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communication is the bottleneck in many large-scaleapplications such as those arising in VLSI and CADdesign, spatial databases, and geographic informationsystems (GIS). In this paper we consider I/O-e�cientalgorithms for batched searching problems. We considerboth batched static and batched dynamic problems, anduse the correspondence which often exists between a d-dimensional static problem and a (d�1)-dimensional dy-namic problem to obtain a number of new d-dimensionalalgorithms.One prominent example of the problems we con-sider is the rectangle intersection problem, which is akey component in VLSI design rule checking [31] andin the extremely important database operation spatialjoin [34]. We illustrate the practical signi�cance ofour algorithms by comparing the empirical performanceof our algorithm for this problem with the well-knownsweepline algorithm developed for internal memory.1.1 Problem de�nition and memory modelA searching problem involves a question asked about aquery object x with respect to a set V of objects. Ina batched static searching problem, a number of queriesis asked on a static object set V , and we are concernedonly with the overall e�ciency over the course of all thequeries. In a batched dynamic searching problem we aregiven a sequence of insertions, deletions, and queries,and we must report all answers to the queries as thesequence of actions is performed. Clearly, a batchedproblem can be solved using a data structure on whichthe queries are answered one by one, but often muchbetter performance can be obtained. Batched prob-lems play an important role in large-scale performancesensitive applications, because the problem load is of-ten too big to allow complicated online computation,and computation must then be delayed until the loadis lighter. One example is a banking application wheredemand deposits (checks) are processed while the banksare closed at night. Another example is a database ap-plication where the index structure is recomputed (or\rebalanced") when the query load is low.



In this paper we consider batched problems in thestandard two-level I/O model [2], and we de�ne the fol-lowing parameters:N = # of objects in the problem;K = # of queries in the problem;T = # of objects in the solution;M = # of objects=queries �tting in main memory;B = # of objects=queries per disk block;whereM < N and 1 � B �M=2. For batched dynamicproblems N is the number of updates in the problem.Computations can only be done on elements in internalmemory. An input/output operation (or simply I/O) in-volves reading (or writing) a block from disk into (from)internal memory. Our measures of performance of analgorithm are the number of I/Os it performs and theamount of space (in units of disk blocks) it uses. Wewill for brevity not address the internal computationtime of our algorithms, although they are e�cient (andoften optimal) in the RAM model.Since each I/O can transmit B objects or queries si-multaneously, it is convenient to introduce the followingnotation:n = NB ; k = KB ; t = TB ; m = MB :As n = N=B is the number of I/Os needed just to readN objects, we refer to O(n) as the linear I/O bound.We assume that all I/O-bounds are at least linear.The problems we will be interested in are all what iscalled decomposable [8, 17, 29]. Here we de�ne an ex-ternal memory version of this property called external-decomposable.De�nition 1 Let P be a searching problem and letP(x; V ) denote the answer to P with respect to a setof objects V and a query object x. P is called external-decomposable, if for any partition A [ B of the set Vand for every query x, P(x; V ) can be computed in O(1)additional I/Os given P(x;A) and P(x,B) in appropri-ate form.A simple and important example of an external-decomposable problem is one-dimensional range search-ing : Given a set V of integers, build a data structuresuch that given a query range [x1; x2], all points in Vthat lie within the range can be reported e�ciently.The problem is external-decomposable as we easily cancompute the result for V = A [ B, given the resultof a query on A and B. The problem can of coursebe generalized to higher dimensions where it is alsoexternal-decomposable. Another important external-decomposable problem which has received a lot of at-tention in the computational geometry literature is the

