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ABSTRACTLarge searh engines proess thousands of queries per seondon billions of pages, making query proessing a major fatorin their operating osts. This has led to a lot of researh onhow to improve query throughput, using tehniques suh asmassive parallelism, ahing, early termination, and invertedindex ompression. We fous on tehniques for ompressingterm positions in web searh engine indexes. Most previouswork has foused on ompressing doID and frequeny data,or position information in other types of text olletions. Com-pression of term positions in web pages is ompliated by thefat that term ourrenes tend to luster within doumentsbut not aross doument boundaries, making it harder to ex-ploit lustering e�ets. Also, typial aess patterns for po-sition data are di�erent from those for doID and frequenydata. We perform a detailed study of a number of existingand new tehniques for ompressing position data in web in-dexes. We also study how to eÆiently aess position data forranking funtions that take proximity features into aount.
Categories and Subject DescriptorsH.3.3 [INFORMATION STORAGEANDRETRIEVAL℄:Information Searh and Retri eval
General TermsAlgorithms, performane
KeywordsInverted index, searh engines, index ompression
1. INTRODUCTIONDue to the rapid growth in the size of the web and thenumber of web users, searh engines are faed with signi�antperformane hallenges. Current ommerial searh enginesalready have to proess thousands of queries per seond onbillions of douments, and the total number of queries issuedis still inreasing every year. In addition, users expet higherand higher result quality in the presene of spam and othermanipulation, requiring onstant tuning of the system.Web searh engines use inverted index strutures to evalu-ate queries. The sizes of these strutures are typially in therange of gigabytes to terabytes, and they are stored in highlyompressed form on disk or in main memory. Compression ofinverted indexes saves disk spae, but more importantly alsoredues disk and main memory aesses, resulting in faster
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query evaluation. Typially, inverted indexes inlude infor-mation suh as the doument IDs (doIDs), in-doument fre-quenies, and in-doument positions of term ourrenes in theolletion. There is a signi�ant amount of work on invertedindex ompression; see [28℄ for an overview and [29℄ for a reentexperimental evaluation of state-of-the-art tehniques.Most previous work fouses on the ompression of doIDand frequeny data, or on the ompression of positions withinlonger linear texts suh as books. In ontrast, we fous on po-sition data for web indexes, where eah page typially onsistsof only a few hundred words. This problem is important fortwo reasons. First, the size of the position data is typiallyseveral times larger than the doID and frequeny data, thushaving a signi�ant impat on query proessing eÆieny. Se-ond, positions are beoming inreasingly important in soringfuntions, as reently studied, e.g., in [8, 15, 26, 16, 21℄.An important onsideration in the ompression of positiondata is the tendeny of term ourrenes to luster, i.e., if aword ours in a partiular sentene on a page, then it is morelikely to our again soon thereafter, in one of the next sen-tenes. It is important to exploit this lustering property, andsuitable tehniques an ahieve signi�antly better ompres-sion on suh lustered ourrenes than in the uniform ase.However, ompression of position information in web indexesdi�ers from the traditionally studied ase of positions in longertexts in that eah page in a web index is a separate doumentthat may or may not be similar to the previous page (depend-ing on the page ordering used, but also on the properties ofthe olletion). In ontrast, when ompressing positions in abook, there are usually signi�ant similarities between di�er-ent pages in the book, or di�erent setions and subsetions.Thus, in web indexes it is diÆult to identify any lusteringe�ets beyond page boundaries, and the fous is on exploitingwhat lustering exists within eah page itself. Compression ofposition data in web indexes also di�ers from the ase of doIDand frequeny ompression in that additional information suhas page size and term frequeny is available.In this paper, we fous on tehniques for ompressing po-sition information in web indexes. We desribe several newtehniques, and perform a detailed experimental evaluation ofexisting and new tehniques. We also show how to eÆientlyuse ompressed position data in ranking funtions that takeposition information into aount. A more detailed desrip-tion of our ontributions is given in Setion 3, after we providesome bakground in Setion 2.
2. BACKGROUND AND RELATED WORKWeb searh engines as well as many other IR systems arebased on an inverted index, whih is a simple and eÆient datastruture that allows us to �nd all douments that ontain apartiular term. An inverted index I for the olletion onsistsof a set of inverted lists Iw0 ; : : : ; Iwm�1 where list Iw ontains aposting for eah doument ontaining w. Eah posting ontains



