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ABSTRACT
Large web search engines have to answer thousands of queries per
second with interactive response times. Due to the sizes of the
data sets involved, often in the range of multiple terabytes, a sin-
gle query may require the processing of hundreds of megabytes
or more of index data. To keep up with this immense workload,
large search engines employ clusters of hundreds or thousands of
machines, and a number of techniques such as caching, index com-
pression, and index and query pruning are used to improve scala-
bility. In particular, two-level caching techniques cache results of
repeated identical queries at the frontend, while index data for fre-
quently used query terms are cached in each node at a lower level.

We propose and evaluate a three-level caching scheme that adds
an intermediate level of caching for additional performance gains.
This intermediate level attempts to exploit frequently occurring pairs
of terms by caching intersections or projections of the correspond-
ing inverted lists. We propose and study several offline and online
algorithms for the resulting weighted caching problem, which turns
out to be surprisingly rich in structure. Our experimental evalua-
tion based on a large web crawl and real search engine query log
shows significant performance gains for the best schemes, both in
isolation and in combination with the other caching levels. We also
observe that a careful selection of cache admission and eviction
policies is crucial for best overall performance.

Categories and Subject Descriptors: H.4.m [Information Sys-
tems]: Miscellaneous; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval; D.2.8 [Software Engineering]:
Metrics

General Terms: Algorithms, Measurement, Performance, Experi-
mentation

Keywords: Web Search, Inverted Index, Caching.

1. INTRODUCTION
Due to the rapid growth of the Web from a few thousand pages

in 1993 to its current size of several billion pages, users increas-
ingly depend on web search engines for locating relevant informa-
tion. One of the main challenges for search engines is to provide
a good ranking function that can identify the most useful results
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from among the many relevant pages, and a lot of research has fo-
cused on how to improve ranking, e.g., through clever term-based
scoring, link analysis, or evaluation of user traces.

Once a good ranking function has been engineered, query through-
put often becomes a critical issue. Large search engines need to
answer thousands of queries per second on collections of several
billion pages. Even with the construction of optimized index struc-
tures, each user query requires a significant amount of data pro-
cessing on average. To deal with this workload, search engines are
typically implemented on large clusters of hundreds or thousands
of servers, and techniques such as index compression, caching, and
result presorting and query pruning are used to increase throughput
and decrease overall cost.

To better understand the performance issue, we need to look at
the basic structure of current search engines. These engines, like
many other information retrieval tools, are based on an inverted in-
dex, which is an index structure that allows efficient retrieval of
documents containing a particular word (or term). An inverted
index consists of many inverted lists, where each inverted list Iw

contains the IDs of all documents in the collection that contain a
particular word w, sorted by document ID or some other measure,
plus additional information such as the number of occurrences in
each document, the exact positions of the occurrences, and their
context (e.g., in the title, in anchor text).

Given, e.g., a query containing the search terms apple, orange,
and pear, a typical search engine returns the 10 or 100 documents
that score highest with respect to these terms. To do so, the engine
traverses the inverted list of each query term, and uses the infor-
mation embedded in the inverted lists, about the number of occur-
rences of the terms in a document, their positions, and context, to
compute a score for each document containing the search terms. In
addition, scores based on link analysis or user feedback are often
added into the total score of a document; in most cases this does not
affect the overall structure of the computation if these contributions
can be precomputed offline (e.g., using PageRank).

Clearly, each inverted list is much smaller than the overall docu-
ment collection, and thus scanning the inverted lists for the search
terms is much preferable to scanning the entire collection. How-
ever, the lengths of the inverted lists grow linearly with the size of
the collection, and for terabyte collections with billions of pages,
the lists for many commonly used search terms are in the range of
tens to hundreds of megabytes or even more. Thus, query evalu-
ation is expensive, and large numbers of machines are needed to
support the query loads of hundreds or thousands of queries per
second typical of major engines. This motivates the search for new
techniques that can increase the number of queries per second that
can be sustained on a given set of machines, and in addition to in-



dex compression and query pruning, caching techniques have been
widely studied and deployed.

Caching in search engines has been studied on two levels [32].
The first level of caching, result caching, takes place at the front-
end, and deals with the case where identical queries are issued re-
peatedly by the same or different users. Thus, by keeping a cache
of a few ten thousand to a few million results that have recently
been returned by the engine, we can filter repeated queries from the
workload and increase overall throughput. Result caching has been
studied in [25, 21, 22, 32, 38]. It gives a measurable benefit at a low
cost (each result could simply be stored as a complete HTML page
in a few KB), though the benefit is limited by the degree of repe-
tition in the input stream. At a lower level, list caching is used to
keep inverted lists corresponding to frequently used search terms
in main memory, resulting in additional benefits for engines with
disk-based index structures. The benefits of a two-level caching
approach in an actual search engine were studied in [32].

In this paper, we propose and evaluate a three-level architecture
with an additional intermediate level of caching. This level, called
intersection caching or projection caching (depending on the im-
plementation), caches inverted list data for pairs of terms that com-
monly occur together in queries with more than two search terms.
The basic idea is very simple and relies on the fact that all of the
major search engines by default only return documents that contain
all of the search terms. This is in contrast to a lot of work in the
IR community where every document containing at least one of the
terms participates in the ranking; we will discuss this issue again
later. Thus, search engines need to score only those documents that
occur in the intersection of the inverted lists. Unfortunately, in most
cases the most efficient way to find the intersection still involves a
complete scan over the lists, and this dominates the cost of query
processing. By caching pairwise intersections between lists, which
are typically much smaller than each of the two lists, we hope to
significantly reduce this cost in subsequent queries. We note that
the basic idea of caching intersections was also recently proposed
in the context of P2P-based search in [7], but the scenario and ob-
jectives are rather different as discussed later.

