Spatiotemporal Modeling for Image Time Series with Appearance Change: Application to Early Brain Development

James Fishbaugh, Martin Styner,, Guido Gerig

MICCAI 2019, MFCA workshop, to appear Oct. 2019, LNCS Springer Verlag

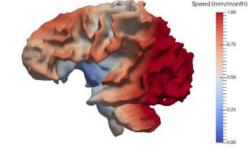
Previous Work: Shape regression from discrete time points

6 month

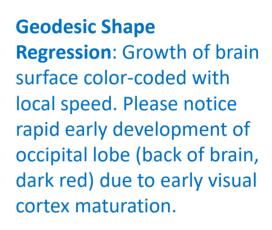
12 month

24 month

Speed (mm/month)



6.00 months



Fishbaugh et al., MedIA Elsevier 2017 / ISBI 2018

6.00 months

Motivation: "Growth/Maturation" seems also encoded in multi-modal MRI contrast

IBIS case xxxxxxx **IBIS case 321541** T1w 6 T2w T1w T1w T2w T2w 6mg 6mo 6mo 6mo

Observation: Two IBIS cases show different T1w/T2w contrast changes with different time trajectories.

Vardhan & IBIS et al., MICCAI 2017

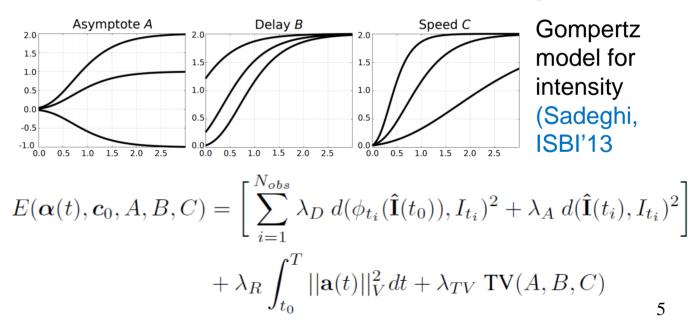
New: Regression of Structure & Appearance

Challenges and Motivation:

- MRI represents anatomy & contrast.
- Co-registration of images with very different, locally varying contrasts is challenging.
- New approach: Joint modeling of growth trajectories of structure and appearance.

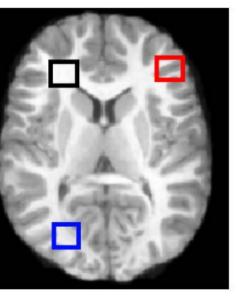


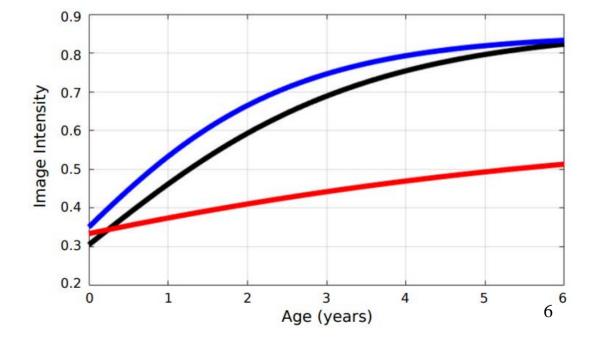
Spatiotemporal Model With Appearance Change

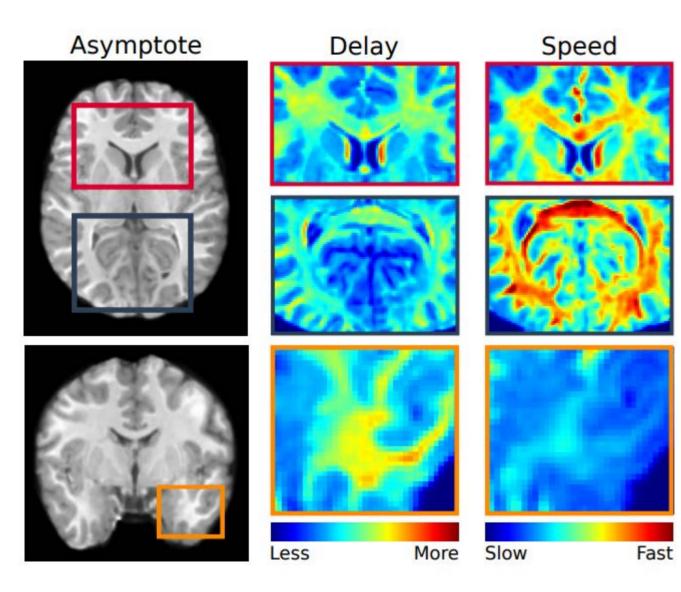


Grey Matter

White Matter (**Posterior**)