the ID of the doument where the word ours (doID), thenumber of ourrenes in this doument (frequeny), and thepositions of the ourrenes within the doument (positions)expressed as the number of words preeding the ourrene.The postings in eah inverted list are usually sorted by doIDand stored in highly ompressed form on disk.There are several possible layouts of inverted lists. One lay-out is to keep the inverted list Iw as a ontiguous sequeneof postings, eah of the form (di; fi; pi;0; :::; pi;f�1) [28℄, wherepi;j = k if w is the k-th word in doument di. Or we an breakthe index into hunks, where eah hunk stores say 128 doIDs,followed by the orresponding 128 frequeny values, followedby all the position information for these 128 postings (usuallymore than 128 values) [4, 29℄. Or we may have separate listsfor doIDs, frequenies, and positions, eah sorted in the sameorder. We note that some ompression shemes may naturallyoperate on hunks of values of the same type, and thus onlyapply to the latter two layouts. In this paper, we do not areabout the layout for doIDs and frequenies, but assume thatthe positions are kept in a separate list or in separate hunks.
2.1 Inverted Index CompressionMany di�erent inverted index ompression tehniques havebeen proposed in the literature [28℄. Most tehniques assumethat eah list of postings of the form pi = (di; fi; pi;0; :::; pi;f�1)is �rst preproessed by taking the di�erenes (d-gaps) betweenthe doIDs of any two onseutive postings, and between thevalues of any two onseutive positions (p-gaps) in the sameposting. More preisely, we replae eah doID di with i > 0by di � di�1 � 1, eah fi by fi � 1 (sine no posting an havea frequeny of 0), and eah pi;j with j > 0 by pi;j � pi;j�1 � 1.Throughout this paper we assume that we are ompressingthese modi�ed values.One problem with this approah is that in order to ompressa partiular posting, we would have to deompress all preed-ing postings and add up their values. To avoid this problem,inverted lists typially store additional shortut pointers thatallow the query proessor to independently deompress bloksof some limited size. (In the ase of the seond layout forinverted lists above, these bloks usually orrespond to thehunks in the layout.) We assume that suh pointers are alsoavailable for position data, allowing us to feth the positionsbelonging to a partiular posting.Thus, we have the problem of ompressing sequenes of in-teger values that tend to be small on average but may followvarious distributions depending on the properties of the dou-ment olletion. There are many di�erent tehniques for this,inluding lassial approahes suh as gamma and delta od-ing [9℄, LLRUN [10℄ and its variants [20℄, Golomb and Rieoding [28, 30℄, variable-byte oding [27, 22℄, and more reenttehniques suh as Simple9 [3℄ and its variants [4, 2, 1, 29℄,or PForDelta [31℄. However, these tehniques have not beenpreviously evaluated for ompression of positions data in webpage olletions. We now outline a few of these tehniques.Gamma oding [9℄ represents a value n >= 0 by a unaryode for 1+blog(n+1) followed by a binary ode for the lowerblog(n+1) bits of n. Gamma oding is good for ompressingsmall numbers but relatively ineÆient for large numbers.In Golomb oding [12, 28℄ an integer n is enoded in twoparts: a quotient q stored as a unary ode, and a remainder rin binary form. To enode a set of integers, we �rst hoose aparameter B; a good hoie is B = 0:69�ave, where ave is theaverage of the values to be oded. Then for eah number n we

ompute q = bn=B and r = n mod B. If B is a power of two,then log(B) bits are used to store the remainder r; otherwise,either blog(B) or dlog(B)e bits are used depending on r. Rieoding is the ase where B is hosen as a power of two. Thisallows for a more eÆient implementation through use of bitshifts and masks, while the di�erene in size is usually small.Variable-byte oding [27, 22℄ represents an integer n as asequene of bytes. In eah byte, we use the lower 7 bits tostore a part of the binary representation of n, and the highestbit as a ag to indiate if the next byte is still part of theurrent number. Variable-byte oding is simple to implementand known to be signi�antly faster than traditional bit-wisemethods suh as Golomb, Rie, Gamma, and Delta oding[30℄. However, it usually does not ahieve the same redutionin index size as bit-wise methods.Simple9 oding [3℄ is not byte-aligned, but an be seen asombining word alignment and bit alignment. The basi ideais to try to pak as many integers as possible into one 32-bitword. Simple9 divides eah word into 4 status bits and 28 databits, where the data bits an be divided up in 9 di�erent ways.For example, if the next 7 values are all less than 16, then wean store them as 7 4-bit values. Or if the next 3 values areless than 512, we an store them as 3 9-bit values (leaving onedata bit unused). Simple16 is a variation of Simple9 that uses16 instead of 9 ases and thus ahieves a slightly better use ofeah 32-bit word [29℄.PForDelta is a reent tehnique proposed in [13, 31℄ for om-pression in database and IR systems. The basi idea is to splita list into hunks of some �xed size, and then selet a value bsuh that most of the values in the urrent hunk (say, 90%)are less than 2b and thus �t into a �xed bit �eld of b bitseah. The remaining integers, alled exeptions, are oded sep-arately. Variants of PForDelta have been shown to outperformvariable-byte oding in terms of both speed and ompression.For best results, hunks should ontain a number of values thatis a multiple of 32; this guarantees that the bit �elds of eahhunk align with word boundaries.LLRUN [10℄ uses Hu�man instead of unary oding for theunary parts of the Gamma ode. The Hu�man ode is derivedfrom statistis over the entire olletion. Thus, LLRUN splitsthe spae of integer values into intervals or bukets suh thateah number an be represented by its buket number k andits o�set o within the buket. We note that this idea is alsoadopted in the widely used zlib library [11℄, where the binarypart is referred to as \extra bits". LLRUN was improved in[20℄ by using a separate Hu�man table for eah inverted list.
2.2 Adaptive Methods for Index CompressionAs explained earlier, ourrenes of terms in text tend to belustered (or loally homogeneous [17℄) rather than spread outuniformly. Several previous papers [7, 6, 18, 19, 17℄ have pro-posed ompression methods that exploit this property. How-ever, these methods are usually only able to exploit lusteredsequenes of gaps that are long enough, say gaps between wordourrenes in books or other olletions that ontain suÆ-iently long strethes of linearly ordered text. In ontrast, theaverage web page ontains a few hundred words, and pagesare ordered in the index via a doID that may be assignedbased on riteria suh as global page quality or rawl order.Thus, while lustering does our within a doument, thereare typially only a few ourrenes of the word, and the nextdoument in the ordering is not related to the previous dou-ment. In addition, previous work did not exploit page-related