d-dimensional rectangle intersection problem, that is,the problem of determining all intersecting pairs amonga set of axis-parallel hyperrectangles in d-dimensionalspace [15, 17, 16, 35, 9]. The problem is a key compo-nent in VLSI design rule checking [31], and in databasesit is a component in the fundamental join operator inrelational [19], temporal [36], spatial [33, 34], and con-straint [22] models.1.2 Previous related resultsAs mentioned, considerable attention has recently beengiven to the development of provably I/O-e�cient al-gorithms. Aggarwal and Vitter [2] considered sort-ing and permutation related problems in the two-levelI/O model and proved that external sorting requires�(n logm n) I/Os.1 I/O-e�cient algorithms were laterdeveloped for several other problem domains, includingcomputational geometry [1, 3, 6, 18], string problems [5]and graph theory [3, 12, 37, 25]. See the mentioned pa-pers for more complete references; a recent survey isalso included in [4]. In the database literature a lotof attention has also been given to I/O-e�cient com-putation, but with more emphasis on practical perfor-mance on \real-life" data. Special attention has beengiven to the development of I/O-e�cient spatial joinalgorithms [10, 20, 21, 24, 26, 27, 30].A number of I/O-e�cient algorithms have been de-veloped for decomposable problems and most of themcan be formulated as batched static or dynamic search-ing problems. Goodrich et al. [18] presented a tech-nique called distribution sweeping and used it to de-velop I/O-e�cient algorithms for a number of two-dimensional problems, including the batched rangesearching problem, the orthogonal line segment inter-section problem, and the rectangle intersection problem.The �rst problem is a batched problem by de�nition,and the latter two can easily be transformed to one-dimensional batched dynamic problems using the planesweep paradigm [31]. Arge [3] considered the three prob-lems, and developed I/O-e�cient algorithms by lookingat them as batched dynamic one-dimensional problemsand developing I/O-e�cient data structures for suchproblems. His so-called bu�er trees are only e�cient ina batched setting and cannot be used to answer singlequeries e�ciently. Recently, Arge et al. [6] considered alarge number of problems involving line segments in theplane.In the internal memory setting, batched dynamicproblems were considered by Edelsbrunner and Over-mars [17]. They were motivated by the fact that for anumber of problems dynamic data structures were not1All optimality claims in this paper are in the comparison I/O-model , where comparisons are the only allowed operations in in-ternal memory.



known. Even for problems where dynamic structureswere known they showed that batched techniques cansometimes be more e�cient overall. In external memorythe latter motivation plays an even bigger role becauseof fundamental computational limitations. A simple il-lustration of this is the one-dimensional range searchingproblem. The obvious data structure for this problemis the B-tree [7, 13]. A B-tree on N elements uses opti-mal O(n) space, can be built in O(n logB n) I/Os, andcan be used to answer a range query in O(logB n + t)I/Os. It is easy to realize that the query bound is op-timal. The batched static version of the problem canthus obviously be solved by building a B-tree on V andthen performing the K queries one by one. This re-sults in an O((n + K) logB n + t) solution. However,unlike in internal memory where a similar approach us-ing a balanced binary search tree results in an optimalO((K +N) log2N +T )-time solution, we can get a bet-ter (and optimal) O((n+ k) logm n+ t)-I/O solution byusing distribution sweeping or bu�er trees.Recently, some research has also been done on thepractical merits of the algorithms. Chiang [11] imple-mented the orthogonal line segment intersection algo-rithm developed in [18] using distribution sweeping andshowed that it outperforms internal memory solutionseven on moderately sized instances. Vengro� [38, 39]designed TPIE (Transparent Parallel I/O programmingEnvironment), a set of C++ functions and templatedclasses that allow for a simple and e�cient implementa-tion of two-level external-memory algorithms. E�cientTPIE implementations for a variety of sorting and sci-enti�c computing applications are given in [40].1.3 The results in this paperThe main result in this paper is a technique for design-ing I/O-e�cient and space-e�cient batched dynamicalgorithms for external-decomposable problems. Ourtechnique works for a wide range of problems that wecall \colorable." We de�ne the colorable property inSection 2 and show that a number of natural one-dimensional problems such as range searching are col-orable.In Section 3 we describe our technique and use it toobtain algorithms for some of the two-dimensional prob-lems also considered in [3, 18]. Our algorithms havethe same O(n logm n + t) optimal performance as thepreviously developed algorithms, but in some sense ourtechnique provides a general framework for the solu-tion of the problems. We also show how our techniquecan be used to obtain new I/O-e�cient algorithms byproviding the �rst dynamic version of external planarpoint location. In Section 3 we also show that our tech-nique can be used recursively, and thus we obtain the�rst known I/O-e�cient algorithms for d-dimensional