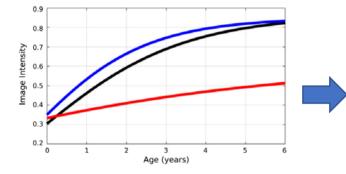


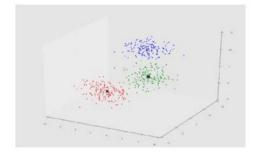


Appearance model provides additional information on tissue maturation:

- GM and WM show very different trajectories.
- Frontal, occipital and temporal lobes differ in delay and speed.

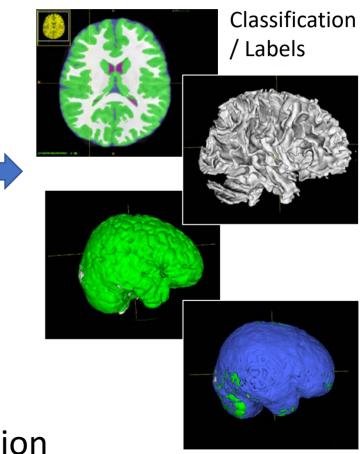
Data-driven segmentation





Voxel-wise appearance change

Clustering in A,B,C



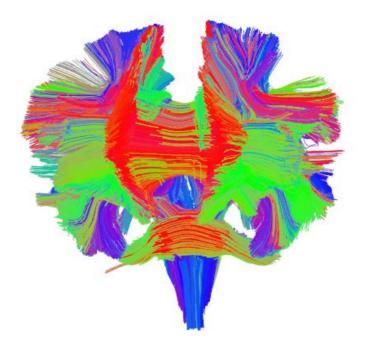
Work in progress:

Towards fully data-driven tissue segmentation

A framework to construct a longitudinal DW-MRI infant atlas based on mixed effects modeling of dODF coefficients

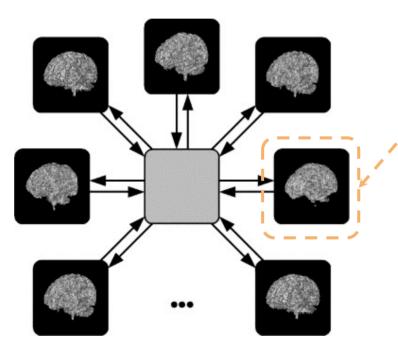
Heejong Kim, Martin Styner, Joseph Piven, and Guido Gerig

MICCAI CDMRI workshop, Oct. 2019



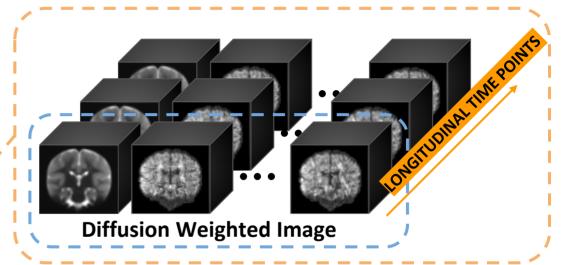
003 months

Goal: Framework to construct a *continuous* longitudinal DW-MRI infant atlas



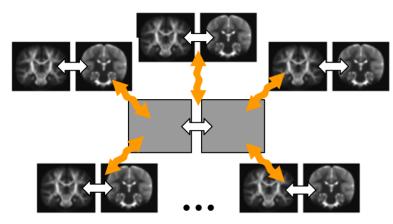
Atlas construction framework on structural brain image*

*Joshi, et al., NeuroImage, 2004 & Avants and Gee, NeuroImage 2004



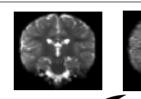
- Atlas building on longitudinal DW images is even more challenging because of **time changes**.
- → Goal: Propose a framework to construct a continuous longitudinal DW-MRI infant atlas

