QV) that marks and keeps
postings that were part of top results in past queries. Another
version combines this rule with the TCP method in [14]. Work
by Anagnostopoulos et al. [3] applies this idea to documents,
by keeping all postings in documents that were often returned
as top results in the past.

Hybrid Methods: Recent work by Jiang et al. [15] imple-
ments a posting selection model, UPP, based on combinations
of language modeling, impact-based models, and query-views
to derive the promise of a posting as the basis for selection.
UPP was shown to outperform previous methods.

We compare our results in Section IV to TCP, UP, UPP.

C. Related Work

There are many techniques for improving the performance
of query processing algorithms on inverted indexes, including
early termination algorithms (also called dynamic pruning)
that choose which postings to consider at query time, index
tiering techniques, index compression methods, and index
reordering approaches. Static index pruning is an example of
an unsafe early termination technique, i.e., a technique that
does not guarantee to return the same results as an exhaustive
algorithm. Current large search engines commonly apply a
number of such techniques in conjunction.

Among these techniques, index tiering may be the most
closely related. In this technique, the index is divided into two
or more subsets called tiers, and queries are first routed to the
first tier, and only evaluated on further tiers if results from
lower tiers are considered insufficient. Index pruning could be
considered as a special case of tiering where we only keep the
first tier and queries are never sent to additional tiers.

Finally, there has been some amount of recent work on
predicting query execution costs that is relevant to our work.
We note here that complex models such as those in [23]
would be too unwieldy to use in making pruning decisions. For
disjunctive queries, which are the focus in this paper, a simple
model uses the sum of the inverted list lengths of the query
terms as an estimate of query cost. We use this model, which
allows us to assign an expected query processing cost to each
posting that is determined by the query language model. We
note that this model primarily applies to a scenario where the
index is kept completely in memory, or where enough index
data is cached so that disk access is not the main performance
bottleneck.



III. Problem Definition and Approach

A. Problem Definition
Static index pruning aims to reduce index size by removing

postings that are unlikely to lead to top results for likely
queries. We now formalize this in several definitions that
capture the goals of small index size, fast query processing
speed, and the trade-off between size and speed.

Setup: We assume that we have a full inverted index I that
we need to prune, and a query distribution Q that models how
likely a query is to occur in the future. In practice, during
the pruning process, we only have an estimate of Q based
on a language model built from a set of past queries, and
then evaluate based on a distinct set of testing queries. In
fact, our approach only uses unigram estimates during pruning:
for any possible query term t we need an estimate of the
likelihood p(t) of t occurring in a random query. Similarly,
we need to model index size, query processing cost, and result
quality, as discussed further below. Given this, we now define
the following problems:

Problem 1 – Optimizing Quality Given Index Size: Given
a bound S on index size, the goal is to produce a pruned index
I ′ of size at most S that maximizes the average quality of
queries under distribution Q.

Problem 2 – Trading Off Size and Query Cost: Given a
bound S on index size and a bound R on result quality, the
goal is to produce a pruned index I ′ that satisfies these bounds
while minimizing average query processing cost.

A related problem we have studied but do not address in
this paper is the following: given a bound C on query cost,
produce a pruned index I ′ that maximizes the average quality
while achieving an average query processing cost of at most
C. The size and cost models introduced in our work can be
easily adjusted to solving this problem as well. We leave the
experimentation to future work.

The above definitions require some way to model query
probabilities, index size, query cost, and result quality. These
models will be defined next.

B. Learning to Minimize Index Size
We start with Problem 1, where we optimize result quality

given a bound on index size. The idea is simple: during
pruning we optimize for a simple model of result quality,
the expected number of top-k postings that are kept in the
pruned index under a random query. We then use more realistic
models of result quality, such as the number of top-k results
preserved, and standard information retrieval measures such as
P@10 and MAP, to evaluate the pruned index. We note that
there is no guarantee that maximizing the number of preserved
top-k postings also maximizes these other measures; however,
we do not know how to directly optimize for these measures.

We model index size as just the number of postings. It would
be difficult to model the exact size increase when including a
posting in the pruned index under state-of-the-art compression
methods, especially since that increase depends on how many
other postings from the same inverted list are kept.