batched range searching, orthogonal line segment inter-section, and rectangle intersection. Our algorithms useO(n logd�1m n + t) I/Os and linear space. We believethat our technique will prove useful in the design ofother I/O-e�cient algorithms. In Section 3 we give onefurther application of our result to a batched dynamicproblem for which no solution was previously known.In Section 4 we demonstrate the practical merits ofour approach, by comparing the empirical performanceof an O(n logm n+t)-I/O algorithm developed using ourtechnique with an optimal O(N log2N +T )-time sweepalgorithm developed for internal memory. The problemwe consider is a special case of the rectangle intersectionproblem, and one of the two subproblems of spatial join.Algorithms with a similar I/O bound for this problemcan be developed using known techniques. However,our algorithm is very simple and practical and is read-ily implemented in TPIE. Our experiments show thatthe sweep algorithm \breaks down" once the size of thesweepline structure becomes bigger than the availableinternal memory, whereas our external algorithm scaleswell.2 Batched static colorable problemsIn this section we de�ne the notion of colorability andshow that a number of simple one-dimensional batchedstatic problems are colorable.De�nition 2 Let P be an external-decomposablebatched searching problem. Consider the problemPC where a color chosen from a set C is associatedwith each query x, and where a set of colors Cv isassociated with each object v 2 V . Only objects wherecolor(x) 2 Cv are considered when answering x.Problem P is called (I(N;K); S(N;K)) m1=c-colorableif the following two conditions hold:1. For all colorings where jCj = �(pm1=c) and wherethe number of di�erent color sets Cv is O(m1=c),for some constant c � 1, PC can be solved inO(I(N;K)+t) I/O operations and O(S(N;K)) spaceafter an initial sorting step, and2. If (V1; Q1) and (V2; Q2) are two valid instances of Pthen (V1 [ V2; Q1 [Q2) is also a valid instance.We call an m-colorable problem just a colorable prob-lem. Note that such a problem is m1=c-colorable forany c. We can show that the one-dimensional batchedrange searching problem as well as a number of othersimple one-dimensional problems are (n + k; n + k)colorable. Here we consider a more general prob-lem, namely, the batched interval intersection searchingproblem, where a query and the objects in V are inte-ger intervals. A query with interval e must return allintervals in V having a point in common with e. The



1. Sort the intervals according to their left endpoints.2. Scan the sorted list of intervals, maintaining O(m) (initially empty) active lists, one color list C for each of the �(pm)colors and one set list S for each of the O(m) di�erent color sets. For every interval r do the following:(a) If r is a query then add r to color list Ccolor(r), and scan through all set lists SU corresponding to color sets Ucontaining color(r) one at a time, reporting intersections between r and intervals in SU and removing intervals fromSU that do not intersect r.(b) If r 2 V then add r to the set list corresponding to r's color set and scan through every color list Cc corresponding tocolors in the color set, reporting intersections between intervals in Cc and r and removing intervals from Cc that donot intersect r.Figure 1: Algorithm for the batched colored interval intersection searching problem.algorithm showing that the problem is (n+k; n+k) col-orable is given in Figure 1. After an initial sorting step,the sorted list of intervals is scanned and intersectionsare reported using a number of active lists .Lemma 1 The batched static one-dimensional intervalintersection searching and range searching problems are(n+ k; n+ k) colorable.Proof : In order to establish the correctness of the al-gorithm we observe that an interval v 2 V and a queryq that intersect can be classi�ed into two cases: (i) vbegins before q and (ii) q begins before v. Step 2a ofthe algorithm reports all intersections between a queryinterval and currently \active" intervals from V with arelevant colorset, thus handling case (i), while Step 2bsimilarly handles case (ii). Note that when an interval isremoved from an active list we are sure that it will notintersect relevant intervals processed later in the scan.The complete scan after the initial sorting step canbe performed in O(n+t) I/Os, as can be seen by the fol-lowing reasoning: The number of active lists is O(m), sothere is room for one block from each of the lists in inter-nal memory. We collect intervals inserted into an activelist in internal memory and only write them to disk onceB of them have been collected. Thus N +K insertionscan be processed in O(n+k) I/Os. An interval is addedonly once to an active list, and in each subsequent scanof the list the interval is either removed permanently orcontributes an intersection to the interval that initiatedthe scan. A simple amortization argument completesthe proof.3 Batched dynamic problemsIn this section we develop a general technique for solvinga batched dynamic version of a colorable problem inan I/O-e�cient manner. Our approach is inspired byan approach used by Edelsbrunner and Overmars [17].An instance of a batched dynamic problem P consistsof a sequence of N actions a1; a2; : : : ; aN , where eachaction is either an insertion of a set object, a deletionof a set object, or a query with a query object. For

