
Local Methods for Estimating PageRank Values

Yen-Yu Chen Qingqing Gan Torsten Suel

CIS Department
Polytechnic University
Brooklyn, NY 11201

{yenyu, qq gan}@photon.poly.edu, suel@poly.edu

ABSTRACT

The Google search engine uses a method called PageRank,
together with term-based and other ranking techniques, to
order search results returned to the user. PageRank uses
link analysis to assign a global importance score to each
web page. The PageRank scores of all the pages are usually
determined off-line in a large-scale computation on the en-
tire hyperlink graph of the web, and several recent studies
have focused on improving the efficiency of this computa-
tion, which may require multiple hours on a workstation.

However, in some scenarios, such as online analysis of link
evolution and mining of large web archives such as the In-
ternet Archive, it may be desirable to quickly approximate
or update the PageRanks of individual nodes without per-
forming a large-scale computation on the entire graph. We
address this problem by studying several methods for effi-
ciently estimating the PageRank score of a particular web
page using only a small subgraph of the entire web. In our
model, we assume that the graph is accessible remotely via
a link database (such as the AltaVista Connectivity Server)
or is stored in a relational database that performs lookups
on disks to retrieve node and connectivity information. We
show that a reasonable estimate of the PageRank value of a
node is possible in most cases by retrieving only a moderate
number of nodes in the local neighborhood of the node.

Categories and Subject Descriptors

H.3.5 [Information Storage and Retrieval]: Online In-
formation Services

General Terms

Algorithms, Performance

Keywords

Pagerank, search engines, out-of-core, external memory al-
gorithms, link-based ranking, link database

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this n otice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’04, November 8–13, 2004, Washington, D.C., USA.
Copyright 2004 ACM 1-58113-874-1/04/0011 ...$5.00.

1. INTRODUCTION
As the World Wide Web has grown from a few thousand

pages ten years ago to several billion pages at present, tradi-
tional term-based ranking techniques have become increas-
ingly insufficient at returning good results. For this reason,
a large number of studies have proposed new ranking tech-
niques based on the analysis of the hyperlink structure of the
Web. Probably the two best-known examples of link-based
ranking methods are the HITS [18] and PageRank [22] algo-
rithms. The PageRank algorithm, in particular, is used in
the highly successful Google search engine.

PageRank is based on the idea of assigning a global im-
portance score, called PageRank value, to each page on the
web based on the number of hyperlinks pointing to the page
and the importance of the pages containing those hyperlinks.
PageRank values are usually computed in an off-line man-
ner, during a large-scale iterative computation on the entire
web graph. Several recent studies [3, 10, 13, 17] have looked
at ways to optimize this computation, which may take many
hours on a typical workstation for large graphs.

However, there are some situations in which a global com-
putation on the entire graph is impractical, e.g., if the the
link information of the whole web graph is not easily acces-
sible and we need a quick estimation for a particular web
page. In particular, users may have only access to a limited
subset of the web, or may have to access the graph via a re-
mote connectivity server [5] such as the link: query facility
in AltaVista, or via a similar interface to a local meta data
repository in a disk-based relational database. For example,
we might be interested in the evolution of the PageRank of a
particular page tracked by the Internet Archive, but cannot
afford multiple PageRank computations on billions of pages
(We note that the Internet Archive does currently not yet
provide the remote Connectivity Server functionality that
would be needed in this case).

In this paper, we study local methods for determining
reasonable estimates of the PageRank values of individual
nodes. The basic approach in all our methods is to expand a
small subgraph around the target node and to use this sub-
graph as the basis for our estimation. Our goal is to mini-
mize the cost of our methods, as measured in terms of the
size of the subgraph that is retrieved, while maximizing the
accuracy of our estimation. We show that on average, a rea-
sonable estimate of the PageRank of a node can be obtained
by visiting a few dozen to a few hundred nodes. We compare
several methods, and in the process also discuss the correla-
tion between PageRank and simple statistical measures such
as weighted and unweighted in-degrees. Our approach can

also be used to estimate current PageRank values based on
slightly outdated values from an old graph, but under differ-
ent assumptions than the work in [11], and we evaluate this
approach as well. Our results assume that the graph is ac-
cessible remotely via a link database (such as the AltaVista
Connectivity Server) or is stored in a relational database
that performs lookups on disks to retrieve node and connec-
tivity information, and thus the cost of the methods under
this model is proportional to the number of nodes that are
visited.

