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Previous Work:
Shape regression from discrete time points

Geodesic Shape
Regression: Growth of brain
surface color-coded with
local speed. Please notice
rapid early development of
occipital lobe (back of brain,
dark red) due to early visual
cortex maturation.

Fishbaugh et al., MedIA Elsevier
2017 /I1SBI 2018
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Motivation: “Growth/Maturation” seems also
encoded in multi-modal MRI contrast

IBIS case XXXXXXXX

IBIS case 321541

P g e,

Observation: Two
IBIS cases show
different T1w/T2w
contrast changes
with different time
trajectories.

Vardhan & IBIS et al.,
MICCAI 2017




New: Regression of Structure & Appearance

Challenges and Motivation:

e MRI represents anatomy & contrast.

e Co-registration of images with very different,
locally varying contrasts is challenging.

 New approach: Joint modeling of growth
trajectories of structure and appearance.
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Spatiotemporal Model With Appearance Change
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Asymptote

Appearance model

provides additional

information on tissue

maturation:

e GM and WM show
very different
trajectories.

* Frontal, occipital

and temporal
lobes differ in
delay and speed.



Data-driven segmentation

Classification
/ Labels

Voxel-wise appearance change Clustering in A,B,C

Work in progress:
Towards fully data-driven tissue segmentation
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A framework to construct a
longitudinal DW-MRI infant
atlas based on mixed effects
modeling of dODF coefficients

Heejong Kim, Martin Styner, Joseph
Piven, and Guido Gerig

MICCAI CDMRI workshop, Oct. 2019
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Goal: Framework to construct a continuous longitudinal
DW-MRI infant atlas

Diffusion Weighted Image

e Atlas building on longitudinal DW images is even more
challenging because of time changes.

: Propose a framework to construct

Atlas construction framework

on structural brain image*
*Joshi, et al., Neurolmage, 2004 & Avants and Gee, Neurolmage 2004

a continuous longitudinal DW-MRI infant atlas




Atlas Building Steps

HARDI series of an image

Diffeomorphic transform
obtained from atlas building
+ Reorientation of dODFs*

Multivariate atlas construction
framework (BO, FA)

1) Calculating nonlinear deformation 2) Mapping reoriented diffusion maps
of each subject into atlas space. Into atlas space.

*Yap, et al., IEEE transactions on medical imaging (2012)
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Longitudinal dODF atlas construction
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e Analytical g-ball based diffusion orientation
distribution function (dODF)* calculated for each
voxel.

e LME model for spherical harmonics (SH) coefficients
for the population of subjects and repeated
measures over time.

*Descoteaux, Magnetic Resonance in Medicine, 2007

c;i~XB+ Za+e,

B = a fixed effects vector ———
X=[11]

o = a random effects coefficient—>
Z = a design matrix

€ = errors

Age

Subject

**Descoteaux, High Angular Resolution Diffusion MRI: from Local Estimation to Segmentation and Tractography, 2010

tJ Jiang, Linear and generalized linear mixed models and their applications, 2007
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RESULT: ACE-IBIS* Clinical Data

e Autism infant imaging project (ACE-IBIS)
e HARDI 64dir from 3-T Siemens TIM Trio Scanners
e Quality control techniques include DTIPrep**
and Q-space resampling’
e Longitudinal study 3- to 36- month
o 33 images from 14 healthy infants

*Autism Centers of Excellence Infant Brain Imaging Study
**0guz et al., Front. In Neuroinformatics, 2014 101 I
t Elhabian et al., ISBI, 2016 ' !

Subject ID index
13



RESULT: Longitudinal DW-MRI Infant Atlas

Fractional Diffusion orientation
Anisotropy distribution function (dODF)

Baseline

Tractography
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Analysis of corpus callosum
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RESULT: Evaluation based on Longitudinal GFA Changes

Splenium
Body,,

e Generalized fractional anisotropy (GFA) calculated
for genu, body, and splenium of the corpus callosum

¢ Splenium of CC starts with higher GFA* T Positive slope = more anisotropic due to WM development

0.18; 0.18; 0.18/

0.16- 0.161 O.IGO
0.14-0 ¥ 0.14 0.14-
A 4

Generalized fractional anisotropy

0.12 0.12 0.121
0.10; Genu of CC 0.10 —— Body of CC 0.10; Splenium of CC
10 20 30 10 20 30 10 20 30
Subject-wise trends: Gray lines Fixed effects: Colored lines === Age (Months)

*Geng, X., et al., Neuroimage, 2012 166



Conclusion & Future Work

e Done: Framework to build a continuous longitudinal
HARDI brain atlas based on statistics of dODF SH
coefficients, applied to longitudinal data of healthy

developing infants.
e Goal: To represent statistical normative model of

dODFs over infant age.