information to ompress positions, but treated all positions asone uniform sequene of numbers.Bookstein et al. [7, 6℄ used a ompression algorithm basedon a multi-state Markov model to exploit lustering of terms.The basi idea of interpolative oding [19℄ is to �rst enodethe doID in the middle of the list, represented by the gapfrom the start of the list, and then reursively ompress theleft and right halves of the list. This might seem ounterin-tuitive at �rst glane, but if ourrenes are heavily lustered,then this divide-and-onquer approah will eventually fouson fairly small regions of the olletion that ontain many o-urrenes of a term and an thus be enoded very suintly.Interpolative oding ahieves good performane for lustereddata but is somewhat slow [28℄.Mo�at and Anh proposed two binary odes [17℄, RBUC andBASC, for ompressing loally homogenous sequenes. RBUCenodes the next s numbers into s b-bit binary odes, wherethe shared b, alled seletor, is the number of bits of the binaryode for the maximum value of those s numbers. RBUC anbe applied reursively to the resulting sequene of seletors,and s an be redued at eah reursive levels by using di�erentesalations funtions. For example, the s in the next level anbe omputed by f(s) = 2�s or f(s) = s�s. BASC is an on-linemethod that predits the number of bits bi used to enode thenext number xi by using the value of bi�1. In partiular, it �rstuses one bit to indiate if bi < bi�1, and then enodes xi as abi�1-bit binary ode if that is true, and otherwise as a (bi-bi�1)-bit unary ode followed by (bi-1)-bit binary ode. A variantof BASC is BASC-smooth, whih predits bi by exploiting theaverage b-value used for k previous numbers.One ommon property of these methods is that they aremore adaptive than the methods disussed further above. Wenow formalize this notion. We say that a method is oblivi-ous if it ompresses eah value on its own, without using anyolletion- or list-spei� statistis suh as the average dou-ment size in the olletion, or the length of a list. Examplesare Gamma, Delta, and variable-byte oding. A method is list-adaptive if it ompresses an inverted list of positions by usingonly statistis about the entire list or olletion; examples areGolomb and Rie oding whih use the average value in thelist and the length of the list. A method is page-adaptive if itompresses the positions for a partiular posting using dou-ment or posting features suh as the doument length or thefrequeny of the term in the doument. An example would bethe simple doument-oriented version of Rie oding desribedlater, whih hooses a di�erent parameter B for the positionsin eah posting based on these features. Finally, fully adaptivemethods may ompress a position by also taking into aountother position values in the same posting that have alreadybeen enoded; an example would be interpolative oding whenapplied within a single posting. In general, to properly exploitlustering of positions within douments, it is neessary to usepage- or fully adaptive tehniques. (Note that not all methodsan be learly ategorized aording to this taxonomy.)Finally, we point out that several authors [5, 23, 25, 24℄ haveproposed to improve index ompression by reassigning doIDsto douments suh that onseutive douments are fairly simi-lar. This essentially indues a lustering e�et in the doumentolletion, allowing for better ompression of doIDs and fre-quenies. We also tried this approah for positions, but it gaveonly very limited improvements. Also relevant is the work byKleinberg [14℄ on modeling burstiness in data streams using aHidden Markov Model, whih inuened some of our ideas.