an action ai we can regard i as the time at which theaction is performed. For each object v that ever belongsto the set V , there is a time i1 (possibly �1) when it isinserted and a time i2 (possibly +1) when it is deleted;we refer to [i1; i2] as v's existence interval. When a queryq is performed at time j, it should be performed relativeto the set of objects present at that time, that is, relativeto all objects whose existence interval contains j. Thebasic idea in [17] is to use a segment tree [9, 31] to �ndthese objects.Here we use the same basic idea, but the use of anexternal segment tree [3] complicates things consider-ably. The base structure of an external segment treeis a perfectly balanced tree with branching factor pmover the N +K action times. Each leaf represents Mconsecutive action times and thus the tree has heightO(logpm((N + K)=M)) = O(logm(n + k)). (See Fig-ure 2.) The �rst level of the tree partitions the actiontimes into pm intervals �i|for illustrative reasons wecall them slabs|separated by dotted lines in Figure 2.Existence intervals such as CD in Figure 2 that com-pletely span at least one slab are called long intervals;a copy of the object corresponding to each long exis-tence interval is stored in the root. Existence intervalsthat are not long are called short intervals; the objectscorresponding to such intervals are not stored in theroot, but are passed recursively down to lower levels ofthe tree where their existence intervals span slabs. ABand EF are examples of such existence intervals. Fur-thermore, we imagine that we \cut" each long existenceintervals at the leftmost (rightmost) boundary of theleftmost (rightmost) slab it completely spans, and treatthe portions that do not span a slab as small intervals.For example CE is cut at the boundary between slabs�0 and �1 and between slabs �3 and �4, and the por-tions in slabs �0 and �4 are stored further down thetree. Note that at most M=2 objects are stored in aleaf. Each object can be stored in several nodes of thestructure, but at most twice on each level; thus, thetotal space utilization is O(n logm(n+ k)).To answer a query q at time j, we search down thetree to the leaf containing j and in each visited node weanswer the query relative to all the \relevant" objects
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Figure 2: External-memory segment treestored in the node. The fact that P is decomposable isused when combining the results of the individual nodequeries. In a node where q lies in slab �i, we de�nethe relevant objects to be objects corresponding to ex-istence intervals that completely span �i. Each objectpresent at time i will be relevant exactly once on thesearch path. In the internal memory solution [17] wherethe segment tree is binary, all objects in a node are rel-evant for all queries passing the node. This is not thecase in the external memory setting, which is one reasonwhy the problem is more challenging to solve in exter-nal than in internal memory. Another is that a singlequery cannot be answered I/O-e�ciently, and thereforewe perform all the queries simultaneously (normally re-ferred to as batched �ltering [18]) and take advantageof the fact that when we do so the problem we need tosolve in each node is a batched static \colored" versionof P . To realize this fact, consider a node r in the seg-ment tree, the set of objects Vr assigned to it, and theset of queries Qr passing through it. Imagine that weassociate a distinct color with each of the pm slabs andcolor each of the queries in Qr with the color of the slabcontaining it. Now consider an object e in Vr . The ex-istence interval for e completely spans a set of slabs ande is relevant for all queries in these slabs. We associatewith e the colors of the slabs that its existence intervalspans. The key property is that the maximum numberof distinct contiguous ranges of slabs (what is normallycalled multislabs [3, 6])|and thus the maximum num-ber of color sets associated with the objects in Vr|isa quadratic function of the branching factor, and thusis O(m). Therefore, the problem we need to solve in r isa colored batched static version of P on the objects Vrand queries Qr. A sketch of the complete algorithm isgiven in Figure 3.Theorem 1 The batched dynamic version of an(I(N;K); S(N;K)) colorable problem P can be solvedin O(I(N;K) � logm(n + k) + t) I/O operations usingO(S(N;K)) space.Proof : The number of I/Os used to construct theexternal segment tree and distribute the objects and