While the idea of caching intersections is very simple, the result-
ing weighted caching problem turns out to be quite challenging.
In the main technical part of the paper, we discuss and evaluate
several online and offline caching algorithms. Even very restricted
classes of the problem are NP-Complete, but we show that there
are practical approaches that perform much better than the basic
Landlord algorithm [39, 11] for weighted caching on typical query
traces. We also perform an evaluation of the performance of all
three caching levels together. The conclusion is that caching gives
a significant overall boost in query throughput, and that each level
contributes measurably.

The next section gives some technical background, and Section
3 discusses related work. The three-level caching approach is de-
scribed and discussed in detail in Section 4. Section 5 studies the
resulting intersection caching problem and presents two basic ap-
proaches. Section 6 refines these approaches and performs a de-
tailed experimental evaluation across all three caching levels. Fi-
nally, Section 7 provides some concluding remarks.

2. SEARCH ENGINE QUERY PROCESSING
In this section, we provide some background on query execution

in search engines. We assume that we have a document collection
D = {d0, d1, . . . dn−1} of n web pages that have already been
crawled and are available on disk. Let W = {w0, w1, . . . , wm−1}
be all the different words that occur anywhere in the collection.
Typically, almost any text string that appears between separating

symbols such as spaces, commas, etc., is treated as a valid word (or
term) for indexing purposes in current engines.

Indexes: An inverted index I for the collection consists of a set
of inverted lists Iw0

, Iw1
, . . . , Iwm−1

where list Iw contains a post-
ing for each occurrence of word w. Each posting contains the ID
of the document where the word occurs, the (byte or approximate)
position within the document, and possibly information about the
context (in a title, in large or bold font, in an anchor text) in which
the word occurs. The postings in each inverted list are often sorted
by document IDs, which enables compression of the list. Thus,
Boolean queries can be implemented as unions and intersections of
these lists, while phrase searches (e.g., New York) can be answered
by looking at the positions of the two words. We refer to [37] for
more details.

Queries: A query q = {t0, t1, . . . , td−1} is a set of terms (words).
For simplicity, we ignore search options such as phrase searches or
queries restricted to certain domains at this point. In our caching
problems we are presented with a long sequence of queries Q =
q0, q1, . . . , ql−1, where qi = {ti

0, t
i
1, . . . , t

i
di−1}.

Term-based ranking: The most common way to perform rank-
ing in IR systems is based on comparing the words (terms) con-
tained in the document and in the query. More precisely, documents
are modeled as unordered bags of words, and a ranking function
assigns a score to each document with respect to the current query,
based on the frequency of each query word in the page and in the
overall collection, the length of the document, and maybe the con-
text of the occurrence (e.g., higher score if term in title or bold
face). Formally, a ranking function is a function F that, given a
query q = {t0, t1, . . . td−1}, assigns to each document D a score
F (D, q). The system then returns the k documents with the highest
score. One popular class of ranking functions is the cosine measure
[37], for example

F (D, q) =
d−1�

i=0

w(q, ti) · w(D, ti)�
|D|

,

where w(q, t) = ln(1 + n/ft), w(D, t) = 1 + ln fD,t, and fD,t

and ft are the frequency of term t in document D and in the entire
collection, respectively. Many other ranking functions have been
proposed, and the techniques in this paper are not limited to any
particular class.

AND vs. OR: Many ranking function studied in the IR com-
munity, including the above cosine measure, do not require a docu-
ment to contain all query terms in order to be returned in the results.
(E.g., a document containing two out of three query terms multiple
times or in the title may score higher than a document containing all
three terms.) However, most search engines enforce AND seman-
tics for queries and only consider documents containing all query
terms. This is done for various reasons involving user expectations,
collection size, and the preponderance of short queries (thus, for
most queries, there will be many documents containing all query
terms). Our approach fundamentally depends on AND semantics,
which are the default in essentially all major engines (e.g., Google,
AltaVista, AllTheWeb, Inktomi, Lycos, Teoma, and WiseNut).

Query execution: Given an inverted index, a query is executed
by computing the scores of all documents in the intersection of the
inverted lists for the query terms. This is most efficiently done in
a document-at-a-time approach where we simultaneously scan the
inverted lists, which are usually sorted by document ID, and com-
pute the scores of any document that is encountered in all lists. (It
is shown in [20] that this approach is more efficient than the term-
at-a-time approach where we process the inverted lists one after the
other.) Thus, scores are computed en passant while materializing



the intersection of the lists, and top-k scores are maintained in a
heap structure. In the case of AND semantics, the cost of perform-
ing the arithmetic operations for computing scores is dominated
by the cost of traversing the lists to find the documents in the in-
tersection, since this intersection is usually much smaller than the
complete lists.

Search engines use a number of additional factors not present in
standard cosine-type ranking functions, such as context (e.g., term
occurs in title, URL, or bold face), term distance within documents
(whether two terms occur close to each other or far apart in the
text), and link analysis and user feedback. The first two factors can
be easily included while computing scores as outlined above. The
most commonly used way to integrate the other factors is to pre-
compute a global importance score for each document, as done in
PageRank [9], or a few importance scores for different topic groups
[18], and to simply add these scores to the term-based scores dur-
ing query execution [29, 24, 30]. Our approach does not depend on
the ranking function as long as the total cost is dominated by the
inverted list traversal.

Search engine architecture: Major search engines are based on
large clusters of servers connected by high-speed LANs, and each
query is typically executed in parallel on a number of machines.
In particular, current engines usually employ a local index organi-
zation where each machine is assigned a subset of the documents
and builds its own inverted index on its subset. User queries are re-
ceived at a frontend machine called query integrator, which broad-
casts the query to all participating machines. Each machine then
returns its local top-10 results to the query integrator to determine
the overall top-10 documents [21].

Each subset of the collection is also replicated and indexed on
several nodes, and multiple independent query integrators can be
used. We note that there are alternative partitioning approaches
such as the global index organization and various hybrids that are
not commonly used in large engines though they may have advan-
tages in certain scenarios; see [4, 27, 36, 35] for discussion.