Todo: Explore nonlinear model.

Todo: Modeling of population and subject specific
confidence intervals (Sadeghi Neuroimage 2013). 3
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This work was supported by the NIH grants R01-HD055741-12,
1R01HDO089390-01A1, 1IR01DA038215-01A1 and 1R01HD08812501A1.
We are thankful for research discussions with Dr. Ragini Verma.




Hierarchical Multi-Geodesic Model for
Longitudinal Analysis of Temporal Trajectories of
Anatomical Shape and Covariates

Sungmin Hong, James Fishbaugh, Jason J. Wolff, Jane Paulsen, Martin
A. Styner, Guido Gerig

e Approaches so far:

* Statistical shape modeling followed by generalized linear
modeling with covariates and group testing (e.g. Wolff et §
al., Brain 2015). i

* New:

* Novel hierarchical multi-geodesic model that can
account for the effect of subject-specific covariates to
the development (slope) of a shape change.

e Goal:
* Improved understanding of shape/covariate relationship.



Shape representation and statistics

Shape space is non-Euclidean: Longitudinal Shape Change per
Geodesic model on Riemannian Subject
manifOId' - Aorerage shapes V08, V12, V24

60 . -ah 20 20 40

19



Hierarchical Model (“mixed effects model”, but
covariate and time)

Estimate a subject-wise trend as a univariate geodesic model [1]. The intercept model f (1) formulated as a multivariate geodesic model [2].
A Nips X Models the effects of covariates to the baselines of subject-specific trends.
(ﬁ,,;, bz) = argmin Z sz (%J: EIP(G% bttzj))a Y; = Eﬁ?p(flh bzt)
ai,bs Jj=1 — Y, : Subject-wise model f(n) = E‘T"p(ﬁoa 51771 +...+ )BN,?'UN,,)

¢ V;;: Observations
t;; » Observation Times
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1000 subjects with 3500
points total,
covariate c = [0..5]

Synthetic Model:
Statistical Analysis in
Complex Shape Space

Lines: longitudinal subject
trends

Hierarchical Geodesic Model Proposed

Hierarchical Multi-Geodesic Model
Geodesic and Hierarchical Proposed HMS: Proper
Geodesic models fail, cannot model of covariate and

account for covariate. individual trends 21



Study on ACE-IBIS Data (72 shapes, 24 ASD subjects)

Corpus Callosum Shape Space : Scale x Kendall Shape - M = R x CPk~2
ADOS = 4 /\

AGE{Munth)

Autism Di | ti ADOS=10 /\
utism Diagnostic //—

Observation Schedule

(ADOS) Score y
- Clinical test score on the 3 AGE(Month) 2a £ _
behavioral and cognitive N — o .
abilities . . . .
- 4:Low ~10: High Finding: Increased expansion of the anterior CC (genu and

rostral body) over time for subjects with higher ADOS scores
confirms expansion of CC in ASD.

* S. Hong, J. Fishbaugh, J. Wolff, M. Styner, G. Gerig, “HMG Model for Longitudinal Analysis of Temporal Trajectories of Anatomical Shape and Covariates,” MICCAI 2619 (To appear)



Study on ACE-IBIS Data (72 shapes, 24 ASD subjects)

Corpus Callosum Shape Space : Scale x Kendall Shape - M = R x CPk~2

Rostral Body

3-Month 40071
440 |
400 | :
Autism Diagnostic 1:
Observation Schedule 3601 D
(ADOS) Score S
- Clinical test score on the 320 - . .
behavioral and cognitive 6 12 24
abilities . . . .
_ 4:Low ~10: High Finding: Increased expansion of the anterior CC (genu and

rostral body) over time for subjects higher ADOS scores
confirms expansion of CC in ASD.

* S. Hong, J. Fishbaugh, J. Wolff, M. Styner, G. Gerig, “HMG Model for Longitudinal Analysis of Temporal Trajectories of Anatomical Shape and Covariates,” MICCAI 2679 (To appear)
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