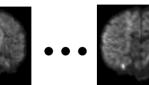
Atlas Building Steps

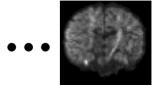


Multivariate atlas construction framework (B0, FA)

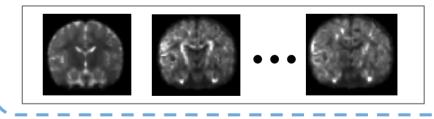
HARDI series of an image







Diffeomorphic transform obtained from atlas building + Reorientation of dODFs*

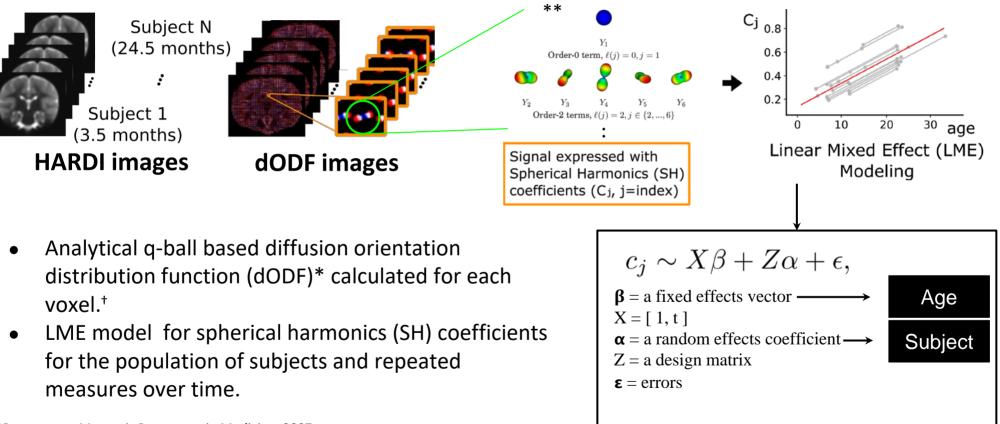


1) Calculating nonlinear deformation of each subject into atlas space.

2) Mapping reoriented diffusion maps into atlas space.

*Yap, et al., IEEE transactions on medical imaging (2012)

Longitudinal dODF atlas construction



^{*}Descoteaux, Magnetic Resonance in Medicine, 2007

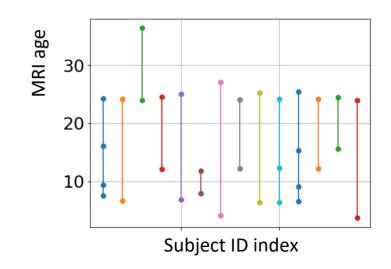
**Descoteaux, High Angular Resolution Diffusion MRI: from Local Estimation to Segmentation and Tractography, 2010

⁺ J Jiang, Linear and generalized linear mixed models and their applications, 2007

RESULT: ACE-IBIS* Clinical Data

*Autism Centers of Excellence Infant Brain Imaging Study **Oguz et al., Front. In Neuroinformatics, 2014 † Elhabian et al., ISBI, 2016

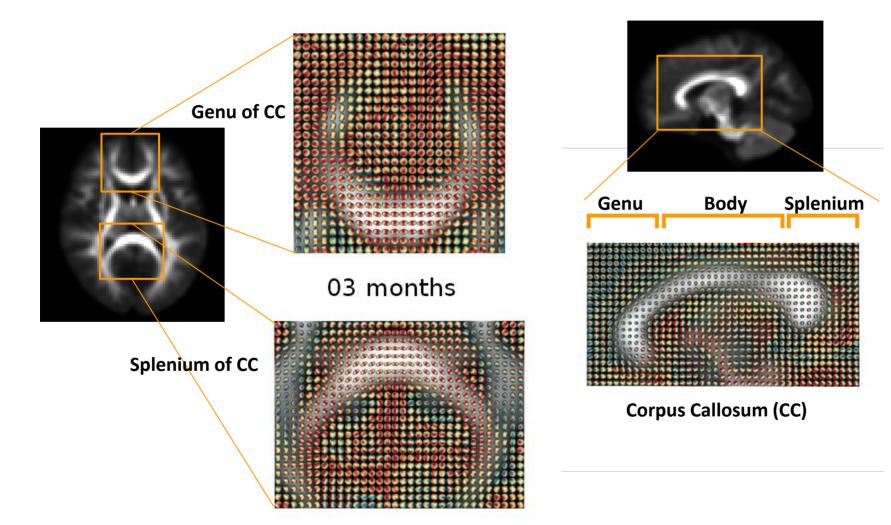
- Autism infant imaging project (ACE-IBIS)
- HARDI 64dir from 3-T Siemens TIM Trio Scanners
- Quality control techniques include DTIPrep** and Q-space resampling⁺
- Longitudinal study 3- to 36- month
 - o 33 images from 14 healthy infants



