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Abstract. There has been considerable research effort into image registration
and regression, which address the problem of determining correspondence pri-
marily through estimating models of structural change. There has been far less
focus into methods which model both structural and intensity change. However,
medical images often exhibit intensity changes over time. Of particular interest
is MRI of the early developing brain, where such intensity change encodes rich
information about development, such as rapidly increasing white matter inten-
sity during the first years of life. In this paper, we develop a new spatiotemporal
model which takes into account both structural and appearance changes jointly.
This will not only lead to improved regression accuracy and data-matching in the
presence of longitudinal intensity changes, but also facilitate the study of devel-
opment by direct analysis of appearance change models. We propose to combine
a diffeomorphic model of structural change with a Gompertz intensity model,
which captures intensity trajectories with 3 intuitive parameters of asymptote, de-
lay, and speed. We propose an optimization scheme which allows to control the
balance between structural and intensity change via two data-matching terms. We
show that Gompertz parameter maps show great promise to characterize regional
patterns of development.

1 Introduction

Time series imaging data are commonly acquired in medical imaging studies. In the
simplest form, changes are assessed between a baseline and follow-up scan. To facili-
tate comparison, image registration establishes voxel-wise correspondence so measure-
ments can be directly compared between baseline and follow-up, or the registration
deformation field can itself be studied as a description of change. When more than two
scans are available, registration naturally gives way to regression, in order to model the
inferred continuous image change. In either case, registration or regression, the problem
is most often solved by a deformation of image structure; appearance changes are not
explicitly modeled. Rather, differences in intensities between images are considered a
hindrance to the estimation of accurate deformation fields. However, image intensity
and local contrast may contain rich and valuable information. For example, the matura-
tion process in the early developing brain manifests as rapidly increasing white matter
intensity [1]. Recent work has demonstrated that MRI intensity and contrast measures
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quantify patterns of early brain development, showing a brain maturation rate differ-
ence between males and females [2]. In this paper, we similarly seek to quantify early
brain development by explicitly modeling intensity change over time as part of an image
regression framework.

There has been tremendous research effort into accurate registration schemes in
the presence of appearance changes. However, as previously mentioned, appearance
changes are rarely handled explicitly. Rather, image similarity metrics such as mutual
information or normalized cross correlation are used to reduce sensitivity to intensity
differences. In the case of appearance change due to pathology, registration methods
often involve masking, and thus require prior segmentation to aid in registration [3].

An approach to image matching which combines structural and intensity changes
was proposed as image metamorphosis [4], and was later integrated into a geodesic re-
gression framework [5], though the baseline image was assumed to be fixed to the earli-
est observations, and experimentation appeared limited to 2D. In the metamorphosis ap-
proach, image intensity change is smoothly interpolated for exact matching. However,
intensity change under the metamorphosis model does not have a clear interpretation to
answer clinical questions about development. Importantly, the study of intensity change
trajectories themselves as a representation of development has not yet been explored.

For clear interpretation and straightforward statistical analysis, parametric models
of image intensity have been proposed. This includes linear intensity models for regis-
tration [6] and atlas building [7], and a logistic image intensity model for longitudinal
registration [8]. However, the method [8] requires a tissue segmentation which itself
requires non-linear registration as a preprocessing step. The method of [9] proposes a
parametric pharmacokinetic intensity model to improve accuracy in atlas building, for
motion correction of dynamic contrast-enhanced MRI. Ultimately, these methods are
registration schemes, which are inherently limited to estimating a discrete set of de-
formations, one for each image, rather than a single time-varying flow of deformation
which more naturally captures longitudinal changes. Nevertheless, our work takes the
spirit of these previous methods when it comes to modeling appearance, as we favor
the parametric approach for the power to distill down complex patterns of development
into a small number of easy to understand parameters.