queries to the nodes of it (Steps 1 and 2 in Figure 3)is O(n logm(n+ k)): The number of levels of the struc-ture is O(logm n) and to construct one level we scanthe nodes on the previous level and the sorted list ofN +K objects and queries, both of which can be donein O(n+ k) I/Os.Consider the nodes r1; r2; : : : ; rl on one level of thestructure and let Nri and Kri denote the number of ob-jects and the number of queries assigned to ri, respec-tively. The number of I/Os used to solve the coloredbatched static problems on the level (not counting theinitial sorting step) is then Pi I(Nri ;Kri) + t, which isO(I(N;K)+t) as I is at least linear and asPiNri � Nand PiKri � K. Furthermore, by presorting thequeries and objects (using O((n+k) logm(n+k)) I/Os)and distributing them in sorted order to the nodes, wecan avoid sorting when solving a batched static prob-lem, and thus the total number of I/Os used in Step 3is O(I(N;K) � logm(n + k) + t). A space bound ofO(S(N;K) � logm(n + k)) follows from a similar argu-ment, but the space can be improved to O(S(N;K))by noting that if we solve the batched static problemfor a level of nodes before going on to build the nextlevel, there is no need to store more than one level ofthe segment tree at any time (in [17] this idea is calledstreaming).3.1 Simple applications to one and two-dimensional problemsTheorem 1 together with Lemma 1 immediately give use�cient solutions for one-dimensional batched dynamicrange searching and interval intersection. It is wellknown that a number of two-dimensional batched staticproblems can be regarded as one-dimensional batcheddynamic problems using the plane sweep technique. Forexample, the orthogonal line segment intersection prob-lem (namely, given a set of N line segments in the planeparallel to the axes, report all intersecting orthogonalpairs) can be reduced to solving a batched dynamic one-dimensional range searching problem. Similarly, thetwo-dimensional batched range searching problem canbe regarded as a simple version of batched dynamic in-terval intersection, where the queries are points. Wecan thus also obtain e�cient algorithms for these twoproblems, and combining them we obtain a solution tothe rectangle intersection problem.All the above external-decomposable problems are ofa type where the solution to P(x;A [ B) is just theconcatenation of P(x;A) and P(x;B). One problemwhere this in not the case is the batched static versionof the external-decomposable immediate obstacle prob-lem [17, 28], where we are given a set of N points andvertical line segments in the plane, and for each point pwe should compute the �rst segment hit by a horizontal



1. Sort the list A of the N +K actions by time.2. Construct the external segment tree and distribute the objects and queries to the relevant node:(a) Create the (n+ k)=m leaves by scanning through A.(b) Repeatedly, scan through the last level of nodes created and the list A, creating one more level of the segment treeand distributing the objects and queries in A to the relevant (newly created) nodes.3. For each node r in turn solve a colored batched static version of P on the colored objects and queries associated with r.Figure 3: Algorithm (sketch) for the batched dynamic problem P .ray originating in p and going right. In the immediateobstacle problem the solution to P(x;A[B) is obtainedby comparing the two segments obtained as solutions toP(x;A) and P(x;B) to see which one is closest to x. Itis easily realized that the problem can be solved usinga batched dynamic version of a simple colorable one-dimensional search problem, and Theorem 1 thus againapplies.Corollary 1 The one-dimensional batched dynamicrange searching and interval intersection problems canboth be solved in O((n + k) logm(n + k) + t) I/Os andO(n + k) space. The orthogonal line segment intersec-tion, 2d batched range searching, and 2d rectangle in-tersection problems can all be solved in O(n logm n+ t)I/Os and O(n) space. The batched static version ofthe immediate obstacle problem can be solved in O((n+k) logm(n+ k)) I/Os and O(n+ k) space.It should be noted that similar I/O and space boundshave been, or can easily be, obtained using distributionsweeping [18]. In the next subsection we will extendour technique and use it to obtain solution to problemsfor which no I/O-e�cient algorithms were previouslyknown.3.2 Advanced and higher dimensional ap-plicationsBy decreasing the fan-out of the segment tree used inthe previous section from pm to 4pm1=c we can provethe following (proof omitted for brevity).Theorem 2 The batched dynamic version Pbd of an(I(N;K); S(N;K)) m1=c-colorable problem P can besolved in O(I(N;K) logm(n + k) + t) I/O operationsusing O(S(N;K)) space. Pdb is (I(N;K); S(N;K))pm1=c-colorable.Theorem 2 can now immediately be applied to our al-gorithm for the batched static immediate obstacle prob-lem in Section 3.1 to make the algorithm work on thebatched dynamic problem, and by using the theoremrecursively the algorithms discussed in Section 3.1 canbe extended to work in d dimensions.