Query processing optimizations: Given simple mechanisms
for load balancing and enough concurrency on each machine, the
local index organization results in highly efficient parallel process-
ing. Thus, the problem of optimizing overall throughput reduces
again to the single-node case, i.e., how to maximize the number of
queries per second that can be processed locally on each machine
with a reasonable response time. One commonly used technique
is to compress each inverted list using various coding techniques
[37], thus reducing overall I/O for disk-based index structures but
increasing CPU work. Because of this tradeoff, fairly simple and
fast techniques tend to outperform schemes geared towards opti-
mal compression [33]. Our experiments use compression but do
not depend on it.

Other optimizations attempt to determine the top-k results with-
out a complete scan of the intersection or union of the inverted lists,
by presorting the lists according to their contributions to the score
and terminating the traversal early (or by removing low-scoring
postings from the index altogether [15]). There has been a sig-
nificant amount of work in the IR and database communities on
this issue under various scenarios; see [1, 2, 12, 14, 16, 24, 28, 35]
for recent work. Various schemes are apparently in use in current
engines but details are closely guarded. Note that these techniques
are designed for certain types of ranking functions and, e.g., do not
easily support use of term distance within documents. Our experi-
ments use a full traversal of the list intersections, but our approach
could be adapted to pruned schemes as well though this is beyond
the scope of this paper. A third common optimization are caching
schemes, discussed in detail in the next section.

3. DISCUSSION OF RELATED WORK
For more background on indexing and query execution in IR and

search engines, see [3, 5, 37]. For basics of search engine archi-
tecture we refer to [8, 9, 21, 31]. In the following, we focus on
previous work on caching and on other issues directly relevant to
our work.

Result caching: As indicated, result caching filters out repeti-
tions in the query stream by caching the complete results of pre-
vious queries for a limited amount of time. It was studied in [25,
21, 22, 32, 38] and is probably in use in most major engines. Re-
sult caching can be easily implemented at the query integrator, and
[38] also proposes caching results in the internet closer to the user.
Work in [21, 22] also connects result caching to the problem of
efficiently returning additional result pages for a query, which is
most efficiently done by computing and storing more than just 10
results for each query. Result caching only works on completely
identical queries and is thus limited in its benefits by the query
stream. However, it is easy to implement and does give significant
benefits even under very simple caching policies. A side effect of
result caching is that the average number of search terms increases
for those queries that are actually executed, since single-term and
two-term queries are more likely to be already cached.

List caching: At the lower level inside each machine, frequently
accessed inverted lists are cached in main memory to save on I/O.
This is sometimes done transparently by the file system or when us-
ing a database system such as Berkeley DB to store the index [27],
though for typical IR and web search workloads better results may
be achievable with specialized caching policies [19]. Of course, list
caching only applies to disk-resident index structures, and some en-
gines attempt to keep all or most of the index in main memory for
optimum performance.

Two-Level caching: In [32], Saraiva et al. evaluate a two-level
caching architecture using result and list caching on the search en-
gine TodoBR, and show that each level contributes significantly to
the overall benefit. For list caching, a simple LRU approach is used.
We note that it is possible that techniques similar to ours are already
in use in one of the major engines, but this type of information is
usually kept highly confidential and we are not aware of it.

Caching in P2P search: The basic idea of caching results of
intersections that we use in our three-level caching approach was
recently also proposed in the context of peer-to-peer search in [7].
We note that the approach in [7] is quite different from ours. Their
main goal is to avoid repeated transmissions of inverted list data
in a peer-to-peer system with global index organization, while we
are interested in improving query throughput in each node by de-
creasing disk traffic and CPU load. The main emphasis in [7] is on
distributed data structures for keeping track of intersections that are
cached somewhere in the system, while in our case this problem
is easily solved by a standard local data structure. Our emphasis
is on the use of intersection caching in a three-level cluster-based
architecture, with different algorithms and cost trade-offs than in
a peer-to-peer environment, and its performance on a large query
load from a real engine. As pointed out in [7], there is also some
similarity to views and join indexes in database systems.

Set intersections: We note that in some scenarios, there are of
course more efficient ways to intersect two lists than a scan, in par-
ticular when lists are of very different lengths. However, for disk-
resident inverted indexes, this is only true if the ratio between the
list lengths is quite large (on the order of thousands or tens of thou-
sands depending on whether decoding cost is taking into account).
Recent adaptive set intersection techniques [13] also do not work
well for disk-resident structures, although some limited benefits are
possible in main-memory and peer-to-peer environments [23].



Optimizations for phrases: Caching of intersections is related
to the problem of building optimized index structures for phrase
queries [6] (i.e., “New York”). In particular, intersections can be
used to evaluate phrase queries, while on the other hand some of
the most profitable pairs of lists in intersection caching turn out
to be common phrases. Note that exhaustive index structures for
two-word phrases have only a small constant factor overhead over
a standard index, since each occurrence of a word is directly fol-
lowed by only one other word. Caching all intersections between
terms, on the other hand, is impossible and thus appropriate caching
policies are needed.

Weighted caching: In many caching problems, the benefit of
caching an object is proportional to its size (e.g., when caching to
avoid disk or network traffic). Weighted caching problems deal
with the case where each object has a size and a benefit that may
be completely independent of its size. Weighted caching problems
are, e.g., studied in [11, 39], which propose and analyze a simple
algorithm called Landlord that basically assigns leases to objects
based on their size and benefit and evicts the object with the earli-
est expiring lease. Both [11, 39] perform a competitive analysis of
the Landlord algorithm, and some experimental results for a web
caching scenario unrelated to search are given in [11]. In our case,
we are dealing with a weighted caching problem where the size of
the cached object is the size of an intersection or projection, and
the benefit is the difference between this size and the sizes of the
complete lists. Moreover, there is also a cost in inserting an ob-
ject into the cache, which requires us to employ appropriate cache
admission policies.