The remainder of the paper is organized as follows. We
first provide a brief review of the PageRank method. Sec-
tion 3 is the main section of this paper, and describes our
local methods for estimating PageRank values and evaluates
their performance on a large subgraph of the web. Section 4
discusses related work, and finally Section 5 provides some
concluding remarks.

2. REVIEW OF PAGERANK
In this section, we review the PageRank technique. Recall

that the Web can be viewed as a directed graph whose nodes
are web pages and whose edges are the hyperlinks between
pages. The in-degree of a node is the number of edges (hy-
perlinks) pointing to it, and the out-degree of a node is the
number of distinct hyperlinks out of it. We use N to denote
the number of nodes in the graph.

The Basic Idea: PageRank was proposed in [7, 22] as
a ranking mechanism for the Google search engine that as-
signs to each page a global importance score based on link
analysis. The basic idea is that if page u has a link to page
v, then the author of u is implicitly saying that page v is
somehow important to u. Thus, page u is conferring some
amount of importance onto v, and this amount is determined
by the importance of u itself and the number of outlinks in
u over which it is divided. This recursive definition of im-
portance can be described by the stationary distribution of
a simple random walk over the graph, where we start at an
arbitrary node and in each step choose a random outgoing
edge from the current node. (Several papers [8, 6, 24] have
proposed heuristics for assigning different weights to the out-
going edges in a node; we assume each edge is selected with
equal probability though our techniques could be adjusted
to other choices.) According to this random walk model, the
importance r(p) of a page p is determined as:

r(p) =
X
q→p

r(q)

d(q)
, (1)

where d(p) is the out-degree of page p. This can be rewritten
in matrix form as follows. Let the nodes be labeled from 0
to n − 1, and define matrix L by L[i, j] = 1/d(i) if there
is a link from node i to node j and 0 otherwise. (Thus, L
is a ”degree-scaled” version of the adjacency matrix of the
graph.) Then we obtain

~r = L · ~r,

where ~r is the vector of rank values over all pages. This leads
to the following iterative computation for approximating the
rank vector r over all of the pages on the web. First, initial-
ize r(0)(p) to 1/N for all pages p. Then, in each iteration,
update the rank vector using

r(i)(p) =
X
q→p

r(i−1)(q)

d(q)
, (2)

for i = 1, 2, . . . , n, or in matrix form ~r (i) = L · ~r (i−1). We
continue the iterations until the rank vector stabilizes to
within some threshold. The final vector is then used to in-
fluence the ranking of the search results returned by Google,
though details on this aspect are not publicly disclosed.

Some Technical Issues: The above formulation assumes
that each node has at least one outgoing edge. However, this
is not true for web crawls or even the entire web, as there are
many pages with out-degree zero (called leaks). Such pages
would result in a loss of total rank value from the system.
One solution is to prune the graph, by iteratively removing
any leak nodes in G.

Even after complete pruning, the graph is still not strongly
connected. There will be many smaller and even a few larger
groups of pages that form separate strongly connected com-
ponents, maybe with links entering the component but no
links leaving it, that can act as rank sinks that “trap” large
amounts of rank value. This can be dealt with by adding
a dampening factor α, 0 < α < 1, to the random walk as
follows: in each step, we choose a random outgoing link with
probability α, and jump to a random node in the graph with
probability 1 − α. Thus we have

r(i)(p) =
1 − α

N
+ α ·
X
q→p

r(i−1)(q)

d(q)
. (3)

In the matrix formulation, we define a new matrix L′ with
L′[i, j] = α/d(i) if there is a link from node i to node j and
(1 − α)/N otherwise, and then use L′ instead of L. In our
experiments, we use α = 0.85.

Weighted In-Degree: One simplistic explanations of
PageRank would be of the form ”very similar to in-degree,
except it matters where the pointers come from”. This
would suggest that the PageRank value of a node might be
strongly correlated with its in-degree (which had been previ-
ously proposed as a ranking function [19]). It was observed
in [23] that this is in fact not the case. One obvious reason
is that the amount of PageRank sent across an edge depends
on the out-degree of the sending node. This motivates us to
define the weighted in-degree of a node p as:

wd(p) =
X
q→p

1

d(q)
,

where d(q) is the outdegree of page q. A natural question is
to what degree PageRank is related to weighted in-degree,
and we will run into this question later on.