2.3 Query Processing with Position DataWe now disuss how searh engines aess and use the po-sitional data stored in the index. There are two main uses ofposition data. First, positions are used for queries ontainingphrases, either spei�ed by the user or reated by the searhengine through query transformations. For example, the en-gine might reognize that a query ontains a person name, andrewrite the query into a new query that requires the �rst andlast name to be in lose proximity in the text. Thus, positionsare used as a �lter. Seond, positions an be used in rank-ing funtions to improve result quality. The idea here is thata doument ontaining the searh terms in lose proximity ismore likely to be relevant to the user than a doument wherethe terms our in ompletely di�erent parts of the doument.Several researhers [8, 15, 26, 16, 21℄ have reently proposedranking funtions that use proximity to improve result qualityon TREC olletions and tasks. In pratie, web searh enginestend to use mahine learning to �nd good ranking funtions,and term positions or proximity are important features amongthe hundreds used.We fous in this paper on the seond use, where positions areonsidered by the ranking funtion; the �rst use typially onlyapplies to a limited subset of the queries. There appears tobe little published work on how to optimize query proessingwith position data. One hallenge is that the position data inthe index is usually several times (3 to 5 times) larger than thedoID and frequeny data, and thus a naive use of positionsould signi�antly derease system throughput.To avoid this, query proessing an be performed in twostages. First, a simple ranking funtion requiring doIDs andfrequenies only (e.g., BM25 or similar) is applied. In the se-ond stage, position data is fethed only for a small subset ofdouments (a few hundred or thousand) that sored very highon the simple ranking funtion. This hanges the trade-o�between ompressed size and deompression speed somewhatompared to the ase of doIDs, as we only deompress a lim-ited number of positions. In fat, as we show later, the CPUost of this seond phase an be muh smaller than that of the�rst phase, even with fairly slow position deompression meth-ods. On the other hand, the ompressed size of the positiondata has a very signi�ant impat on system ost: In the aseof a memory-resident index, smaller ompressed size means lessmemory is needed. In the ase of a primarily disk-resident in-dex, disk transfers are redued signi�antly due to redued listsizes and higher ahe hit rates, sine a larger perentage of thetotal index data an be ahed in main memory [29℄. (Even ifonly some of the position data has to be fethed from eah list,disk aess osts will usually be equal to that of fething theomplete lists, as random lookups are prohibitively expensiveon urrent disks.)In summary, aess to position data is typially performed ina seond stage after traversing the lists of doIDs, only a lim-ited amount of position data is usually retrieved, and a smallompressed size may be more important than extremely fastaess to positions. We evaluate the query proessing perfor-mane of our tehniques for this ase in Setion 7.
3. CONTRIBUTIONS OF THIS PAPERWe study methods for ompressing position data in websearh engine indexes, and desribe and evaluate a numberof approahes. To our best knowledge, no previous publishedwork has foused on the ase of positions in web pages, asopposed to longer linearly ordered texts. In partiular:



(1) We perform a detailed experimental evaluation of manyexisting tehniques on position data in web indexes.(2) We propose and disuss several simple but e�etive om-pression algorithms for position data that take advan-tage of page-wise information, suh as remaining pagesizes and frequenies, and other ontext information, e.g.,the values of previous positions. We ompare our algo-rithms to the existing ones, showing the limits of list-oriented tehniques and the potential of page-adaptiveapproahes. We obtain moderate but measurable im-provements in ompression.(3) We propose statistis-based methods to further improveompression performane by integrating more ontextfeatures. Our experiments show that these methods anfurther redue the ompressed size over other algorithms.We also evaluate the tradeo� between integrating morefeatures to redue the ompressed size and the extra ostfor storing the features.(4) We disuss the use of position information in searh en-gines, and show how to eÆiently aess position infor-mation during query exeution. We show that rankingfuntions that take position information into aount anbe evaluated with very moderate additional CPU ostsompared to more basi ranking funtions.
4. POSITION GAP DISTRIBUTIONAny ompression method is assoiated with an expliit orimpliit probability model for the data to be ompressed. Forinstane, many index ompression methods assume that d-gaps onform to a monotonially dereasing distribution. Inpartiular, Golomb oding assumes geometri distributions ofd-gaps. In this setion, we disuss the p-gap distribution ofthe TREC GOV2 data set and how it di�ers from the ase ofd-gaps and among di�erent terms.

Figure 1: Distribution of p-gaps for four words on theTREC GOV2 data set. On the x-axis is the number ofbits required to represent the p-gaps in binary, and on they-axis is the perentage of p-gaps that fall in this range.As examples, we selet four terms and draw their orre-sponding p-gap distributions in Figure 1. We show two graphsfor eah term, the distribution on real p-gaps and the distribu-tion one would observe if all words were randomly arranged inthe page. We expet that in the presene of lustering, thesetwo graphs would behave very di�erently. From Figure 1 we

an see that the real distributions are very di�erent from therandom (i.e., geometri) distributions. (In fat, the distribu-tions for \death" and \hurriane" are not even monotoniallydereasing.) The distributions of real gaps for \sheet", \death",and \hurriane"are very di�erent from the random gaps, whilethe two distributions for \vaine" are more similar.A term may our several times in a partiular doument,and di�erent ourrenes may behave very di�erently. In Fig-ure 2, we plot the distributions of gaps for �rst ourrenes,seond ourrenes, and further ourrenes within a dou-ment, for the same four words as above. From Figure 2, wean see that for "sheet", "death", and "hurriane", the distribu-tions on gaps of its �rst ourrenes, seond ourrenes andother ourrenes are quite di�erent from eah other and showbursts at fairly distint sizes of gaps. In fat, besides the in-dex of the ourrene, there are many other fators that maya�et the distributions, e.g., doument size and in-doumentfrequeny. Thus, it seems hard to apture the true probabilitydistribution of all gaps with a single model.