Formally, we say that a posting p = (d, f) is part of a
top-k result for a query q if document d is among the top-
k results for q. We define Pr[p ∈ topk] as the probability
that p is part of a top-k result for q, and Pr[p ∈ q] as the
probability that the term associated with posting p occurs in
q, given a random query q from the query distribution. Note
that of course Pr[p ∈ topk] = Pr[p ∈ q] ·Pr[p ∈ topk|p ∈ q].
Our main goal is then to get a good estimate of Pr[p ∈ topk].

Approach
The first step is to select a set of features that are likely to

be useful for predicting Pr[p ∈ topk]. Before giving the list
of all the features, we give a short description of the more
involved and interesting features that we used:
• Pr[p ∈ q]: We build a language model on a subset of a

few ten thousand queries, which allows us to get reason-
able estimates of the probability of a term occurring in
a random query. (This subset is of course disjoint from
the queries used in the evaluation.) With the exception of
[15], no previous work seems to have used this feature
for pruning. Using this, we define an additional feature
for each document d, called xdoc, as

∑
p∈d Pr[p ∈ q].

This feature measures how likely it is that a document is
at least marginally relevant to any of the query terms.

• Doc-hit features: Work in [4] used a set of training
queries and then counted how often each document was
returned in the top-m results. A greedy pruning heuristic
then kept the documents with the highest counts or, as we
say, the highest number of hits. One problem is that it is
not clear how to choose m – it is not clear that m should
be the same as the number k used when we evaluate top-
k result quality. In fact, a larger m will give us more data
and thus coverage of more documents, and we observed
that if a document has occurred before in, say, the top-
100, this actually increases its chance to occur in the
top-10 in the future. Thus we may choose m much larger
than k. However, for such large m we need to suitably
weigh hit counts, since a past hit at a rank around 1000
is not as predictive as one in the top-10. Our solution
is to partition the ranks from 1 to m into a number of
ranges, and collect hit counts separately for each range,
to be used as features for the learner.

• Post-hit features: Work by [1], [2] showed how to use
post-hits, i.e., past cases where an individual posting
was part of a top-m result. The main problem with this
approach, however, is sparsity: large indexes have billions
of postings, and for each past query, only a few postings
are part of the top results. For example, if the average
query has 3 terms and we consider top-10 post-hits, then
at most 30 postings will see their counts increased. We
address this by choosing a large m, keeping separate
counts for different rank ranges, and then relying on the
machine learner to figure out how to weigh these features
versus other features.

A complete table of the features we used for learning
Pr[p ∈ topk] is given in Table I.



TABLE I: Learning to Prune Feature List

Family Feature Description

term tf term frequency in the corpus
tl term list size
p bm25 partial BM25 score
Pr[p ∈ q] probability of posting in a random query

document docSize # words in document
docTerms # unique terms in document
xdoc promise of document

dochits bins 1 - 17 dochit ranges, quantized by rank
top10 top10 dochits from language model queries
top1k top1k dochits from language model queries

posthits bins 1 - 17 posthit ranges, quantized by rank
top10 top10 posthits from language model queries
top1k top1k posthits from language model queries

Another problem in generating post-hit features is that the
Clueweb09 data set only comes with a few hundred thousand
queries, not enough to actually hit most of postings of the
index. Previous work using hits relied on the AOL query trace,
but we felt that it was not appropriate to use this set, which
also does not really “fit” with the Clueweb09 data anyway.
Instead, we used the language model created for queries, as
described in connection with the Pr[p ∈ q] feature, to generate
millions of artificial queries, and then ran these queries. (Since
our evaluation queries are disjoint from the queries used to
train the model, this is acceptable.) Our results show that this
actually works pretty well, though one could argue that a larger
real query trace might do even better.

We create labeled training data by generating features for
a subset of postings by running another set of queries on the
whole index, and checking how often the postings are in top-
k results. Finally, the trained estimator is run on all postings,
and the highest scoring postings kept in the index.

Given this model, it is straightforward to generate a selec-
tion algorithm to maximize quality: greedily select postings
for the pruned index based on Pr[p ∈ topk], up to a given
bound on size S.

More details, e.g., on the number of training queries and
machine-learning tools used, and the method used to generate
the hit ranges are provided in Section IV.

C. Exploring the Size-Speed Trade-Off

Next, we address Problem 2, how to trade size versus
execution cost in static index pruning. To do so, we first need
to discuss a suitable model for query execution cost that can
be used for pruning decisions.