To summarize, there has been considerable work in addressing appearance change
for registration and atlas building, though there has been limited work on image regres-
sion with appearance change. Furthermore, the study of the intensity trajectories, either
as curves or as parameters of functions, is a relatively unexplored topic. In other words,
modeling image appearance change is not only a mechanism to achieve more accurate
registration; intensity trajectories themselves contain rich information about develop-
ment and warrant further study. In this paper, we propose a spatiotemporal model for
image time series which explicitly models both structural and appearance change. Im-
age deformations are modeled by diffeomorphic flow with a flexible and non-parametric
acceleration based method [10]. We favor this image deformation model for its flexibil-
ity, however, one could instead choose from a variety of models, such as geodesic [11]
or higher order models [12,13]. Intensity changes are modeled by a Gompertz function,
which has three intuitive parameters of asymptote, delay, and speed. The deformation
and intensity change models are motivated by the driving application of modeling brain
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development from birth, which is characterized by early accelerated growth which satu-
rates to an asymptote [14]. In contrast to previous work, our model requires no masking
or prior segmentation, and simultaneously estimates continuous structural deformations
along with parametric intensity change trajectories with a clear interpretation. Exper-
imental validation on a synthetic image sequence as well as longitudinal MR images
demonstrate that Gompertz parameter maps encode regional patterns of development
using natural terms of speed and delay.

2 Methods

In this section, we describe the two main components of our proposed spatiotempo-
ral model: the structural deformation model and the intensity change model. We then
combine the two components and provide a least squares estimation procedure.

2.1 Structural Deformation Model

Here, we introduce the structural deformation model, first proposed in [15] for shape
regression and more recently for image regression [10], with the main idea of parame-
terizing diffeomorphic flow by a time-varying function of acceleration. Acceleration is
defined as

a(x, t) =

NC∑
i=1

KV (x, ci(t))αi(t) (1)

where an impulse vector field αi(t) is attached to a sparse set ofNC control points ci(t)
and smooth kernel operator K defining the reproducing kernel Hilbert space V (for ex-
ample, a Gaussian with standard deviation σ2

V ). Given such a time-varying acceleration
field, a flow of diffemorphisms of the ambient space can be computed by solving:

φ̈(x(t), t) = a(x(t), t) (2)

given initial position x0 = x(t0) and initial velocity v0 = v(t0). Solving Eq. 2 gen-
erates a flow of diffeomorphisms starting from identity φ(0) = Id, which defines the
trajectory of a point starting from x(t0) and ending at x(T ). Starting from a given dis-
tribution of control points ci(0), the continuous path of control points ci(t) is computed
by solving Eq. 2. Just as with control points, coordinates of image voxels also evolve
according to Eq. 2, starting from a baseline image I0. Therefore, given αi(t), one can
compute the continuous evolution of control points, and compute acceleration at phys-
ical image coordinates. This shows that the system can be parameterized by a finite
number of parameters, given a time discretization of αi(t).

From here on, let α(t), v0, and c0 be the concatenation of the αi(t)’s, vi(0)’s,
and ci(0)’s. Let a set of image observations in time range t0 to T be written as Iti =
(It1 , It2 , ...Itn). The acceleration controlled deformation model can be leveraged for
image regression by estimating impulse vectors α(t), control point locations c0, and
baseline image I0 which minimizes

E(α(t), c0, I0) =

N∑
i=1

d(φti ◦ I0, Iti)2 + γA

∫ T

t0

||a(t)||2V dt (3)
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where d is a distance metric between images, γA weights the regularity of the time-
varying acceleration a(t), and initial velocity v0 = 0.

2.2 Gompertz Intensity Change Model

Motivated by the study of early brain development, we propose to model image appear-
ance change with a Gompertz function. We believe the Gompertz function, which is a
sigmoid curve, is a good fit for modeling early acceleration growth which eventually ta-
pers off, which has been observed in MRI intensity of the developing brain [14]. The au-
thors of [8] used similar reasoning to select a logistic appearance model, while the work
of [16] found the Gompertz function to be an accurate model of diffusion measures dur-
ing early development. The Gompertz function is written as: g(t) = A exp(−B exp(−Ct))
where B > 0 and C > 0.