Figure 2: Distribution of p-gaps for �rst, seond, and fur-ther ourrenes, for the four words from Figure 1
5. OUR ALGORITHMSIn this setion, we �rst propose a very simple but e�etivealgorithm, Remaining Page-Adaptive Rie Coding (RPA-RC),and present its advaned version with smoothing based on aregression model (RPA-RC-S). We then propose another algo-rithm, Remaining Page-Adaptive BASC with smoothing (RPA-BASC-S), and perform an experimental omparison with anumber of baseline algorithms from the literature.
5.1 Page-Adaptive Rice CodingStandard Rie oding determines its parameter B by look-ing at the entire list of integers that need to be ompressed,thus making it a list-adaptive algorithm. However, during de-ompression of position data, we already know the number ofpositions in the page (the frequeny) and the overall page size,and it would be smart to exploit this knowledge for better om-pression. A fairly obvious way to do this is to selet B as thelargest power of 2 suh that B � jdj=(ft;d +1) where jdj is thesize of the urrent doument and ft;d the frequeny. We allthis page-adaptive variant of Rie oding Page-Adaptive RieCoding (PA-RC).A fully adaptive version, alled Remaining Page-AdaptiveRie oding (RPA-RC), takes this idea one step further and



uses a di�erent B for eah position in the posting. In partiu-lar, rather than taking the size and frequeny of the ompletepage, we onsider the urrently remaining page size and fre-queny of the posting. Thus, after enoding a position valuep, we dedut p from the page size, and 1 from the frequeny,and then use these updated values to selet the B for the nextposition in the posting. If one of the gaps is very large, thenthis implies that subsequent positions oupy a smaller regiontowards the end of the doument, and the method will use asmaller B to enode those remaining positions.
5.2 Adaptation with SmoothingHowever, RPA-RC may su�er in the ase in Figure 3, whihshows the loations of ourrenes in a doument of a word.Figure 3: An example of word loations in a doument.There are two lusters of ourrenes in Figure 3 that areseparated by a wide gap. In the �rst luster of ourrenes,the remaining average gap for its last ourrene is large, eventhough its gap with its previous ourrene is small, whih isvery useful information ignored by RPA-RC. To deal with thisproblem, we integrate the information about the previous gapinto our method and build a regression model as follows:Bt = (1� p)� gt�1 + p� rtwhere Bt is the value of B in Rie oding for tth gap, rt isthe remaining average gap for t-th gap and gt�1 is the value ofprevious gap. The seond term in the model is used to tune theerror of predition by using the remaining average gap. Whenp = 0, it means that the urrent expeted average gap Bt isequal to the previous gap gt�1, while p = 1 means it is equalto the remaining average gap rt.We note that BASC oding [17℄ also exploits the previousbi�1 to predit the next bi. An extension of BASC alledBASC-smooth uses the average value of k previous bs to preditthe next b. As shown in [17℄, this ahieves better ompressionthan the basi BASC. Motivated by this, we replae the gt�1in the above regression model with the previous average gap.The modi�ed model is alled Remaining Page-Adaptive RieCoding with Smoothing (RPA-RC-S).On the other hand, list-wise BASC-smooth an also be mod-i�ed to be page-adaptive as follows: First, unlike list-wiseBASC in [17℄, where the value of b is initialized for the en-tire list as a �xed number, say 2, or 4, or 8, page-wise BASC-smooth initializes it as the average gap of its orrespondingpage. Seond, for page-wise BASC-smooth, only the previousgaps within the same posting need to be heked to alulatethe previous average b, thus avoiding the noise aused by pre-vious postings. More interestingly, motivated by RPA-RC-S,where we tune the preditions by the remaining page informa-tion, we an tune the predition of BASC-smooth by using thefollowing model:bt = (1� p)� avgt�1 + p� rbtwhere bt is the expeted number of bits to enode the urrentgap into a binary ode, avgt�1 is the average number of bits toenode previous gaps, and rbt is the number of bits to enodethe remaining average gap. Thus, when p = 0, the urrent gapis enoded by the same number of bits used for the previousgap, while when p = 1, it is enoded by the number of bits for