3. ALGORITHMS AND EXPERIMENTAL
RESULTS

We start by describing the main idea underlying the meth-
ods that we propose. After introducing our experimental
setup, we describe and evaluate our methods one by one.

3.1 The General Idea
In our problem setup, we assume that we have a fetch op-

eration that allows us, given a URL or page ID, to retrieve
the in-degree and out-degree of the corresponding page plus
the sources and destinations of incoming and outgoing links,
respectively. Our cost measure is the number of fetch oper-
ations performed. (In the case where there are many incom-
ing links, our best methods actually do not require informa-
tion about all sources of links.) All our methods follow the
same simple approach based on three phases:

(1) Expansion: We build a subgraph starting from the
target node for which we are interested in estimating
the PageRank value, by expanding backwards from the
target node following reverse hyperlinks. We stop this
expansion phase after a while based on some criterion.
The cost of this phase is equal to the size of the sub-
graph we build. An example of a subgraph is shown
in Figure 1, with a target node on the right, three in-
ternal nodes, and five boundary nodes on the left side.

(2) Estimation: We use a heuristic to estimate the PageR-
ank of each boundary node, or the PageRank flowing
into the boundary node from the rest of the graph.
The simplest heuristic is to estimate it as the average
PageRank value in the graph, 1/N . This phase does
not involve any fetch operations.

(3) Iteration: We run the standard iterative algorithm
for PageRank on the subgraph, in each step putting
our estimated value into the boundary nodes, adding
the random jump value of 0.15 to the internal nodes,
and removing any flow leaving the subgraph. After
some iterations, we use the PageRank in the target
node as our estimate. This phase also does not involve
any fetch operations.

Figure 1: An expanded subgraph in our approach.

Figure 1 shows a subgraph with target node, internal
nodes, and boundary nodes. Similar to [11], we can look at
the rest of the graph as being abstracted into one supernode.
There are three types of edges in our graph, incoming edges
that come from outside the subgraph into a boundary node,
internal edges within the subgraph, and outgoing edges leav-
ing the subgraph. In addition, there is a known amount of
value coming into each node via the random jump. The es-
timation error of our method will depend on how accurately
we estimate the PageRank values of the boundary nodes,
which itself depends on how much rank value enters over
the incoming edges, and on the size of the subgraph since
we hope that errors will largely cancel out given a sufficient
number of boundary nodes.

3.2 Experimental Setup
Our algorithms were coded in Perl, with some subrou-

tines in C for CPU-intensive computations. We used two

web graphs of about 120 million pages crawled by us dur-
ing October 2002 and May 2001. (The old graph was only
used in one of the experiments.) Following Haveliwala [13],
we pruned the graph twice by removing leak nodes; this re-
sulted in a highly connected graph with 51, 181, 520 nodes
and 783, 407, 543 links, for an average out-degree of 14.5 in
the new graph. We then stored the link information for the
graph in a Berkeley DB database which required about 20
GB storage space. This provides an adjacency-list type in-
terface to the graph similar to connectivity servers [5] and
search engines with support for link: queries, or relational
web meta data repositories, with each fetch operation requir-
ing a disk access. To measure the accuracy of our estima-
tions, we also performed the global PageRank computation
on the entire graph. We report our experimental results for
a set S of 100 randomly chosen target nodes.

Two measurements are used to identify the accuracy of
our methods. One is relative error e(t) of a target node

t, defined as e(t) = |r
′

(t) − r(t)|/r(t), where r
′

(t) and r(t)
are the estimated and precise PageRank values, respectively.

The other one is called precision, defined as p(t) = r
′

(t)/r(t).
Thus, precision tells us whether we tend to over- or under-
estimate the correct result. We typically plot our results in
terms of the average relative error and standard deviation,
and also show scatter plots for precision.

3.3 A Naive Method
In this method, we build the subgraph by simply expand-

ing from the target node backwards for a fixed number of
levels k, i.e., we include all nodes from which the target can
be reached in at most k steps. We then estimate the PageR-
ank of each boundary node as 1/N , the average value in
the graph. The results are shown in Figure 2, which shows
the average error and cost per target node. Figure 3 gives
a scatter plot of the precision and cost values for 6 levels.
As we see, we eventually get average relative errors slightly
below 10%, though at a high cost. For example, with three
levels, we obtain an average relative error of 10.07% at an
average cost of 2520 fetch operations per estimation.