One powerful feature of the Gompertz function is the straightforward interpretabil-
ity of it’s three parameters. The parameters A, B, and C, can be interpreted as asymp-
tote, delay, and speed, respectively. This allows complex patterns of change to be com-
municated in simple terms that are naturally used to discuss development. We therefore
propose the following Gompertz image appearance model:

Î(x, t) = g(x, t) = A(x) exp(−B(x) exp(−C(x)t)) (4)

which describes continuous image appearance change over time t at location x. Gom-
pertz parametersA,B, andC vary spatially, and can be thought of as parameter images.
Later we will see how these parameter images can be analysed to study regional patterns
of development. We will denote the appearance model at time t as Î(t).

2.3 Spatiotemporal Model With Appearance Change

We now propose a combined spatiotemporal model which simultaneously estimates
continuous structural image deformations along with appearance change. The main dif-
ficulty in designing such a model is the inherent non-uniqueness in a solution which
combines structural and appearance changes. As an example, consider an image of a
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Fig. 1. The Gompertz function g(t) = A exp(−B exp(−Ct)) is parameterized by three intuitive
values: asymptote, delay, and speed. In each plot, a range of values is plotted for each parameter
while holding the other two fixed.
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white circle which grows isotropically over time, but does not change appearance. The
progression could be described completed by image deformations which capture the
change in scale of the circle, or alternatively, entirely by an appearance model which
“paints” in additional pixels. To address this issue, we allow for control over the con-
tribution of the deformation and appearance models. This is accomplished with two
data-matching terms, one measuring fit via deformation only, and one measuring fit by
intensity change only. While this doesn’t provide a globally optimal solution, it does al-
low the user to control estimation based on domain knowledge or empirical observation.
Together with regularity terms, the model criterion is written

E(α(t), c0, A,B,C) =

[Nobs∑
i=1

λD d(φti (̂I(t0)), Iti)
2 + λA d(̂I(ti), Iti)

2

]

+ λR

∫ T

t0

||a(t)||2V dt+ λTV TV(A,B,C)

(5)

where the first two terms are data-matching by deformation only and intensity change
only, the third term measures regularity of the time-varying deformation, and the last
term is a total variation regularizer on the Gompertz parameters. We use an anisotropic
version of total variation, which is differentiable. This term may be used promote re-
gional consistency in asymptote, delay, and speed images, based on the assumption that
tissue development is highly spatially correlated. For measuring image similarity d, we
use sum-of-squared intensity difference. Weights λ allow to control the importance of
each term in the overall cost. The final image sequence is then computed as φt(̂I(t)).

Alternatively, the model may be expressed with a single data term measuring fit
between observations and the generative model as d(φt(̂I(t)), Iti)

2. In this case, the
relative contribution of the deformation and intensity model would be controlled en-
tirely by regularity terms and weights λR and λTV . While this model is not explored
in this paper, research into this and other formulations remains ongoing work with the
goal of developing a robust and intuitive model of structural and appearance change.

Model estimation consists in finding time varying impulse vectors α(t), location
of control points c0, and Gompertz appearance parameters A, B, and C which mini-
mize (5). The algorithm is initialized withα(t) = 0 (corresponding to no deformation),
control points c0 on a regular grid with user selected spacing, and Gompertz appear-
ance parameters A = B = C = 0. We implement a gradient descent scheme with
gradients computed using autograd in PyTorch [17]. We also use KeOps (http://
www.kernel-operations.io), which provides memory efficiency on the GPU,
enabling the use of 3D image volumes on a TITAN Xp. Our implementation is available
at https://github.com/jamesfishbaugh/acceleration-diffeos.