Cost Model

One model that has been used in a number of previous
studies models the cost of a disjunctive query as the sum of the
lengths of the inverted lists of the query terms. The advantage
of this model is that it allows us to assign a query execution
cost to each individual posting: such a posting has an expected
execution cost per query of Pr[p ∈ q], since it causes one unit
of cost whenever its term is part of an incoming query!

In summary, including a posting p in the pruned index in-
creases query execution cost by Pr[p ∈ q], index size by one,
and result quality by an amount proportional to Pr[p ∈ topk]
(where both Pr[p ∈ q] and Pr[p ∈ topk] are estimations based
on the language model and the machine learning approach
in the previous subsection). When evaluating the proposed
pruned index, we will of course use not just estimated running
times, but also wall clock times, and quality measures such as
P@10 and MAP.

Size-Speed Trade-Off
Given an upper bound S on total size and a lower bound R

on result quality, we wish to minimize query processing costs.
This is in fact a generalized version of a Knapsack problem
where each item has a cost and a benefit, and we need to select
at most S items with a total benefit at least R such that total
cost is minimized.

While a precise solution to this problem is difficult, we can
solve a fractional version (where we can choose a fraction of a
posting to be in the pruned index) using the following Linear
Programming relaxation:

min
∑
i

xi · ci

where
∑

i xi · bi ≥ R,
∑

xi ≤ S, and for all i, 0 ≤ xi ≤ 1.
Here, i ranges over all postings, and ci and bi are the cost
and benefit of the ith posting. The resulting solution (the xi’s)
tells us what fraction of each posting is kept in the pruned
index. We note that such a fractional solution can be easily
transformed into an integer solution (where a posting is either
in or out of the pruned index) via randomized rounding [19],
by randomly including each posting in the index or not with
probability xi. The expected benefit, cost, and size of this
solution would be the same as for the fractional solution,
and given the large number of postings the solution would
be almost guaranteed to be very close to the expected value.

There is however one major problem with this approach,
the size of the LP, as we have one variable for each posting in
the index. State-of-the-art LP solvers can deal with millions
of variables, but not with the billions required here. Luckily,
there is a fairly easy solution. We simply quantize the benefit
and cost values into a smaller value range. Thus, we quantize
benefit and cost each into only m = 1000 distinct values using
a simple form of logarithmic quantization. As a result, each
posting belongs to one of m2 classes based on benefit and
cost. The resulting LP now has only m2 variables xi, where
0 ≤ xi ≤ ni with ni is the number of postings in class i.

In summary, we estimate costs and benefits of each posting
as before using an ML approach, quantize these into a smaller
range of values, solve the resulting LP relaxation using a
state-of-the-art LP solver, and then create a feasible solution
by rounding the xi to integer values. We note that there are
some possible pitfalls with approaches that run an optimization
method on top of machine-learned estimates. First, the actual
quality achieved depends on the quality of these estimates, and
moreover we would prefer these estimates to be unbiased over



the whole range of values. Second, when picking postings for
the pruned index based on an estimate, we run into a form of
selection bias where we are more likely to pick items whose
benefit we overestimate; this leads to a pruned index whose
overall quality is lower than what one would expect from
naively adding up the estimated contributions of the selected
postings. In fact, as we will see later, these problems show up
in some of our data points.

IV. Experimental Setup

A. Corpus, Parsing and Indexing

We run all our experiments on the ClueWeb-09 Category B
English text collection. We use a customized version of MG4J
[7] as our search engine, using defaults parameters, no stem-
ming, no stop word removal and no positional information.
The relevant statistics for our initial baseline index are shown
on table II.

TABLE II: ClueWeb 09 Cat B Text - Full Index

documents 5002579
terms 90382443
postings 16748354659
size on disk 26.2Gb

B. Query Log

We collected 165k queries from the TREC1 01-09 and 2002-
2009 Adhoc, Terabyte and Web tracks for our work. The
queries were then randomly split into 4 disjoint sets. We also
have a set of 10M queries derived from the language model,
which we explain in the next section. The final collection of
query sets is shown in table III.

TABLE III: Query Log - Set partitioning

100k for language modeling
60k for hits generation
5k for evaluation queries
TREC-2009 Web-track topics for relevance measurements

10M for feature generation

C. Language Model

We used the OpenGrm NGram2 toolkit to build a 5-gram
language model from our 100K query set. We modify the
model by adding 5k randomly sampled pages from the CW09B
corpus, at an interpolation factor of 85% (query set) + 15%
(clueweb corpus).