Figure 2: Error versus cost for different numbers of
levels in the naive method.

We note that the size of the subgraph explodes to about
250, 000 nodes after six levels, but even at that size errors

Figure 3: Precision versus cost for six levels in the
naive method.

are 7.5%. In the following, we look at smarter techniques
that do not expand the graph in a brute-force manner.

3.4 The Simple Influence Method
Considering the boundary nodes of the subgraph, we can

ask about the impact that each boundary node has on the
estimation at the target node. It should be obvious that for
some nodes, the impact is low since most of the PageRank
value entering the node will never arrive at the target node,
while others will have more impact since most paths from
this node go to the target node. We formally define the in-
fluence Ip of a node p as the fraction of PageRank value at
this node that will eventually arrive at the target node with-
out performing a random jump in between. We note that
influence is related to the inverse distance measure defined
by Jeh and Widom in [16]. The overall impact that a node
has on the estimation error at the target depends on its in-
fluence and the absolute PageRank estimation error at the
node (which we do not know). Formally, the absolute esti-
mation error at the target is upper-bounded by the sum over
all boundary nodes of the product of the absolute amounts
of these two terms, though for large numbers of boundary
nodes we expect errors with different signs to largely cancel
each other out.

A precise computation of the influence Ip of a node p on
target node t is quite expensive, and thus we approximate
this value as follows. We place one unit of rank value onto
p, and then simulate PageRank for a while until most of the
rank value has either left the subgraph (including random
jumps) or arrived at the target. In particular, we adopt the
OPIC approach recently proposed by Abiteboul et al. in [1]
for this problem. In this approach, we select a node cur-
rently containing some rank value, and fire it, resulting in
its rank value being pushed out of the node to other nodes.
We remove any rank arriving at the target, leaving the sub-
graph, or taking a random jump, and terminate this process
when the amount of rank still in the subgraph has decreased
below some threshold. We then estimate the influence by the
total amount of value that has arrived at the target. The
process can be made more efficient by firing in each step the
node that contains the most rank value (based on a heap
structure), and thus after O(s logα(ǫ)) firings the influence

value can be estimated within an additive term ǫ, where s
is the size of the subgraph.

Figure 4: Error versus cost for simple influence
method.

Figure 5: Precision at threshold 0.0001 versus cost
for simple influence method.

In our second method, we attempt to improve efficiency by
selectively expanding the subgraph only at boundary nodes
that have influence above some threshold c. In the following
experiment, we set c to 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005,
and 0.0001. Figure 4 shows results for the various thresh-
olds. When a large threshold is used, only few nodes are
expanded, but the error is very high. With a threshold of
0.005 we get an average relative error around 10% with a
cost of 1000, which is much better than before. However,
the standard deviation is still significantly higher than the
average error due to a few estimates that are way off.

3.5 The Indegree-Based Influence Method
The influence test provides useful information for choosing

when to stop expanding. However, some nodes with large
in-degree can create problems. If their influence is above the
threshold, then expanding them would be very expensive as

we have to fetch all nodes pointing to them. Not expand-
ing them and just estimating their value as 1/N is also a
problem, potentially even if their influence is low, since such
nodes typically have a large absolute PageRank. The im-
pact of such a node on the estimation at the target is given
by the product of its influence and its (in this case large)
absolute estimation error.

Thus, we need to refine our approach. In particular, we
use the following rule: If the influence of a node divided
by its in-degree is greater than the threshold c, we expand
the node by fetching its predecessors; otherwise, we stop.
This solves the first of the above issues. To solve the second
issue, we experiment with better heuristics for estimating
the PageRank of the boundary nodes. We compared the
following approaches:

(a) estimate the PageRank as 1/N as before.

(b) estimate the PageRank by assuming that each edge
from outside the subgraph into the boundary node
transmits a PageRank value of α/E, where E is the
total number of hyperlinks in the graph. Rank values
due to random incoming jumps and from other nodes
in the subgraph can be directly computed and do not
need to be estimated.

(c) estimate the PageRank using the weighted in-degree
defined in Section 2. We note that this would assume
that this measure is precomputed and stored in the
database, which may not be realistic.