4. A THREE-LEVEL CACHING APPROACH
We now describe and discuss the proposed three-level caching

architecture in detail. The architecture is motivated by a few simple
observations on available search engine logs. In particular, result
caching works very well on single-term and two-term queries but
does not perform as well on queries with more terms, which are
less likely to be exactly repeated. However, an analysis of large
query logs indicates that queries with three or more terms are likely
to contain at least one pair of terms that has previously appeared
together. Thus, a three-term query {a, b, c} could be processed
by scanning the inverted list Ia for term a and a cached list for
the intersection of Ib and Ic. If the three lists Ia, Ib, Ic are of
approximately the same length, and the intersection of Ib and Ic is
much smaller than either of the two lists, then we would save almost
a factor of 3 even with only one pair having occurred previously.
If two pairs have previously occurred, then by scanning the two
intersections we could save most of the cost of the query.

Figure 4.1: Three-level caching architecture with result caching
at the query integrator, list caching in the main memory of each
node, and intersection caching on disk.

We will discuss the exact format and treatment of the cached in-
tersections later. By combining result, intersection, and list caching,

we get a three-level caching architecture shown in Figure 4.1 and
summarized as follows:

• Result caching: The query integrator maintains a cache of
the results of recent queries, either in memory or on disk.
Cache size and eviction policy are typically not critical as
large numbers of results can be cached cheaply. For our
query log of about a million queries, results can be cached
essentially over the entire log. Queries not covered by result
caching are broadcast to query processing nodes.

• Intersection caching: At each node, a certain amount of ex-
tra space, say 20% or 40% of the disk space used by the
index, is reserved for caching of intersections. These in-
tersections reside on disk and are basically treated as part
of the inverted index or as a separate inverted index. For
each query, we check if any pairwise intersections are al-
ready cached, and use these to process the query. In addition,
during processing we create en passant additional intersec-
tions for some or all of the pairs of terms in the query and
add them to the cache. We will show that this can indeed be
done efficiently.

• List caching: At the lowest level, a limited amount of main
memory (typically several hundred MB in nodes with at least
1GB of memory) is used to cache frequently accessed in-
verted lists as well as intersections.

Thus, intersection caching complements result caching as it fo-
cuses on queries with three and more terms, and is orthogonal to
list caching. Intersection caching is relevant to both disk-based and
memory-based index structures, though the performance ramifica-
tions are somewhat different as we will see.

4.1 Intersection vs. Projection Caching
We now discuss the precise format of the cached intersections.

Recall that an inverted list is a sequence of postings sorted by doc-
ument ID, with each posting containing the document ID and ad-
ditional information about each occurrence of the term in the doc-
ument. In order to use an intersection instead of the original list
during query execution, this data has to be preserved for postings
whose document IDs appear in both lists. Thus, a posting in the
intersection list would consist of a document ID and information
about all occurrences of both words in the document.

However, in our implementation we decided to follow a slightly
different approach which we call projection caching. Instead of
creating an intersection of lists Ia and Ib, we create two projections
Ia→b and Ib→a, where Ia→b contains all postings in Ia whose doc-
ument ID also appears in Ib, and Ib→a vice versa. There are sev-
eral advantages of this approach: (1) Projected inverted lists have
exactly the same format as other inverted lists and thus no changes
in the query processor are required. Also, creation of projections
from complete lists is very simple. (2) Ia→b and Ib→a are treated
independently by the list and intersection caching mechanisms and
can be evicted separately, which is desirable in some cases. (3)
Some additional minor optimizations are possible during query ex-
ecution; e.g., a query {a, b, c} could be executed by using Ia→b,
Ib→c, and Ic→a instead of using pairs. A disadvantage of using
projections is that the two projections are slightly larger than a sin-
gle intersection as the document ID is stored twice. We decided to
use projections in our query processor as the advantages outweigh
the slight space penalty. We note that our results can be stated either
in terms of intersection or projection caching, and the performance
of both schemes is comparable.



4.2 Caching Overheads
One common assumption is that caching an object does not result

in any cost apart from some limited administrative overhead (data
structures) and the space used for caching. In our context, creation
of projections for caching is piggybacked onto query execution,
and thus only involves inverted lists that are being retrieved from
disk by the query processor anyway. However, in reality there are
some costs associated with creating projections and inserting them
into the cache that need to be taken into account in order to get
good performance. In addition to a very small overhead in making
caching and query execution decisions, we have the following more
significant costs:

(1) Write cost: Since our projection cache is disk-based, a newly
inserted projection has to be written out to disk.

(2) Encoding cost: Before writing out the projection, it is en-
coded using the same index compression scheme that is used
in the inverted index.

(3) Projection creation: Even though projections are created en
passant during execution of a query, without additional disk
accesses, there is a certain CPU overhead due to necessary
changes in the query processor.

We report the first cost in our experiments in terms of the number
of blocks written out, and show that it can be kept at a fairly low
level compared to the savings in read costs. The second cost is
typically fairly small, provided that a fast compression scheme is
used for the index. In our case, we use a variable-byte compression
scheme evaluated in [33], which achieves good compression at a
low cost. A more subtle issue is the CPU overhead in creating
the projections. As we show later, even in online schemes all of
these costs can actually be kept at a very low level by adopting a
suitable cache admission policy that prevents the creation of too
many projections that are likely to be evicted from cache before
being used.

In the first part of our experimental evaluation, we report re-
sults in terms of “logical” disk block accesses, including disk reads
in query processing and disk writes for adding projections to the
cache, but ignoring the caching of lists in main memory. This gives
us a rough view of the relative performance of various schemes.
In Subsection 6.2, we then discuss in detail the CPU savings and
overhead due to projection creation, while Subsection 6.3 evalu-
ates the effect of adding list caching. We note here that the optimal
choice of caching policies depends on the relative speeds of disk
and CPU, the choice of compression scheme, and whether the in-
dex is primarily disk-based or memory-based, and we are unable to
evaluate all cases in the limited space. However, we will show that
significant performance gains are possible both for primarily disk-
based and memory-based index structures, and that the overhead of
our schemes is very low.

5. BASIC POLICIES FOR INTERSECTION
CACHING

In this section, we study cache maintenance policies for intersec-
tion caching. We first define the problem and discuss complexity
issues, then present a greedy algorithm for the offline version of
the problem, and then describe the Landlord algorithm [39, 11] for
weighted caching.