We use the language model in two ways:
• We use the 5-gram model to generate a set of 10 million

queries. We use these to create document and postings
hits to use as a features in our machine learning.

• We use the model’s unigram probability as the probability
Pr[p ∈ q], which forms the basis of our cost model.

1https://trec.nist.gov
2http://www.openfst.org/twiki/bin/view/GRM/NGramLibrary

D. Feature Engineering

Our features were introduced in section III-B. In this
section, we elaborate on how we generate the hits features.

Hit Features

We ran 2M randomly sampled queries, from the 10M query
set created by our language model, through the search engine,
and captured the first 1000 results for both document and
postings. For each document and posting, we classify the hits
into one of 17 bins as shown in table IV. The document and
posting bins become features in our machine learning.

TABLE IV: Hits - binning/quantizing

result rank bin # (hits)

1...10 1...10 (one-to-one mapping)
11...20 11
21...40 12
41...80 13
81...160 14
161...320 15
321...640 16
641...1000 17

We evaluated the hits model quality, using MAP and P@10,
at several sizes of between 400k and 2M queries. Each
incremental size in query set showed an increase in model
quality on those two metrics. We chose 2M queries as a trade-
off between feature generation efficiency and quality. As noted
elsewhere, access to a large corpus of real-world queries may
also produce a better model.

Training Set

We ran our 60k query set on the full index and collected
all postings that are in the first 1000 results of each query.
This gives us a collection of several million postings as our
training set.

During querying, we also collect the number of times each
posting is in the top10 result of a query. This top10 count
becomes the label for our supervised machine learning.

E. Learning to Prune : Pr[p ∈ topk]

We used a random forest tree regression algorithm to learn
Pr[p ∈ topk]. We set the parameters of our learner to gradient
boosting, 1500 trees, 1000-bin quantization, learning rate of
0.03, feature fraction of 0.8, and L2 minimization as the
objective. We left all other parameters at their default values.
Our ML tool is the Microsoft LighGBM library [16].

We run the ML predictor generated by our model for each
posting in the full index, and append the predicted top-k value,
normalized as a probability, back into the index. Note we
could also use the predicted top-k count for pruning decisions,
depending on the problem we are solving. We use the predicted
probability as our pruning selector during in our solution to
Problem 1.

We note that generating features for each posting in the
index is computationally expensive, but easily parallelized, and
in fact we perform this step in a Hadoop cluster.



F. Optimizing for Cost (MLP-CO)
We quantize all posting’s benefit b, and cost c, modeled

by Pr[p ∈ topk] and Pr[p ∈ q] respectively, into a k × k
table using a simple logarithmic quantization. We use a cell’s
coordinate as the posting’s class, so that each posting maps to
exactly one of k2 cells.

The cell’s value is a tuple (K,B,C), where K is the # of
postings in cell, B is the cell’s benefit, and C the cell’s cost,
computed as the average value of the benefits and costs of the
postings in the cell.

We formulate our linear programming equations as:

Objective : min

k∑
i=1

(xi · Ci)

Constraints :

k∑
i=1

(xi ·Bi) ≥ TotalBenefit

k∑
i=1

xi ≥ PrunedSize

k∑
i=1

xi ≤MaxSize

0 ≥ xi ≤ Ki

where Bi is the cell’s benefit, Ci the cell’s cost, and Ki is the
number of postings that mapped to the cell. In our work, we
set k = 1000.

We can select a desired pruned size, say 5%, and incre-
mentally relax the MaxSize constraint. The LP solver will
solve for the set of xi variables, and our pruner uses the given
solution to select ceiling(xi) number of postings of class i.

We call this algorithm the Machine Learned Pruning - Cost
Optimized model (MLP-CO).

G. Computing Resources, Software and Datasets
The hardware environment used for this work consists of

two Linux machines, each with 64Gb of RAM and 8Tb of
hard disk, and a Hadoop cluster with a computational capacity
of 1088 cores, 3TB of RAM, and 128Tb of HDFS storage.

Source code, datasets, query logs and global ordering data
are available from the authors upon request.