Figure 6: Average relative error versus cost for in-
degree based influence methods.

In Figure 6 we show the cost of the method and the aver-
age relative errors for all three estimation approaches (the
cost stays the same), for various thresholds c. Also, Figure 8
compares the naive and simple influence methods from the
previous subsections to the method (b) above in terms of
the error/cost tradeoff. We see from Figure 6 that using
the number of links together with the influence to decide
whether to expand decreases the cost for a given thresh-
old value c compared to the simple influence method, and
that methods (b) and (c) perform much better than (a) in
terms of error. Also, we see from Figure 8 that (b) achieves
an overall better error/cost tradeoff than our earlier ap-
proaches, while Figure 7 shows improvements in the stan-
dard deviation due to fewer outliers.

Figure 7: Standard deviation versus cost for in-
degree based influence methods.

Figure 8: Comparison of error/cost tradeoffs for
three methods from Subsections 3.3, 3.4, and 3.5.

Concerning absolute numbers, using method (b) we get
an average relative error below 8% with an average cost of
118 fetch operations. We note that the cost of the influ-
ence computations and of the PageRank iterations in the
third phase are insignificant, and thus the number of fetches
provides a reasonable model.

3.6 Estimating Updated PageRank Values
To check the correctness of our code, we also ran an exper-

iment where we estimated the boundary nodes using their
exact PageRank values, to see if we would also obtain the
exact value at the target node (we did). This test raised
the following question for us: Suppose we have outdated
PageRank values of some or all nodes available from a pre-
vious crawl, and we want to estimate the current value, can
we do better by following our approach and estimating the
rank values of the boundary nodes using the old values? To
test this hypothesis, we used two different crawls that we
performed about 15 months apart using the Polybot web

crawler [25] on the same set of start pages and crawl poli-
cies. Thus, both crawls have 120 million pages before prun-
ing, and about 50 million afterwards. The two snapshots
have about 13.6 million pages and one million sites in com-
mon. We now briefly discuss the observed changes between
the two graphs.

Figure 9: Observed changes in PageRank between
old and new web graph (page level).

Figure 10: Observed changes in PageRank between
old and new web graph (site level).

In Figure 9, we show how many of the pages ranked in the
top N in the new graph were present in the old graph (total
height of column) and how many were also ranked in the top
N in the old graph (shaded part of column), for values of N
from 100 to the total number of nodes. In Figure 10, we show
results for a site-level view, where each site is represented
by its highest-ranked URL (with PageRank computed on a
page-level graph as before). We see clearly that pages that
are highly ranked in the new graph were also likely to have
existed and been crawled in the old graph, and in fact often
were already ranked high in the old graph. This tendency is
even stronger at the site level since in some cases sites move
their most highly ranked page to a different URL. We note

that according to [20], a breadth-first crawl of sufficiently
large size is likely to visit most pages with large PageRank.
We also refer to [4] for additional discussion of PageRank in
the context of web evolution.

Now we look at what happens if we directly plug old
PageRank values into boundary nodes instead of approxi-
mating them with our other techniques. For those nodes
where no old PageRank values are available, we use ap-
proach (b) in Subsection 3.5, i.e., estimation by in-degree.
Figures 11 and 12 show the results for this method. The
cost is the same as in Subsection 3.5, but the average error
is slightly worse.

Figure 11: Error versus cost when using old PageR-
ank values.

Figure 12: Precision versus cost when using old
PageRank values.

There seem to be two problems with this approach. First,
the old graph is quite old at 15 months and this limits the
quality of the results. Second, on closer examination we
find that many of the nodes with high PageRank, which
usually already existed in the old graph, have significantly
increased their in-degree and PageRank value. On the other
hand, some nodes have lost significant numbers of incom-
ing links. Thus, if such nodes are boundary nodes in our

expanded web graph, which is quite common due to our
pruning condition involving in-degree, this could result in
significant estimation errors.

This problem could be addressed by trying to correct the
old PageRank value for changes in in-degree, and we exper-
imented with two ideas. If dnew and dold are the new and
old in-degrees of some boundary node, respectively, then
we could estimate the new PageRank rnew of such a node as
dnew

dold

·(rold−(1−α))+(1−α), i.e., by normalizing the PageR-

ank due to incoming edges by the change in the number of
edges. Alternatively, we could add or substract α/E, the av-
erage flow over an edge in the graph, from the old PageRank
for each change in degree, i.e., rnew = rold+(dnew−dold)·

α

E
.