5.1 Problem Definition and Complexity
Recall that we are given a sequence of queries Q = q0, q1, . . . ,

ql−1, where qi = {ti
0, t

i
1, . . . , t

i
di−1}. For any query q = {t0, t1,

. . . , td−1} that is executed, we can generate and cache any projec-
tions It→t′ with t, t′ ∈ q, subject to the maximum cache size C.
The size of It→t′ is |It→t′ |. Query q can be executed by scanning,
for each t ∈ q, either It or any It→t′ with t′ ∈ q that is currently
in the cache. The cost of executing the query is equal to the sum of
the lengths of the lists that are scanned, and our goal is to minimize
total query execution cost.

We note that the results in this section can be stated either in
terms of intersections or projections. In the offline version of the
problem, we assume that the sequence of queries is known ahead of
time and that the set of projections in the cache is selected and cre-
ated before the start of execution. In the online version, queries are
presented one at a time and projections can be created and cached
during execution of queries as described above and evicted at any
point in time. For simplicity, we do not charge for the cost of creat-
ing the projections in the above definition, though our later experi-
ments will also consider this issue.

For the offline version, it is not difficult to see that the prob-
lem is NP-Complete through a reduction from Subset Sum [17], as
are many other caching problems that allow arbitrary object sizes.
However, this observation does not really seem to capture the full
complexity of our problem. We can strengthen the result as follows.

THEOREM 1. The offline problem is NP-Complete even in the
case where all projections are of the same size and queries are
limited to at most 3 terms.

Proof sketch: By reduction from Vertex Cover. Given a graph
G = (V, E) and an integer k, we construct an instance of our
caching problem as follows. We have one term tu for each node
in u ∈ V , and in addition we have a special term t′. For each
edge (u, v) ∈ E, we create a query {tu, tv, t′}. We assume that
all projections between two terms are of the same size (this can be
achieved by making all lists disjoint except for a small set of doc-
ument IDs that appear in all lists), and select a cache size that fits
exactly k projections. We also assume that list It′ is significantly
larger than all of the Itu

, say |It′ | > 3 · |E| · |Itu
|. Then there

exists a vertex cover of G of size k iff there exists a selection of
cached projections that allows the query trace to be executed with
total cost less than |It′ |.

We note that if all projections are of the same size and queries are
limited to 2 terms, then the problem can be solved in polynomial
time. On the other hand, the offline problem with 3 terms remains
NP-Complete if we allow creation and eviction of projections dur-
ing query execution, and if we charge a cost for the creation of
projections. We discuss the online problem further below.

5.2 A Simple Greedy Algorithm
While in reality we do not have prior knowledge of the query

sequence, the offline problem is nonetheless of practical interest
since it can be used to make cache space assignments for the future
based on analysis of recently issued queries. For this reason, we
now describe a simple greedy algorithm for the offline problem,
which in each step adds the projection to the cache that maximizes
the ratio of additional savings in query processing and projection
size. It can be implemented as follows:

1. For each query qi in the sequence Q and each projection
It→t′ with t, t′ ∈ qi, create an entry (t, t′, i, |It→t′ |, |It| −
|It→t′ |). Note that the last two fields are the size of the pro-
jection and the benefit when using it instead of the full list.

2. Combine all entries with identical t, t′ into a single one, but
with an additional field at the end, called the total benefit,
that contains the sum of the benefits in the combined entries,



and with the sequence of all query numbers i in the combined
entries attached to the new entry.

3. Load the entries into a heap that allows extraction of the ele-
ment with maximum ratio of total benefit to projection size.

4. Repeatedly extract an element and add it to the cache. If
it does not fit, discard the element and choose another one
until the heap is empty. After each extraction of an entry
(t, t′, ∗, ∗, ∗, ∗), decrease the total benefit of all projections
(t, t′′, ∗, ∗, ∗, ∗) for which t, t′, t′′ appear in a common query.

The size, and thus benefit, of a projection can be efficiently esti-
mated using simple sampling techniques [10] and hence a scan of
the inverted lists is not really required. Ignoring these estimation
costs, the above algorithm runs in time O(κ lg(κ)) in the worst
case, where κ =

� l−1

i=0
k2

i , i.e., the sum of the squares of the query
sizes. In practice, this is a moderate constant times the number of
queries since most queries are short.

5.3 The Landlord Algorithm
We now consider the online problem. The projection caching

problem is an instance of a weighted caching problem, where ob-
jects have arbitrary sizes and caching of an object results in savings
that are independent of (or at least not linear in) their sizes. Such
problems have been studied, e.g., in [39, 11], where a class of algo-
rithms called Landlord is proposed and analyzed using competitive
analysis. We note, however, that our problem comes with an addi-
tional twist reminiscent of view selection problems in databases, in
that we could use either Ia→b or Ia→c in executing a query {a, b, c}
but there is little benefit in using both. Thus, a projection for a fre-
quently occurring pair may actually not have much benefit since
there may be even better projections available in the cache for most
queries where it is applicable. Landlord works as follows:

1. Whenever an object is inserted into the cache, it is assigned
a deadline given by the ratio between its benefit and its size.

2. If another object needs to be evicted to make room for a new
one, we evict the element with smallest deadline dmin, and
deduct dmin from the deadlines of all elements currently in
the cache.

3. Whenever an element in the cache is used, its deadline is
reset to some appropriate value discussed later.

A note about Step 2: instead of deducting dmin from all entries, the
algorithm is best implemented by summing up all values of dmin

that should have been deducted thus far, and taking this sum prop-
erly into account. Thus, the algorithm is highly efficient. If in Step
3 deadlines are reset to their original value (ratio between bene-
fit and size), then the algorithm can be seen as a generalization of
LRU for weighted caching problems. In [39, 11], the algorithm is
shown to be competitive with an optimum solution, but the analysis
does not carry over to our problem due to the above “twist”. In the
following, we will also experiment with several variations of the
Landlord approach that perform much better on our workload.