the remaining average gap. We alled this variant RemainingPage-Adaptive BASC with Smoothing (RPA-BASC-S).
5.3 Multidimensional AdaptationMost of the above page-adaptive methods ompress the ur-rent position by exploiting two-dimensional (2D) ontext fea-tures: the page size (or the remaining page size) and the fre-queny. In fat, from experiments in later setions, we will seethat most page-adaptive methods are already muh better thannon-parametri or list-adaptive methods by taking advantageof these two features. Intuitively, we expet that the more on-text features we use, the better the ompression performanewe an get. For example, the above regression-based methodsimprove the ompression performane slightly by adding as anadditional feature the previous gap (or previous average gap).However, as disussed in Setion 4, di�erent terms may be-have so di�erently that it is hard to make a good predition ofthe next value based on a single model. In his ase, it might bebetter to augment general statistis-based ompression meth-ods suh as, e.g., Hu�man oding, with ontext information toimprove ompression.The basi idea is as follows: For eah inverted list, we �rstlassify all p-gaps into one of a moderate number of bukets,depending on four ontext features: The remaining doumentsize rsize, the remaining frequeny rfreq, the previous p-gapprev1, and the previous previous p-gap prev2. To do so, wedivide the values of eah feature into a small number of binssuh that two p-gaps are in the same buket if they fall intothe same bin for all features. We then apply for eah buket aseparate model, in one of the following two ways:Optb-4D: For eah buket, we determine the optimal valueof b under Rie oding, by trying all 32 possible values andhoosing the one leading to the smallest ompressed size. Dur-ing deompression, for eah position, we �rst determine whihbuket the position belongs to and then retrieve the orre-sponding b from a global table.Hu�-4D and LLRUN-4D: Hu�-4D is similar to Optb-4D exept that it stores an entire Hu�man table (instead ofjust the best value of b) for eah buket, and uses this tableto enode the positions in the buket. LLRUN-4D is similarto Hu�-4D exept that it builds the Hu�man tables only forthe unary parts of gamma odes of the positions. In otherwords, the di�erene is that eah Hu�man table in LLRUN-4Duses (slightly) fewer odewords than a Hu�man table in Hu�-4D (whih employs a more �ne-grained sheme for seletingodeword boundaries in the Hu�man tables).Note that while suh multidimensional models an easilybe extended to use more features, this does not neessarilyresult in smaller ompressed sizes. This is beause the resultingmodels (Hu�man tables, or b values) need to be stored togetherwith the ompressed indexes, and this ost inreases quiklywith additional features.
6. EXPERIMENTAL RESULTSWe �rst desribe our experimental setup. We used the TRECGOV2 data set of 25.2 million web pages rawled from the govtop-level domain. We seleted 1000 random queries from thesupplied query logs; these queries ontain 2171 unique terms.On average, there were 4:85 million postings with 20:72 mil-lion positions in the inverted lists assoiated with eah query.Limited experiments involving deompression speed are pro-vided in Setion 7 in the ontext of a query proessor thatuses position data.



Throughout the paper, we report the ompressed size of theposition data per query, that is, the amount of ompressedposition data in MB assoiated with the inverted lists of anaverage query. This is a rough measure of the amount ofdata per query that has to be transferred from disk in thease of a purely disk-based index, under the assumption thatonly omplete lists are transferred. (We believe that this isrealisti given the performane harateristis of urrent harddisks, whih strongly disourage performing multiple seeks forsmaller amounts of data.)
6.1 Compression ResultsIn Figure 4, we ompare the average ompressed size ofthe position data per query of various methods on the TRECGOV2 data set. We show results for the following obliviousor list-adaptive methods: Gamma, variable-byte (vbyte), Sim-ple9, Simple16 as desribed in [29℄, the version of PForDeltadesribed in [29℄, list-adaptive Rie oding (list-Rie), list-adaptive rieVT as desribed in [28℄ (list-rieVT), list-LLRUN[10℄ (building one Hu�man table for eah list), RBUC andBASC [17℄ (where in RBUC we hoose the esalation funtionas f(s) = s � s and where BASC is the basi version withoutsmoothing). We also show results for four page-adaptive orfully adaptive methods: a page-oriented version of interpola-tive oding [18, 19℄ (page-IPC) that is applied to the posi-tions in eah posting, a page-oriented version of rieVT (page-rieVT), PA-RC, and RPA-RC. We also show the list-wise en-tropy (whih of ourse does not onstitute a lower bound).
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Figure 4: Compressed size per query for a variety of base-line methods on the TREC GOV2 data set.From Figure 4 we an see that all oblivious (non-parametri)or list-adaptive methods, inluding all methods exept list-LLRUN to the left of page-IPC, do signi�antly worse thanthe page-adaptive methods on the right side of and inlud-ing page-IPC, by 10 to 15%. Seond, although list-LLRUNan ahieve omparable ompression performane as the page-adaptive methods, it is a semi-stati method that has to �rstalulate the statistis information of all positions in the listbefore it an start enoding, while the page-adaptive methodsdo not need to do so. We also note that while page-wise in-terpolative oding (page-IPC) ahieves the best result (20.92MB/q), it is only slightly better than RPA-RC (21.00 MB/q)but slower in deompression [18, 19℄. Overall, RPA-RC is afairly simple on-line method, and performs muh better thanall other methods in Figure 4 exept page-IPC.In Figure 5 we show the performane of the two regres-sion models for di�erent values of p (where p = 0 means us-ing only the previous gaps, while p = 1 means using onlythe remaining page information). From Figure 5, we observethat even without remaining page information, page-adaptiveBASC-smoothing ahieves muh better ompression (21.06 MB/q)