We refer to these correction rules as Rule1 and Rule2, re-
spectively. A third rule, Rule3, uses the first approach when
the new degree is smaller than the old degree, and the sec-
ond approach otherwise; the intuition behind this is that
deletions are at random from the current incoming edges,
while new incoming edges are from random nodes in the
graph. (This approach can be further refined if we know all
the URLs or IDs of the old and new incoming links.)

Figure 13: Error versus cost when using correction
methods in combination with old PageRank values.

In Figure 13 we show the results, for the basic approach
of using the raw old PageRank value and the three correc-
tion rules. We see that Rule1 does worse for high thresh-
olds but later does slightly better than the basic method.
The other two rules consistently, though only slightly, out-
perform the basic method, with Rule3 performing best and
achieving about 5.85% error in the best case. Thus, some
improvements are possible but we are limited by the age of
the graph.

3.7 Correlations between PageRank and
In-Degree Measures

In one of our two best methods, we used the in-degree of
the boundary nodes to estimate their PageRank, by multi-
plying the in-degree by the average edge flow in the entire
graph. In the other one, we used the weighted in-degree
with slightly better results. It was observed in [23] that the
in-degree is in fact not strongly correlated to the PageRank
value (although there is a slight correlation that makes it
at least better than estimating the value by 1/N for our

purposes). On the other hand, the weighted in-degree mea-
sure was not studied in [23]. This leads us to look at the
correlation between iterated versions of the weighted and
unweighted in-degree, shown in Table 3.1 below. We see
that while there is some correlation with in-degree (I), not
surprisingly this correlation largely disappears for two-level
(I-I) and three-level (I-I-I) iterated in-degree. On the other
hand, for weighted in-degree (WI), the correlation is much
higher and increases with more levels (WI-WI and WI-WI-
WI) to close to 1. Of course, computing the weighted in-
degree over several levels is really similar (but not identi-
cal) to expanding a subgraph by several levels (our naive
method) and thus not really a more efficient alternative to
our methods. For comparison, the correlation between new
and old PageRank values for those nodes that exist in both
graphs is 0.609.

I I-I I-I-I
correlation coefficient 0.37665 0.031919 0.003822

WI WI-WI WI-WI-WI
correlation coefficient 0.5305 0.67166 0.948538

Table 3.1: Correlations of in-degree (upper part)
and weighted in-degree (lower part) based measures
to PageRank.

3.8 Discussion of the Remaining Error
By optimizing our techniques step by step, we were able to

obtain average errors below 5% with a few thousand fetches.
We noticed that most of the target nodes have very small er-
rors, while a few others have fairly large errors. Recall that
in all our methods, if we put the correct PageRank value into
the boundary nodes, we get the correct PageRank value at
the target node. Thus, the error at the target node comes
from over- or underestimation of the PageRanks of bound-
ary nodes. More precisely, the influence of a boundary node
multiplied by the estimation error at the boundary node give
us an upper bound on the impact on the target node estima-
tion, though over- and underestimates at different boundary
nodes may cancel each other out. In particular, we have

|err(t)| ≤
X
b∈B

|err(b)| · inf(b),

where err(t) is the error at the target node, B is the set of
boundary nodes, and inf(b) is the influence of a boundary
node b.

In our measurements, we found that boundary nodes with
large influence, which due to our expansion criteria must
have large in-degrees, also tend to have large absolute es-
timation errors under our various heuristics. Thus, these
boundary nodes tend to limit the precision that we can
achieve with our approach. One solution would of course be
to expand backwards one more level from such a boundary
node, but this would increase the cost significantly. Another
approach would be try to better approximate the PageRank
of such a boundary node by selectively sampling and ex-
panding to some of the nodes outside the subgraph that
have links to the boundary nodes. This would work if a lot
of the incoming edges carry above or below average amounts
of PageRank, maybe due to certain characteristics of a par-
ticular region of the web. However, this approach would not
work if the estimation error at the boundary node is due to

a small number of incoming links that come from nodes with
very high PageRank and that thus carry a much larger than
average amount of PageRank. (Formally, sampling cannot
reliably estimate the sum or average of a large set of values
if that sum is dominated by a few very large values.) Thus,
while such selective expansion might help in improving the
precision/cost trade-off in some cases, it seems that in other
cases we still need to expand a very substantial subgraph in
order to reliably and precisely estimate the PageRank of the
target node.