6. EXPERIMENTAL EVALUATION
We now present our experimental setup and give some baseline

results for the basic versions of the greedy and Landlord algo-
rithms. In Subsection 6.1 we present and evaluate modified policies
with improved performance, and Subsection 6.2 discusses the CPU
overhead of projection creation. Finally, Subsection 6.3 presents an
evaluation over all three levels of caching.

Data sets and experimental setup: For our experiments we
used a subset of 7.5 million pages selected at random from a crawl

of about 120 million web pages crawled by the PolyBot web crawler
[34] in October of 2002. This subset size corresponds to a scenario
where the pages are evenly distributed over a 16-node search en-
gine, which is the typical setup in our lab. In this case, since pro-
jection caching occurs at each individual node, only one machine
in the cluster was used. The uncompressed size of the pages was
over 100 GB, and after duplicate elimination and indexing we ob-
tained an inverted index structure of size about 10.8 GB. Though
current commercial engines index several billion pages, these are
partitioned and replicated over thousands of machines. We believe
that our setup of 7.5 million pages per node is a realistic scenario.

Queries were taken from a large log of queries issued to the Ex-
cite search engine from 9:00 to 16:59 PST on December 20, 1999.
For the experiments, we removed queries with stopwords and with
words that do not appear in our data collection. The number of re-
maining queries is 1836248 with a total of 207788 different words,
and the average number of words per query is 2.88. We assume
a result cache with infinite size on this query log; in general, we
expect that result cache size and eviction policy are unlikely to be
critical in terms of overall system design and resources.

We created two different experimental setups to evaluate query
processing costs. Using one setup, we measured the disk access
costs of the various policies in terms of the total number of 4 KB
disk block accesses. We have found that this provides a reasonable
estimate of the cost of our actual query processor [24] when using
one or two disks and a fast CPU. We used another setup where
we preloaded inverted lists into main memory to measure the CPU
costs of the methods, which is important on systems with more I/O
bandwidth. All experiments were run on a Dell Optiplex 240GX
machine with a 1.6 GHz P4, 1 GB of memory, and two 80 GB
disks running Linux.

Query characteristics: We first look at the distribution of the
ratios and total costs for queries with various numbers of terms,
by issuing these queries to our query processor with caching com-
pletely turned off. In Figure 6.1, we see that even without result
caching, nearly half of the total block access cost was spent on
queries with five or more terms, although these queries represent
only about 15% of all queries.
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Figure 6.1: Distribution of frequencies and total costs for
queries with different numbers of terms.

Next, we look at how this distribution changes as we filter out
repeated queries using result caching. Figure 6.2 shows the num-
ber of queries before and after result caching for different num-
bers of terms in the query. We see that the number of queries with



few words is reduced significantly, while fewer queries with four
or more terms are filtered out. Thus, after result caching, an even
higher percentage of the total block accesses will be spent on long
queries, and the average cost per remaining query increases from
about 2000 to almost 2700 blocks. We also ran some preliminary
measurements on projection caching with infinite cache size, to
estimate the maximum potential benefit from adding this feature.
Our results, omitted due to space constraints, showed that while
only a small number of queries were completely covered by pro-
jections (meaning, for each term there was a projection that could
be used instead of the complete list), many queries had at least one
or two projections that can be used. This was particularly the case
for longer queries, and thus we would expect projection caching to
work well in combination with result caching.
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Figure 6.2: Number of queries before and after result caching.
Results for the greedy algorithm: We now present results for

the basic versions of the greedy and Landlord algorithms. In all
our experiments, we make sure to “warm up” all levels of caches
by running over most of the query log and only measuring the
performance of the last 200000 queries (or some other number in
some cases). The costs are stated as the average number of blocks
scanned for each query that is not filtered out by result caching,
without list caching which will further improve performance. Thus,
the baseline without projection caching is about 2700 block ac-
cesses per query. The overall performance across all three caching
levels is evaluated in Subsection 6.3.

In our first experiment, we used the greedy algorithm from the
previous section on a window of 250000 queries (the training win-
dow) directly preceding 250000 queries that were measured (the
evaluation window). Thus, recent queries are analyzed by the greedy
algorithm to allocate space in the cache for projections likely to be
encountered in the future, and only these projections are allowed
into the cache. There are two different ways in which this approach
could be used: (1) After analyzing the queries in the training win-
dow, we could preload the projection cache with the projection se-
lected by the greedy algorithm. This could be done say once a day
during the night in a large bulk operation in order to improve per-
formance during peak hours. (2) The second approach is to create
the selected projections only when we encounter the corresponding
pair in the evaluation window.

From Figure 6.3, we see that the performance of these two ap-
proaches is very similar across a range of cache sizes. The online
method only benefits from projection caching the second time a
pair is encountered in the evaluation window, since the projection
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Figure 6.3: Block accesses per query for greedy projection
caching with various cache sizes. Zero cache size means no pro-
jection caching. Shown are two curves, one for the case of pre-
computed projections and one where they are created online.

cache size 0.12 0.22 0.44 0.85 1.62 2.91 4.71

blocks / query 0.13 0.24 0.47 0.89 1.70 3.05 4.94

Table 6.1: Cost of online projection creation in 4KB block
writes per query, for various amounts of cache space in GB.

is created during the first time. The other method benefits even on
the first occurrence, but uses almost half the cache space for pre-
computed projections that are never used in the evaluation window.
Note that the cache size plotted in Figure 6.3 is not the maximum
cache size assumed by the greedy algorithm, but the amount of
cache that is actually filled with projections (which is much lower
than the size assumed by the greedy algorithm in the online case).

We observe that even with only 1 GB cache size (less than 10%
of index size), we already get a significant improvement to about
1800 blocks per query. In the online case, we did not include the
overhead due to creation of intersections in Figure 6.3, but as shown
in Table 6.1 the number of blocks written out per query is fairly
small. For the other case, we ignore the cost of preloading the pro-
jections. The results indicate that there is probably not too much
gained from precomputing projections, and that an online approach
is preferable. In fact, it is not difficult to improve the results for the
online case by using a sliding window approach that avoids starting
out with an empty cache at the start of each new window. However,
as we show later, online policies based on tuning the Landlord ap-
proach perform even better, and thus we omit discussion of further
optimizations of the greedy approach.