3 Experimental Validation

3.1 Synthetic Bull’s-eye

We first validate our model on a synthetic image time series of a bull’s-eye with both
structural and appearance changes. The top row of Fig. 2 shows the observations of

http://www.kernel-operations.io
http://www.kernel-operations.io
https://github.com/jamesfishbaugh/acceleration-diffeos
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D) Geodesic Regression

C) Proposed Method w/ Only Deformation Model

B) Proposed Method w/ Deformation and Intensity Model

A) Original Observations

Fig. 2. Top) Synthetic observations representing the progression of a bull’s-eye undergoing both
structural and appearance changes. The outer ring grows while the inner circle shrinks. The bot-
tom half of the outer ring shows a delay with respect to the top half, along with a faster increase
in intensity. The inner circle does not change in appearance. B) C) D) Several frames from esti-
mated continuous image trajectories under different models. Animation of our proposed method
available at https://youtu.be/5OqmLZOjalw.

the bull’s-eye images. The image sequence undergoes complex structural change, with
the outer ring increasing in size over time according to an exponential, while the inner
circle shrinks linearly. The outer ring is further characterized by two distinct patterns
of appearance change. First, the bottom half shows a delay with respect to the top half.
Second, intensity in the bottom half increases faster than intensity in the top region. The
trajectory of change in the top half is given by a logistic function, while intensity in the
bottom half changes linearly. The inner circle does not undergo any appearance change.

Fig. 2 B) shows the model estimated with our proposed method. Here we show only
several frames, though the model can alternatively be viewed as a continuous animation

https://youtu.be/5OqmLZOjalw
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Fig. 3. Gompertz parameter images of asymptote A, delay B, and speed C for the synthetic
bull’s-eye progression from Fig. 2. The asymptote image most closely resembles the final image
observation, representing intensity saturation. The lower half of the outer ring shows a significant
delay with respect to the top half, as well as faster increase in intensity. The inner circle is not
present in the delay and speed images, since the inner circle only undergoes structural changes.

for more intuitive understanding. The estimated image sequence very closely matches
the observations, effectively capturing complex patterns of structural and appearance
changes simultaneously. The average structural similarity was 0.99 while the average
mean square error was 1.5× 10−4. Furthermore, our method provides realistic trajec-
tories between observation time points, with smooth and continuous trajectories of both
structure and appearance. For longitudinal data, this is a more natural representation
of image change compared to a discrete set of diffeomorphisms, one for each image,
which must be cascaded as in longitudinal registration [8].

We also estimated an image trajectory with a deformation model only, shown in
Fig. 2 C). Here, we measured average structural similarity of 0.81 and average mean
square error of 0.05. Finally, we compare against a readily available baseline method, a
geodesic model using the software package Deformetrica [18], shown in Fig. 2 C), with
an average structural similarity of 0.83 and average mean square error of 0.04.

We can explore a statistical representation of the appearance changes by investigat-
ing the Gompertz parameter maps, which are themselves images of the same dimension
as the observations, shown in Fig. 3. The delayed and accelerated intensity region in the
lower half of the outer ring is well captured by the delay and speed image, while the
asymptote has similar characteristics to the final image observation.

3.2 Early Brain Development From Birth

Next, we seek to model structural and appearance change of the developing brain start-
ing from birth. This is particularly challenging due to the rapid development and ap-
pearance changes observed in MR images during the first year of life. Imaging data
consists of a longitudinal sequence of a healthy child scanned at birth, 1, 2, 4, and 6
years of age in the form of 3D T1W images of dimension 196x233x159 with 1x1x1
voxel size. Images were skull stripped and affine aligned. Intensity values across the
entire longitudinal sequence were normalized to be between 0 and 1 based on min and
max values across the longitudinal sequence. This is a naive normalization procedure
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Fig. 4. Top) Observed T1W image sequence at birth, 1, 2, and 6 years of age. Middle) Images
estimated by the proposed spatiotemporal model of structural and appearance change. Continu-
ous evolution is better understood when viewed as an animation here: https://youtu.be/
AWsai9_dkhU. Bottom) Image sequence estimated by a baseline geodesic model with no ap-
pearance model, which results in a unrealistic sequence which always maintains the appearance
of a neonate.

that doesn’t take into account scanner differences or possible hyperintense areas such
as blood vessels. Although this procedure is suitable for proof of concept of our spa-
tiotemporal model, proper normalization will have to be addressed in future work, to
deal with the impact of non-calibrated scans acquired at different sites and even dif-
ferent scanner generations. However, longitudinal normalization of MR images comes
with many challenges which are beyond the scope of this work.