Corollary 2 For each constant d > 1, the d-dimensional batched range searching problem and thed-dimensional rectangle intersection problem can bothbe solved in O(n logd�1m n + t) I/Os and O(n) space.The batched dynamic immediate obstacle problem canbe solved in O(n log2m n) I/Os and O(n) space.A more complicated application of Theorem 2 is tothe batched dynamic planar point location problem. Inour formulation of this problem we are given a set of Nnon-intersecting (and not necessarily orthogonal) linesegments in the plane and a set of K points. The goalis to �nd for each point the �rst segment hit by anupwards ray originating in the point. In [6] a rathercomplicated O((n+k) logm n)-I/O solution to the staticproblem is given. The solution shows that the prob-lem is ((n + k) logm(n + k); n + k) pm-colorable, ex-cept for the condition that given two valid instancesof the problem their union should also be a valid in-stance. (Details will be given in the full paper.) Theunion condition does not hold, since the segments in theunion can be intersecting. However, if we restrict ourattention to instances where only insertions or deletionsare allowed (the so called semidynamic problems), thesegments must be non-intersecting and the condition isful�lled.Corollary 3 The batched semidynamic planar point lo-cation problem can be solved in O(n + k) space andO((n+ k) log2m(n+ k)) I/Os.4 Experimental resultsIn this section we illustrate the practical signi�canceof our algorithms by comparing the empirical perfor-mance of an I/O-optimal algorithm developed using ourtechnique with an optimal internal memory sweep al-gorithm. The problem we consider is a variant of thetwo-dimensional rectangle intersection problem that wecall red-blue rectangle intersection: Given a set of axis-parallel red rectangles and a set of axis-parallel bluerectangles in the plane, report all red-blue intersectingrectangles. The problem has been extensively studiedin the database literature as one of the two subprob-lems of spatial join, which is a core operation in spatial



database systems such as geographic information sys-tems [10, 20, 27, 26, 24, 30].A simple plane sweep internal memory algorithm canbe easily derived from the algorithms for the rectan-gle intersection problem [9, 17, 15, 16, 21, 35]. Thiswell-known O(N log2N+K)-time algorithm sweeps theplane with a vertical line, while maintaining and query-ing two interval trees [15]. After the initial sorting stepthe algorithm can be viewed as a red-blue version of thebatched dynamic interval intersection problem. Thisproblem is the same as the interval intersection prob-lem we have considered, except that the intervals arecolored red and blue, and only red-blue intersectionsshould be reported. It is easy to modify the algorithmin Figure 1 to work for the red-blue problem, and Theo-rem 1 immediately gives an optimal O(n logm n+t)-I/Oalgorithm for the red-blue rectangle intersection prob-lem. It should be noted that this is not a new theoret-ical result, as previous solutions for the batched rangesearching problem and the orthogonal line segment in-tersection problem [3, 18] can be combined to obtain anoptimal algorithms for the problem. However, our tech-nique suggests a new practical algorithm that solves theproblem in one go. If we imagine building the segmenttree structure level by level from the top, and solvingthe batched static problem on each level, the algorithmcan be viewed as a distribution sweeping [18] algorithm,that divides the plane into m slabs, performs a verticalsweep over the slabs to locate intersections, and thenrecursively solves the problem in each slab.As mentioned, the red-blue rectangle intersectionproblem has been extensively studied in the databaseliterature. The proposed algorithms can be roughlyclassi�ed into two groups: those that use an indexingstructure (typically an R-tree variant) built on the tworectangle sets [10, 20] and those that do not [27, 30, 24].There has been a trend towards analyzing algorithmsthat do not rely on an index. For example, the PBSM(Partition Based Spatial-Merge) algorithm by Patel andDeWitt [30] has been shown to outperform those basedon an R-tree index when the cost of building the in-dex is counted. PBSM can be viewed as a special caseof our approach, in which the objects that cross slabsare duplicated in each slab rather than handled with asweep and recursion. Other algorithms try to avoid toomuch duplication by using sophisticated partition meth-ods but they are still vulnerable to skewed data [27, 24].The performance of our algorithm can therefore be saidto be similar to these algorithms, except that our al-gorithm is not prone to skewed locations or shapes ofrectangles.4.1 Implementation considerationsBefore we present our empirical results in Sections 4.2and 4.3, a few notes should be made about our imple-