Performance of basic Landlord: In Figure 6.4, we show results
for the basic Landlord algorithm where we reset deadlines to their
original values whenever a cached projection is used again. We
observe improved performance in terms of the number of blocks
scanned per query compared to the greedy algorithm, although this
is partly due to the warm cache at the start of the measurement
period. However, the amount of block writes in Landlord, shown in
the second graph on top of the read costs, is quite high since a large
number of projections are created and then quickly evicted from
the cache without ever being used. Once we take this overhead into
account, the basic Landlord approach does not provide any benefit
for most cache sizes compared to not using projection caching.

In the next subsection, we present several refinements of the ba-
sic Landlord approach that dramatically reduce the overheads of
the approach while also further improving block read costs. The
main idea is that we need an appropriate cache admission policy,
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Figure 6.4: Block reads (lower graph) and block reads plus
writes (upper graph) per executed query, without projection
caching and with different amounts of cache space under the
basic Landlord approach.

in addition to a good cache eviction policy, to prevent unprofitable
projections from being generated in the first place. We note that this
is different from many other caching scenarios (e.g., web caching),
where it may be preferable to just add all encountered objects to the
cache and rely on the eviction policy to weed out useless entries.

6.1 Optimized Landlord Policies
We now consider how to engineer the basic Landlord policy to

improve performance. We present and evaluate two main ideas:
(1) setting a more generous deadline for projections already in the
cache that are being renewed, and (2) limiting the number of projec-
tions that are generated by not inserting every possible projection
on the first encounter. Due to space constraints, we can only give a
sample of representative experimental results.

Landlord with α parameters: In the basic Landlord approach
a projection has its deadline reset to the original value whenever
it is used again. In order to give a boost to projections that have
already proved useful, versus newly encountered pairs of terms, we
decide to give a longer deadline to projections that are being reset.
(Thus, a tenant that renews gets a longer lease than a tenant that
just moves in.) In particular, a renewed projection gets its original
deadline plus a fraction α of its remaining deadline. In addition, we
experimented with keeping a different fraction α′ of the remaining
deadline on the second and subsequent renewals. We experimented
with a number of values for α and α′ and found very good per-
formance for α = 0.3 and α′ = 0.2, though many other values
between 0 and 1 achieve similar results.

Cache admission policies: We experimented with several tech-
niques for limiting the number of projections that are created and
inserted into the cache. A simple approach is to never insert a pro-
jection for a pair of terms that has not been previously encountered
(say, in the last few hours). A more refined rule would also take
into account the cost of projection creation and the amount of ben-
efit that results if the projection is used instead of the full lists.

After some experimenting we arrived at the following policy. We
choose a window of the previous t queries, for which we maintain
statistics about the encountered queries. A projection Ia→b is only
inserted into the cache if the corresponding pair of terms has oc-
curred more than

1 + β ·
|Ia→b|

|Ia| − |Ia→b|

times within the last t queries, for some parameter β. (We use β =
1.0 which works quite well.) In particular, this means we never
insert if the pair of terms has not previously occurred during these t
queries. Moreover, decreasing t will result in fewer insertions into
the cache, and a projection Ia→b that is not much smaller than the
list Ia is only inserted if it has occurred repeatedly. The choice of
t is done as follows. We select an insertion overhead that we are
willing to tolerate, say b = 10 blocks of projections that are written
out per query on average. We start out with an initial value of t, say
t = 100000, periodically evaluate the average number of blocks
written out per query, and then increase or decrease t to adjust for
any discrepancy. We found that this converges quickly and results
in a number of block writes per query very close to the target b.

Figure 6.5: Comparison of no projection caching (leftmost
bar), 1 GB cache size (next 4 bars), and 4 GB cache size (right-
most 4 bars), for various refinements of Landlord. For each
cache size, we show the read cost (solid portion of bar) and
write cost (outlined) for four policies from left to right: (a) basic
Landlord, (b) with α = 0.3 and α′ = 0.2, (c) same with inser-
tion only on second encounter of a pair, and (d) with alphas and
the cache admission policy described above. For the last case,
we choose b = 5, resulting in negligible (in fact, invisible in this
chart) write cost.

The results of these optimizations are shown in Figure 6.5, which
indicate that fine-tuning of the policies is extremely important for
our problem. The best approach based on the above rule performs
slightly more block reads on query processing, but is extremely
conservative about inserting projections and thus minimizes write
costs into the cache. In the next subsection, we show that this also
results in small CPU overhead for piggybacked projection creation
during query processing.

A hybrid method: We also experimented with a hybrid between
Landlord and the greedy method that shows promising results and
should perform even better though we have not completely engi-
neered out all bottlenecks. In the hybrid, we use a sliding window
approach where periodically (e.g., every 10000 queries) we use the
greedy algorithm to analyze a certain window of recent queries
(say, 60000 queries). Any projection chosen by the greedy algo-
rithm is marked as protected: once it is cached it cannot be evicted
until it is unprotected in another run of the greedy algorithm. We
also simultaneously run Landlord with optimizations to utilize any
cache space not claimed by the greedy algorithm. We experimented
with various ratios of cache size used by the greedy method versus
total cache; details are omitted due to space constraints.



6.2 CPU Overhead of Creating Projections
We now address the CPU overhead of creating projections in

our query processor. To do so, we need to understand how the
query processor generates intersections of inverted lists during nor-
mal query execution. This is done in a document-at-a-time manner
by simultaneously scanning all lists. More precisely, we first scan
an element from the shortest list, and then search forward for a
matching element in the second-shortest list. If such an element is
found, we search forward in the next list, otherwise we return to the
shortest list. For queries with more than two or three keywords, it
is quite common that many of the forward searches into the longest
list can skip several blocks at a time, given an appropriate indexing
scheme. However, it is rare for skips to be long enough to improve
disk performance on modern hard disks, since each inverted list
is laid out sequentially on disk for optimized scanning. However,
skipping blocks does result in savings in list decoding since we can
avoid decoding the entire list (assuming a blocked coding scheme).