than its list-adaptive version (22.75 MB/q) in Figure 4. Se-ond, both models ahieve their best results when using bothtypes of information. In partiular, RPA-RC-S ahieves itsbest result (20.98 MB/q) for p = 0:95, while RPA-BASC-Sgets its best result (20.94 MB/q) for p = 0:2 and p = 0:1.Third, the remaining average gap has more impat on RPA-RC-S than on RPA-BASC-S, while the previous average gapa�ets the latter more. The reason is that if the urrent gapto be enoded is very large while the previous average gap wasfairly small, then the unary part of the Rie ode for RPA-RC-S would be very large. In order to avoid this problem, RPA-RC-S exploits the remaining average gap to tune the wrongpredition from the previous gaps.
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Figure 5: Compressed size per query for RPA-RC-S andRPA-BASC-S on the TREC GOV2 data set.However, overall we see that using only the remaining-pageinformation (without the previous gaps) is already a fairly goodhoie, sine both methods ahieve reasonably good ompres-sion performane in this ase. Thus, the bene�t due to regres-sion is only very limited.
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Figure 6: Compressed size per query for RPA-BASC-S,Optb-4D, Optb-5D, Optb-6D, Hu�-4D and LLRUN-4D.In Figure 6, we ompare the best method from Figure 5,RPA-BASC-S, with Optb-4D, Optb-5D, Optb-6D, Hu�-4D andLLRUN-4D. (Optb-5D and Optb-6D are variants of Optb-4Dthat use one and two additional previous gaps as 5th and 6thfeatures.) We plot two lines in Figure 6, one for the om-pressed size without taking the extra ost for storing the Hu�-man tables or b-values for eah buket into aount, and one forthe ompressed size inluding this extra ost. From Figure 6,we an see that although Optb-6D ould get better ompres-sion if we do not onsider the extra ost, in reality it is muhworse. Overall, LLRUN-4D ahieves the smallest ompressedsize among the methods, ahieving about 19:58 MB per query.Hu�-4D has similar performane but su�ers slightly for usingtoo many odewords in its Hu�man tables.Finally, we list in Table 1 the exat ompressed sizes of themethods with the best ompression performane.
7. QUERY PROCESSINGAs disussed, for typial web data the position data in theindex is signi�antly larger (by a fator of 3 to 5) than the do-



Table 1: Compressed sizes (MB/q) for seleted methods.data extra ost total sizelist-LLRUN 21.52 N/A 21.52page-IPC 20.92 N/A 20.92RPA-RC-S 20.99 N/A 20.99RPA-BASC-S 20.94 N/A 20.94Optb-4D 20.57 0.05 20.62Hu�-4D 19.00 0.63 19.63LLRUN-4D 19.53 0.05 19.58ID and frequeny data. To minimize deompression ost, aneÆient query proessor should try to avoid aessing the posi-tion data for all postings in the intersetion (or other Boolean�lter) of the inverted lists. Instead, postings in the interse-tion are �rst sored without taking position information intoaount, and then position data is fethed only for the K mostpromising postings, for some suÆiently large K.Thus, while queries typially deompress substantial partsof the doID data of the inverted lists (though with someamount of skipping), aesses to position data in memory arebest thought of as random aesses to individual postings. Onthe other hand, we still have to �rst feth the omplete posi-tion data for any inverted list loated on disk, sine randomlookups are extremely ineÆient with urrent hard disks. Thisfundamentally hanges the trade-o� between ompressed sizeand deoding speed, in that size beomes relatively more im-portant than speed. In this setion we desribe how to performrandom lookups into the position data, and then evaluate thequery proessing performane of our ompression shemes un-der this modi�ed trade-o�.
7.1 Position Look-Up StructureTo eÆiently aess the ompressed position data assoiatedwith a partiular posting, we need a suitable look-up struture.We now desribe this struture for the ase of Rie oding (orany other method that ompresses eah integer individually),and then outline how to modify the struture for methods suhas PForDelta.We employ a fairly standard hierarhial look-up struture,where position data is divided into hunks. In partiular, weorganize the position data for N1 postings into one hunk, andstore for eah suh hunk one doID and one pointer to thebeginning of the hunk in unompressed form. Within eahhunk, we organize data into sub-hunks of N2 postings eah,and for eah sub-hunk we store its o�set from the beginningof the hunk in ompressed form, using variable-byte ompres-sion. This allows us to aess any posting by deompressingat most N2 postings of position data. In partiular, to �ndthe position data for a partiular doID, we �rst searh for theright hunk using binary searh on the array of unompresseddoIDs (one per hunk). Sine we have already deompressedthe doID data itself, we know the index of the posting withinthe hunk (i.e., the global index modulo N1) and thus theorret sub-hunk, whih we an then deompress. We usedN1 = 128 and N2 = 8 in the following.For PForDelta and other ompression methods that om-press bathes of numbers, the look-up struture has some mi-nor di�erenes ompared to the above. In the ase of PForDelta,we ompress 128 integers at a time, whih does not align withposting boundaries. As a result, we need to store two ratherthan one ompressed integer for eah sub-hunk, to store ano�set within a �eld of 128 integers. For other methods suhas Simple9 that ompress a variable number of integers at the