mentations of the two algorithms. We based both of ourimplementations on the TPIE system [38, 39]. As men-tioned, TPIE is a collection of templated functions andclasses, and the basic data structure in TPIE is a stream,representing a list of objects of the same type. Thesystem contains I/O-e�cient implementations of algo-rithms for scanning, merging, distributing, and sortingstreams. Looking at the two algorithms, we quickly seethat all the building blocks we need|scanning, sorting,distributing|are already implemented in TPIE. Thismade the implementation of the algorithm relativelyeasy and facilitated modular design.2In order to improve practical performance and pro-vide a fair comparison, we made a number of modi�ca-tions in our implementations relative to the theoreticaldescriptions of the two algorithms. In the sweeplinealgorithm, which we call internal join, we improvedthe performance of the sorting step that is done beforethe sweep by using TPIE's built-in I/O-e�cient sort-ing algorithm. In the sweep itself, we did not deletean interval from the interval tree when the sweeplineleft the corresponding rectangle; instead we performeda \lazy deletion" operation on the tree while processingqueries to remove \expired" intervals. We implementeda simpli�ed version of the interval tree similar to thatdescribed in [14] but used a randomized skip list [32]as the underlying structure instead of a balanced treestructure. Finally, we chose to use a horizontal sweepline instead of a vertical one in order to have the twoalgorithms sweep in the same direction.The external algorithm, called external join, wasmodi�ed to used random sampling to divide the x-interval into slabs instead of presorting the data an ex-tra time. Note that it is possible to solve the prob-lem quickly in internal memory even when the problemsize N is much larger than internal memory size M ,because the data structure size is related to the max-imum number of rectangles that intersect a sweepline,which may be less than M . For example, the rectan-gles may be small and uniformly distributed, in whichcase relatively few rectangles would intersect any givensweepline. Therefore we used an optimistic implementa-tion in external join that began each subproblem byrunning internal join, hoping that the interval treeswould �t in internal memory during the sweep. If TPIEdetected that the available memory was exhausted, thesweep was aborted and we proceeded with the externalapproach.4.2 Experimental dataAlong the lines of Chiang [11], we generated four typesof input data sets with N=2 red and N=2 blue rectan-2The TPIE system can be downloaded fromhttp://www.cs.duke.edu/TPIE/. The algorithms describedin this paper will be included in the next distribution of TPIE.



gles each, placed in a [0; N ]� [0; N ] square. In order toguarantee that the reporting cost would not dominatethe O(n logm n) searching cost, the rectangles were cho-sen so that the number of intersections between red andblue rectangles was O(N). As discussed, an importantparameter for the e�ciency of the two algorithms is theaverage number of rectangles cut by a horizontal sweepline during a sweep (the average overlap). Intuitively,this parameter decides not only the size of the intervaltrees in the sweep, but also the size of the active lists inthe external algorithm. Thus we generated data with avarying number of overlaps.In the �rst data set, which we call small rect, wegenerated data meant to resemble GIS data (small andrelatively uniform distributed rectangles). We chose thewidth and height of the rectangles randomly in [0;pN ],and the x and y coordinates of the lower left corner werechosen randomly in [0; N �pN ]. It can be shown thatthe expected number of intersections between red andblue rectangles in such a set is approximatelyN=4, whilethe expected average overlap and expected maximumoverlap are approximately pN=4 [23]. Details will ap-pear in the full paper. The second data set, tall rect,represents a \hard" instance as it consists of long andskinny vertical rectangles with a large average over-lap: We used a �xed width h (10 in the experiments),chose the height uniformly in [0; N=2], and chose the xand y coordinates of the lower left corner uniformly in[0; N � h] and [0; N=2], respectively. The �xed widthensures that the expected number of intersections is ap-proximately hN=3, while the expected average overlapis approximately N=4. In order to investigate the inu-ence of the average overlap, we produced the third set,wide rect, simply by rotating the previous data set 90degrees. The wide rect data set consists of long andhorizontally skinny rectangles, with the same numberof intersections as before, but with an expected aver-age overlap of approximately h=2. The fourth data set,wide&tall rect, consists of both wide and tall rectan-gles. The wide rectangles were placed in [0; N=2]�[0; N ],and the tall rectangles in [N=2; N ] � [0; N ]. The ex-pected average number of intersections in this set is ap-proximately hN=4, and the expected average overlapapproximately N=8 + h=2. In the full paper we providea full analysis of the data sets.4.3 Empirical resultsWe performed our experiments on a Sun SparcStation20running Solaris 2.5, with 32 Mbytes of internal mem-ory. In order to avoid network activity, a local diskwas used for the input �les as well as for scratch �les.While we did not restrict the amount of internal memoryinternal join could use (and thus relied on the virtualmemory system), the amount of internal memory used
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Figure 4: small rect: Average no. of intersections �N=4. Average no. overlaps � pN=4.