4. DISCUSSION OF RELATED WORK
Link analysis techniques are playing an increasingly im-

portant role in web search engines, and a large number of
techniques have been proposed. The two best known ap-
proaches probably are PageRank, proposed in [7] and used
by Google, and the HITS method proposed by Kleinberg
[18]. A number of extensions of these approaches were sub-
sequently described; see, e.g., [14, 24, 8, 16, 21]. We refer to
[2, 9] for an overview of link ranking techniques. There is
also a lot of recent interest in efficient graph computations in
the database community, for scenarios such as graph data
mining and processing of ranked queries in database sys-
tems, where large graph data is often stored on disk in a
format similar to our approach.

Recent work by Chien et al. [11] studies the problem of
maintaining the results of a PageRank computations under
changes in the graph structure. Their technique is similar
to ours in that they also expand a small subgraph around
a point of interest, in this case a change to a link or node
in this graph, and collapse the rest of the graph into one
large supernode. Then resulting changes in the PageRank
values are propagated only within this graph. An important
difference is that in [11] the graph is expanded by following
forward links from the point of interest, while we expand
backwards until some appropriate stopping criterion is met.
As discussed, our approach can also be used to estimate
updated from outdated PageRank values, but in contrast to
[11] no knowledge of the precise changes in the web graph
is required.

Since the early days of search engines, counting the in-
degree of a node to estimate the page importance has been
used as a form of link-based ranking [19], and there is a
wealth of research that studies the in-degree properties of
the web graph. Simply counting the in-degree of a node
encourages spamming and is thus not considered a good
ranking method. However, it is interesting to try to relate
in-degree to PageRank and more advanced methods. In this
context, Pandurangan, Raghavan, and Upfal [23] studied
the relationship between PageRank and in-degree and dis-
cuss random graph models for capturing the PageRank, in-
degree, and out-degree distributions in the real Web. Their
results showed that there is only very weak correlation be-
tween PageRank values and node degrees, which is relevant
to our problem of estimating PageRanks of boundary nodes
discussed in Section 3.

The notion of the influence between two nodes also plays
a role in the work on Personalized Pagerank by Jeh and
Widom [16], which studies the efficient computation of per-
sonalized PageRank values based on a combination of pre-
computation and online computation on small subgraphs.
In our computation of the influence, we adapt a technique
proposed by Abiteboul, Preda, and Cobena [1] for the pur-

pose of approximating rank values during a crawl. Finally,
we note that PageRank estimation during a crawl based on
the already crawled part of the web is also performed in [15,
12]. However, these methods do not attempt to optimize
the precision of their estimates by expanding a subgraph in
a controlled fashion, but instead simply use the available
subgraph.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have described and evaluated several

heuristic algorithms for estimating PageRank values of in-
dividual pages without a global computation over the entire
graph. As we have shown, a reasonable estimate of the value
is possible in a few seconds on a typical workstation based
on maybe a few hundred disk or remote server accesses to
retrieve an appropriate subgraph. On the other hand, even
a larger amount of work does not result in a truly reliable
estimate due to the structure of the graph and in particular
due to the difficulty of dealing with boundary nodes with
large PageRank that can have a large impact on the target
node. For future work, it would be nice to evaluate the pro-
posed methods under a formal web graph model. We are
also interested in applying the methods to the analysis of
large archives of web data with multiple versions of pages
and an evolving link structure.

We are currently performing a more detailed comparison
of the structure of our two large web graphs and plan to
report these results in the final version of this paper. We
are also evaluating how our estimation methods fare when
we are only interested in the relative ordering of the PageR-
ank values of the different pages, rather than the absolute
PageRank values.

Acknowledgements:

This work was supported by NSF CAREER Award NSF
CCR-0093400 and the New York State Center for Advanced
Technology in Telecommunications (CATT) at Polytechnic
University, and by equipment grants from Sun Microsystems
and Intel Corporation. Yen-Yu Chen was also supported by
a Sun Foundation (Taiwan, R.O.C.) Fellowship.

6. REFERENCES

[1] S. Abiteboul, M. Preda, and G. Cobena. Adaptive
on-line page importance computation. In Proc. of the
12th Int. World Wide Web Conference, May 2003.