V. Experimental Results
We used the following metrics as our measures of quality:

P@10, P@100, P@1K, MAP , PK@10, and RK@10. We
define PK@10, and RK@10 as the percentage of postings and
results, respectively, retained in the pruned index that were also
part of the top-k results against the full index, when issuing
the 5K held out queries. All relevance metrics are computed
using the TREC 2009 Web track relevance topics.

A. Machine Learned Static Pruning, MLP
As noted earlier, MLP is designed to maximize quality

metrics, with the implied assumption that a smaller index leads
to lower processing costs.

Table V lists the results of MLP at the very high pruning
ratios that are the subject of this study. Our results show that
an ML approach can be effective at these ratios. We are not
aware of other published work targeting such high pruning
ratios. Relevance

TABLE V: Machine Learned Static Pruning (MLP) Metrics

Size RK@10 PK@10 P@10 P@100 P@1000 MAP

100% 1 1 0.2944 0.1880 0.0397 0.1319

1% 0.6850 0.6850 0.2306 0.1335 0.0293 0.0868
2% 0.7975 0.7980 0.2572 0.1517 0.0324 0.1015
3% 0.8505 0.8510 0.2701 0.1592 0.0342 0.1078
4% 0.8815 0.8720 0.2758 0.1674 0.0353 0.1130
5% 0.8965 0.9329 0.2747 0.1707 0.0360 0.1152

10% 0.9380 0.9525 0.2840 0.1774 0.0377 0.1199
15% 0.9595 0.9774 0.2862 0.1810 0.0384 0.1236
20% 0.9665 0.9875 0.2888 0.1812 0.0389 0.1259
25% 0.9770 0.9876 0.2909 0.1812 0.0389 0.1267
30% 0.9815 0.9926 0.2919 0.1831 0.0392 0.1282

Figure 1 compares MLP against previous work: TCP and
UP [14], and UPP [15]. Due to the computational expense of
computing previous work, we limit the comparison to a mini-
mum of 90% pruning ratio (our experiment was designed for
parallel computation, and allows for more experimentation).

Our results show that MLP can outperform previous meth-
ods, while significantly increasing the number of relevant
postings and documents retained in a pruned index. This is
as expected since we are learning to maximize the number of
top-k items retained the pruned index.

B. Size/Speed Trade-Offs
We selected 5%, 15% and 25% pruned index sizes as the

starting point for our speed optimizations. The results of our
experiments are shown in Figure 2 and Table VI. Because
MLP is a greedy algorithm, it allows for the possibility that
other posting combinations exist that can provide the same
or better benefit but at a lower cost than one that has been
selected by MLP, and in fact MLP-CO is able to optimize
for speed at the same original size, with no degradation in
quality; e.g. MLP 5% and MLP-CO 5%. This effect is more
pronounced at lower prune ratios (higher index sizes).

We also note that quality starts to break down after several
step increases, e.g. the 5.7% size level for the 5% pruned
size. We believe there is a form of selection bias effect from
our algorithm, as previously noted: that as we grow the index
by adding less costly but also less beneficial postings, our
ML method might be overestimating the real benefit of the
postings at the lower end of the benefit ranges - that our model
is not a fully unbiased estimate of Pr[p ∈ topk], and that
it exaggerates the usefulness of relatively poor postings. We
leave the exploration of this effect to future work.

VI. Concluding Remarks

In this paper, we proposed a machine-learning approach for
static index pruning based on multiple features that is shown
to outperform previous methods. Using this approach, we then
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Fig. 1: Quality metrics for MLP and previous-work static pruning models. Queried using disjunctive queries.
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Fig. 2: MLP-CO Speed/Size trade-off at several base pruned sizes. Run as disjunctive queries, on a single threaded, single
core computer.

explored the trade-off between pruned index size and query
processing cost using an LP formulation.

Our results also show how a pruned index that is optimized
for size can be made to run substantially faster by allowing a
marginally larger index that achieves the same result quality
with significantly smaller query costs, sometimes by a factor
of 2 to 5.

There are several unresolved questions and new open prob-
lems that arise from our work, as follows:

• A More Robust Trade-Off: The quality-speed trade-off
eventually breaks down. We are currently working on
changes in our ML setup that we hope will address this
issue.

• Complex Rankers: Simple rankers such as BM25 are
used to generate an initial set of candidate results that are
then re-ranked by a more complex ranker. An interesting
open problem is how to build pruned indexes that perform
well for the task of candidate generation for the re-
ranking phase.
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