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Figure 5: tall rect: Average no. of intersections �hN=3. Average no. overlaps � N=4.by external join was limited to a �xed amount. Ex-perimenting with di�erent values for this parameter, aswell as with di�erent values of the logical block size usedby TPIE, we found that the best performance was ob-tained with the main memory use (by TPIE) restrictedto 12Mbytes and with a block size of 20 times the phys-ical block size (4Kbytes).We ran the two programs on the four data sets, withthe number of rectangles varying between 50,000 and1,500,000. Each rectangle consisted of an integer iden-ti�er and two corner points represented by two dou-bles each. Each rectangle thus used 40 bytes and thereal size of the data sets varied approximately between2Mbytes and 60Mbytes. Figures 4 to 7 show the run-ning times of the two programs for each of the data sets.The external join and internal join curves repre-sent the total running times (including sorting), whilethe external join int and internal join int curvesrepresent the times needed to compute the intersectionsof already sorted inputs.Our experiments show that our external memory al-gorithm is very e�cient in practice and that the run-ning times of both algorithms depend heavily on the
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Figure 6: wide rect: Average no. of intersections �hN=3. Average no. overlaps � h=2.
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Figure 7: wide&tall rect: Average no. of intersections� hN=4. Average no. overlaps � N=8 + h=2.average overlap. The external join algorithm has asteady and e�cient performance on the two data setswith a large number of overlaps, but internal join\breaks down" when the size of the problem becomesbigger than the available main memory. On the datasets with small overlap the performance of the two pro-grams is comparable, and the sorting time dominatesthe overall running time.In the following we make a few comments on the re-sults for each data set: The two algorithms performsimilarly on the small rect data set, in which the rect-angles exhibit locality and have a small number of over-laps. On these inputs, the external join algorithmnever breaks the plane up into slabs and is thus basi-cally the same as internal join. The small di�erenceis the two performance curves is due to variations inthe experimental conditions (operating systems inter-ference, randomization in the interval tree, etc.). Thenumber of rectangles would need to be more than 1 tril-lion before internal memory would be exhausted. Notehowever, that if a sorting algorithm developed for in-ternal memory had been used instead of the TPIE al-gorithm, the \breakdown" of small rect would have

occurred much before that. In tall rect the averageoverlap is large, and the point where the interval treesdo not �t in internal memory is quickly reached, mak-ing internal join thrash. As can be seen from thegraph, the thrashing point is reached around 700,000rectangles. When the number of rectangles is between400,000 and 600,000, internal join performs slightlybetter than external join. The reason is that the lat-ter algorithm detects that not enough memory is avail-able, aborts the sweep algorithm, and starts the externalalgorithm; the runtime penalty for the aborted sweepcounteracts the bene�ts of the later distribution sweep.On the third data set, wide rect, the algorithms per-form as on small rect because the average number ofnodes in the interval trees is small (constant). Finally,on wide&tall rect, which is a mixture of the previoustwo, the breakdown of external join occurs at around1,300,000 rectangles, which is to be expected, since theaverage number of overlaps is half of that of tall rect.5 ConclusionsWe have demonstrated a fairly general technique fordeveloping batched dynamic algorithms that are e�-cient in an I/O setting for a variety of decomposableproblems. Our empirical study of algorithms for thered/blue rectangle intersection problem suggests thatour approach is fast in practice and outperforms cur-rently used methods, especially when the problem sizegets too large for internal memory.There are several avenues of research regarding prac-tical implementation. We are currently studying otheralgorithms for red/blue rectangle intersection, as wellas improving our current implementation. One way ofdoing so could be to try to predict for a given (sub)problem (e.g. using sampling) if the interval trees in thesweepline approach would �t in memory. We are alsoimplementing batched dynamic algorithms for other de-composable problems.References[1] P. K. Agarwal, L. Arge, T. M. Murali, K. Varadara-jan, and J. S. Vitter. I/O-e�cient algorithms for con-tour line extraction and planar graph blocking. In Proc.ACM-SIAM Symp. on Discrete Algorithms, 1998.[2] A. Aggarwal and J. S. Vitter. The Input/Output com-plexity of sorting and related problems. Communica-tions of the ACM, 31(9):1116{1127, 1988.[3] L. Arge. The bu�er tree: A new technique for opti-mal I/O-algorithms. In Proc. Workshop on Algorithmsand Data Structures, LNCS 955, pages 334{345, 1995.A complete version appears as BRICS technical reportRS-96-28, University of Aarhus.
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