Table 2: Spae overhead and performane of thelookup struture for K = 100.PA-RC RPA-RC PForDelta Optb-4DSpae per query 0.77M 0.77M 1.51M 0.77MSpae for L1 0.15M 0.15M 0.3M 0.15MSpae for L2 0.62M 0.62M 1.21M 0.62MDeoded ints 13524 13524 43895 13524Total time 0.63ms 0.91ms 0.31ms 1.70msDeode time 0.38ms 0.66ms 0.10ms 1.50msSeek time 0.25ms 0.25ms 0.21ms 0.20msPosition size 21.37M 21.18M 23.67M 20.61MTable 3: Perent of queries that ahieve the same top-m results as an exhaustive evaluation.K = 10 20 50 100 150 200m = 10 34.9% 79.3% 94.8% 97.3% 97.8% 98.2%m = 50 NA NA 27.0% 77.5% 87.8% 91.8%same time, some other minor adjustments are needed. The�rst-level struture remains basially the same in either ase.Table 2 shows the lookup performane and size of this stru-ture, where we performK = 100 lookups eah for 1000 queries.The total time per 100 lookups onsists of the deoding time forthe sub-hunks, plus the seek time for searhing the �rst-levelarray and deompressing the seond-level pointers. As we seefrom the results, the lookup struture adds between 0:77 and1:51 MBs to the more than 20 MB of position data per query.We deode between 138 and 438 integers per lookup; this issine for eah lookup, we need to deode an entire sub-hunkfor eah query term. We also see that there is a trade-o� be-tween ompressed size and time, but the overall look-up timeper query is at most 1:7 ms even for the method ahievingthe smallest size (Optb-4d). We expet some additional speedgains with proper tuning.
7.2 Proximity-Aware ScoringWe now look at the use of our lookup struture in the on-text of ranking funtions suh as [8, 15, 26, 16, 21℄ that taketerm proximity, and thus positions, into aount. In partiular,we use the soring model proposed by Buetther and Clarkein [8℄, also used in [21℄, whih gives signi�ant improvementsin result quality over BM25-based soring. In this model, theBM25 soring funtion is ombined with a proximity sore foreah query term that depends on how far this term is from anourrene of some other query term. Given a query, we �rstompute a proximity sore for eah query term that depends onthe distane of this term's ourrenes to the adjaent queryterm's ourrenes. The sore for a doument is then om-puted by a linear ombination of the standard BM25 soreand a total proximity sore omputed from the aumulatedproximity sores.We now show how this soring funtion an be very eÆ-iently approximated using our lookup struture as follows:We �rst ompute the top-K results under the standard BM25sore, by aessing only doID and frequeny values. Then forthese K results, we feth position information in all lists in or-der to ompute the proximity sore and thus the full rankingfuntion. As we show, using values of K at most 200, we anompute the orret top-m results for m = 10 and m = 50almost all the time.The results are shown in Tables 3 and 4. In partiular,Table 3 shows how likely we are to get exatly the same top-mresults as an exhaustive evaluation, while Table 4 shows what



Table 4: Perent of orret top-m results returned.K = 10 20 50 100 150 200m = 10 83.7% 95.5% 98.8% 99.3% 99.4% 99.5%m = 50 NA NA 88.5% 97.2% 98.6% 99.1%perentage of returned results really belongs into the top-m.For example, using K = 100 we get exatly the same top-10results as an exhaustive evaluation for 97:3% of all queries,while 99:3% of all results returned for K = 100 are in fatorret top-10 results. Thus, about 100 lookups per query aretypially enough to math the quality of the soring funtion in[8℄, justifying our laim that aess patterns for position dataare very di�erent from those for doIDs and frequenies.
8. DISCUSSION AND CONCLUSIONSIn this paper, we have studied ompression tehniques forposition data in web indexes. We proposed two simple bute�etive tehniques, Remaining Page-Adaptive Rie Codingwith Smoothing (RPA-RC-S) and Remaining Page-AdaptiveBASC with Smoothing (RPA-BASC-S). We also proposed sev-eral statistis-based methods (Optb-4d, Hu�-4d, and LLRUN-4d) and show that they ahieve even better ompression per-formane. Finally, we studied the eÆient use of position in-formation during query exeution.Overall, our improvements in ompressed size are fairly mod-erate. We believe that the lessons learned from this work areas follows: First, word positions in web pages do not seem tofollow simple distributions that ould be easily exploited. Se-ond, additional ontext, suh as doument size, frequeny, andnearby previous gaps, is highly useful, but there is a trade-o�between the bene�ts of more features and the ost of storingmore omplex models. Third, during query proessing, aessto position data should be performed in a seond stage aftertraversing the lists of doIDs suh that only a limited amountof position data is retrieved; in this ase, a small ompressedsize may be more important than extremely fast aess.There are a number of remaining open hallenges onerningposition data in web indexes. It would be nie to �nd ways tosigni�antly improve our results, or to exploit page reorderingfor better position ompression. More generally, it is an inter-esting question whether there are other organizations for po-sition data, di�erent from the standard inverted-list organiza-tions, that allow eÆient query proessing while enabling bet-ter ompression. For instane, one ould even onsider storingthe parsed douments themselves in highly ompressed formand aessing these during a position data lookup, instead ofkeeping the positions in inverted lists.
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