To explore the impact of missing data, a model was estimated by excluding the year
4 observation. Fig. 4 shows the original observations (top) and the estimated image se-
quence from our proposed model (middle). Qualitatively, the model closely matches the
observed image sequence, well capturing the observed image progression. Fig. 5 shows

Observed Estimated Overlay

Fig. 5. Coronal slice from the 4 year old observation that was left out during model estimation,
along with the image estimated by our model. The observed and estimated image are overlaid,
with yellow indicating similar intensities, while red and green indicate intensity mismatch.

https://youtu.be/AWsai9_dkhU
https://youtu.be/AWsai9_dkhU
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Asymptote Delay Speed

Less More Slow Fast

Fig. 6. Top) Gompertz delay and speed images capture a posterior to anterior pattern of growth,
with the posterior region developing earlier and faster. Bottom) White matter development in the
temporal lobe is delayed and progresses slowly compared to other regions.

that the smooth and continuous trajectory estimated by our method generates realistic
images between observations, as the estimated image at 4 years old closely resembles
the true 4 year old observation, which was not included in model estimation. We mea-
sured a structural similarity index of 0.93 and a root-mean-square error of 0.004. We
also note the added benefit of a reduction in skull stripping artifacts in the estimated
image compared to the original observation. The bottom row of Fig. 4 shows an un-
realistic trajectory estimated with a geodesic model without considering appearance
changes. It is worth noting that the geodesic model may also be estimated backward
in time starting from 6 years old, or alternatively, estimated in both directions starting
in the middle. However, all such models appear artificial and unrealistic since they all
carry the appearance of their starting image.

Gompertz parameter images are shown in Fig. 6, which capture regional patterns of
development. There is a clear posterior to anterior pattern of development captured in
the delay and speed images. The anterior region shows increased delay and lower speed,
while the posterior region is characterized by less delay and high speed. The temporal
lobe also develops later, with relatively slow speed. These are all findings previously
reported in pediatric radiology [1]. This can also been seen in Fig. 7 for selected re-
gions of anterior white matter, posterior white matter, and also grey matter. It shows a
pattern of delayed and slower white matter development in the anterior compared to the
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Fig. 7. Left) Selected regions of white and grey matter overlaid on estimated scan at 6 years
old. Colored boxes are shown enlarged for illustration purposes, true regions are slightly smaller
homogeneous 3D regions. Right) Regional averages of Gompertz parameters are shown from 0
to 6 years. We observe posterior white matter shows less delay than anterior white matter, but also
undergoes accelerated development, reaching a shared asymptote quicker. Grey matter shows a
more gradual linear increase in intensity over time.

posterior, which starts at a higher value and also reaches the asymptote more quickly.
Grey matter, on the other hand, undergoes a slow, nearly linear, increase in intensity.

4 Discussion

Brain maturation can be observed as a change of intensity and contrast over time in MR
images. In this paper, we proposed a spatiotemporal model which explicitly accounts for
intensity change through a Gompertz appearance model. Our method estimates contin-
uous structural and appearance change jointly, for a comprehensive description of early
brain development. To overcome the problem of solutions being non-unique, we intro-
duced two data-matching terms to balance the contribution of structural and appearance
change. The problem could also be approached with an alternative cost function formu-
lation, which is currently being explored as ongoing work. Another solution would be to
limit appearance changes to white matter regions via a segmentation mask, as in [8]. In
addition to estimating a continuous image sequence that closely matches observations,
we showed that Gompertz parameter images capture patterns of development in intu-
itive terms of asymptote, delay, and speed. Since MRI intensity values are uncalibrated,
the most pressing future work is longitudinal as well as population wide normalization,
as in [19]. Longitudinal imaging studies face the challenge of acquisitions from dif-
ferent technicians from a variety of physical locations, as well as changes in scanner
technology over the lifetime of a study, which make direct comparison of MRI intensi-
ties an open challenge. Directly comparing intensity across sites and scanner generation
requires careful harmonization and normalization procedures.
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