However, when generating a projection, say between the longest
and the shortest list, we often have to decode almost all the blocks,
resulting in higher CPU cost than normal query processing. The
additional CPU cost is related to the size of the created projection,
and thus policies that decrease the number of block writes for cre-
ated projections also tend to do well in terms of CPU performance.
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Figure 6.6: Cost per query for optimized Landlord, relative to a
query processor without projection caching (100%). We show
the number of tuples encoded and decoded, CPU time, and the
number of disk blocks accessed. We also plot the CPU cost un-
der the assumption that projection generation is free; for small
values of the target overhead this is very close to the total CPU
cost, indicating that projection generation can indeed be done
en passant and essentially for free during query execution.

In Figure 6.6, we show the cost of query processing with opti-
mized projection caching versus a query processor without projec-
tion caching, measured by executing queries on memory-resident
inverted lists. We see that policies with low b, i.e., that are very
conservative about generating projections, perform well in terms of
CPU cost, and that CPU cost closely correlates with the total num-
ber of tuples encoded and decoded. Projection caching performs
additional decoding of tuples during creation of projections, but
saves decoding later when the projections are used in other queries.
Overall, we observe a 25% decrease in CPU cost, implying a 33%
increase in query throughput in a CPU-limited system, while the
benefit for disk-bound systems is even higher. We experimented
with several block sizes for the blocked compression scheme, and

observed similar relative behavior from a few hundred bytes to sev-
eral KB. (In absolute terms, the smaller block sizes result in lower
CPU cost for query processing as they decode fewer postings over-
all, but the relative benefit of projection caching is about the same.)

6.3 Evaluation of Multi-Level Caching
We now evaluate query processing performance over all three

levels of caching. As suggested in [32] we use LRU for list caching.
Inverted lists corresponding to projections are treated by the list
caching mechanism just as any other inverted list (this turns out to
perform best). For projection caching we use the optimized version
of Landlord from the previous subsection, with negligible overhead
for generating projections online. Note that in the following, we
report the average number of block reads over all queries, including
those filtered out by result caching. This allows a comparison over
all three levels of caching.
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Figure 6.7: Number of block reads per query, for the following
seven schemes (from left to right): no caching, result caching,
result plus projection caching, result plus list caching and all
three levels of caching with a 256 MB list cache, and result plus
list caching and all three levels of caching with a 4 GB list cache.

Without any caching, about 2000 blocks are read for each query;
this is reduced to less than 1400 blocks using just result caching
(with each surviving query actually having a cost of 2700 blocks as
shown in Figure 6.3). This is brought down to less than 700 blocks
per query by adding projection caching. Using result caching and
list caching with a 256 MB list cache, we get a performance of
about 730 blocks, which is reduced to about 540 blocks by adding
projection caching. Note that a cache of 256 MB is about 2.5%
of the total index size of over 10 GB, and thus an example of a
mainly disk-bound setup. On the other hand, when we have a list
cache that can hold almost 40% of the total index (shown in the
two rightmost bars), then disk access decreases to a very low level,
which means that CPU becomes the primary bottleneck. In this
case, projection caching increases disk accesses but reduces CPU
work significantly as shown in the previous subsection, which is
a desirable outcome for this case. (Essentially, if disk is not the
bottleneck, it is better to fetch a small projection from disk than to
use a much larger inverted list that is already in memory.)

7. CONCLUDING REMARKS
In this paper, we have proposed a new three-level caching archi-

tecture for web search engines that can improve query throughput.
The architecture introduces a new intermediate caching level for
search engines with AND query semantics (including essentially all



current major engines) that can exploit redundancies in the query
stream that are not captured by result and list caching in two-level
architectures. Our experimental evaluation on a large query log
from the Excite search engine showed significant improvements in
performance due to the extra level of caching. However, actual
performance is highly dependent on a good selection of caching
policies and the system bottlenecks in the particular architecture.

There are several open questions that arise from this work. In
particular, it would be interesting to perform a more formal study
of the offline and online intersection caching problems defined in
this paper. For example, one could study approximation results
for the greedy heuristic, or competitive ratios for the Landlord ap-
proach in our scenario, or look at the case where we include the cost
of generating projections into the corresponding weighted caching
problem. Another interesting theoretical question concerns the per-
formance of caching schemes on certain classes of input sequences,
e.g., sequences that follow Zipf distributions on term frequencies.

It appears that the simple LRU scheme previously also used in
[32] is actually not the best possible policy for list caching. In fact,
we have recently seen interesting improvements based on adapta-
tions of the Landlord algorithm with α and α′ parameters to list
caching. We note that this approach is also related to recent work by
Megiddo and Modha [26] and others on caching policies that out-
perform LRU in a variety of applications. We are currently studying
list caching policies in more detail.

On the more practical side, we expect that additional tuning of
the caching policies and the availability of larger traces would show
some additional gains, and we also plan to fully integrate intersec-
tion caching into our existing high-performance query processor.
Another open question concerns the relationship between intersec-
tion caching and specialized index structures for common phrases.

Finally, it would be very interesting to evaluate combinations of
caching and pruning techniques in future work. We believe that in-
tegrating projection caching into pruning techniques such as [24]
should not be difficult for two reasons: First, as discussed a pro-
jection can be treated just as any other inverted list in the index.
Second, we observed that under a good choice of policies and pa-
rameters, the overhead of generating projections is tiny, and would
still be small even when aggressive pruning brings down the base-
line cost. We note that many search engines appear to use the dis-
tance between the query terms in a page as an important factor in
ranking. To our knowledge there is no published work on how to
apply pruning to such types of ranking functions, which are not
based on a simple combination of the scores for different terms.
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