[2] A. Arasu, J. Cho, H. Garcia-Molina, and S. Raghavan.
Searching the web. ACM Transactions on Internet
Technologies, 1(1), June 2001.

[3] A. Arasu, J. Novak, Tomkins A, and J. Tomlin.
Pagerank computation and the structure of the web:
Experiments and algorithms. In Poster presentation at
the 11th Int. World Wide Web Conference, May 2002.

[4] R. Baeza-Yates, F. Saint-Jean, and C. Castillo. Web
dynamics, age and page quality. In String Processing
and Information Retrieval (SPIRE), September 2002.

[5] K. Bharat, A. Broder, M. Henzinger, P. Kumar, and
S. Venkatasubramanian. The connectivity server: Fast
access to linkage information on the web. In 7th Int.
World Wide Web Conference, May 1998.

[6] K. Bharat and M. Henzinger. Improved algorithms for
topic distillation in a hyperlinked environment. In
Proc. 21st Int. Conf. on Research and Development in
Inf. Retrieval (SIGIR), August 1998.

[7] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. In Proc. of the
Seventh World Wide Web Conference, 1998.

[8] S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg,
P. Raghavan, and S. Rajagopalan. Automatic resource
list compilation by analyzing hyperlink structure and
associated text. In Proc. of the 7th Int. World Wide
Web Conference, May 1998.

[9] S. Chakrabarti, B. Dom, R. Kumar, P. Raghavan,
S. Rajagopalan, A. Tomkins, David Gibson, and
J. Kleinberg. Mining the web’s link structure. IEEE
Computer, 32(8):60–67, 1999.

[10] Y. Chen, Q. Gan, and T. Suel. I/O-efficient techniques
for computing pagerank. In Proc. of the 11th
International Conf. on Information and Knowledge
Management, pages 549–557, November 2002.

[11] S. Chien, C. Dwork, R. Kumar, D. Simon, and
D. Sivakumar. Link evolution: Analysis and
algorithms. In Workshop on Algorithms and Models
for the Web Graph, 2002.

[12] J. Cho, H. Garcia-Molina, and L. Page. Efficient
crawling through URL ordering. In 7th Int. World
Wide Web Conference, May 1998.

[13] T.H. Haveliwala. Efficient computation of pagerank.
Technical report, Stanford University, October 1999.
Available at
http://dbpubs.stanford.edu:8090/pub/1999-31.

[14] T.H. Haveliwala. Topic-sensitive pagerank. In Proc. of
the 11th Int. World Wide Web Conference, May 2002.

[15] M. R. Henzinger, A. Heydon, M. Mitzenmacher, and
M. Najork. On near-uniform URL sampling. In Proc.
of the 9th Int. World Wide Web Conference, May
2000.

[16] G. Jeh and J. Widom. Scaling personalized web
search. In 12th Int. World Wide Web Conference,
2003.

[17] S. Kamvar, T. Haveliwala, C. Manning, and G. Golub.
Extrapolation methods for accelerating pagerank
computations. In Proc. of the 12th Int. World Wide
Web Conference, May 2003.

[18] J. Kleinberg. Authoritative sources in a hyperlinked
environment. Journal of the ACM, 46(5):604–632,
1999.

[19] Y. Li. Toward a qualitative search engine. IEEE
Internet Computing, August 1998.

[20] M. Najork and J. Wiener. Breadth-first search
crawling yields high-quality pages. In 10th Int. World
Wide Web Conference, 2001.

[21] A. Ng, A. Zheng, and M. Jordan. Stable algorithms
for link analysis. In Proc. of the 24th Annual SIGIR
Conf. on Research and Development in Information
Retrieval, 2001.

[22] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical report, Computer Science Department,
Stanford University, 1999.

[23] G. Pandurangan, P. Raghavan, and E. Upfal. Using
pagerank to characterize web structure. In Proc. of the
8th Annual Int. Computing and Combinatorics
Conference (COCOON), 2002.

[24] M. Richardson and P. Domingos. The intelligent
surfer: Probabilistic combination of link and content
information in pagerank. In Advances in Neural
Information Processing Systems, 2002.

[25] V. Shkapenyuk and T. Suel. Design and
implementation of a high-performance distributed web
crawler. In Proc. of the Int. Conf. on Data
Engineering, February 2002.