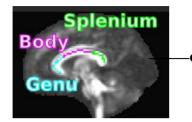
RESULT: Longitudinal DW-MRI Infant Atlas



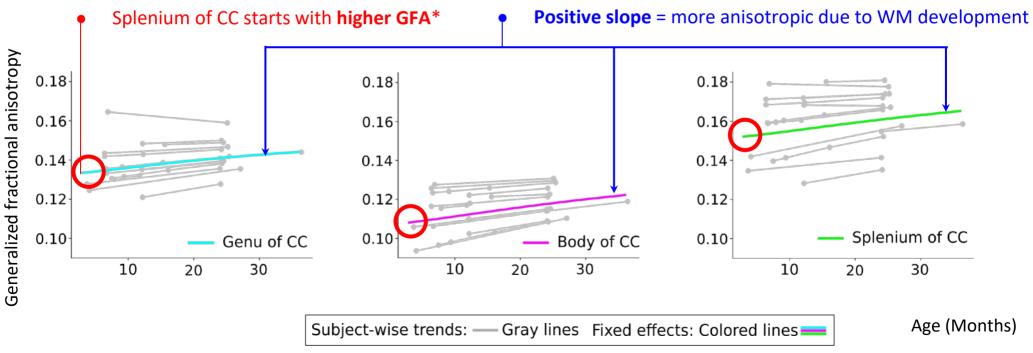
Analysis of corpus callosum



RESULT: Evaluation based on Longitudinal GFA Changes

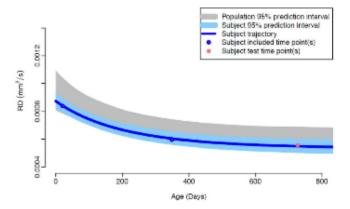


Generalized fractional anisotropy (GFA) calculated for genu, body, and splenium of the corpus callosum



Conclusion & Future Work

- **Done**: Framework to build a continuous longitudinal HARDI brain atlas based on statistics of dODF SH coefficients, applied to longitudinal data of healthy developing infants.
- **Goal**: To represent statistical normative model of dODFs over infant age.
- Todo: Explore nonlinear model.
- **Todo**: Modeling of population and subject specific confidence intervals (Sadeghi Neuroimage 2013).

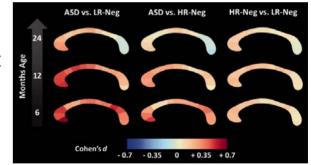


This work was supported by the NIH grants R01-HD055741-12, 1R01HD089390-01A1, 1R01DA038215-01A1 and 1R01HD08812501A1. We are thankful for research discussions with Dr. Ragini Verma.

Hierarchical Multi-Geodesic Model for Longitudinal Analysis of Temporal Trajectories of Anatomical Shape and Covariates

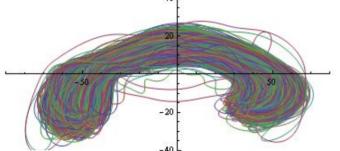
Sungmin Hong, James Fishbaugh, Jason J. Wolff, Jane Paulsen, Martin A. Styner, Guido Gerig

- Approaches so far:
 - Statistical shape modeling followed by generalized linear modeling with covariates and group testing (e.g. Wolff et al., Brain 2015).
- New:
 - Novel hierarchical multi-geodesic model that can account for the effect of subject-specific covariates to the development (slope) of a shape change.
- Goal:
 - Improved understanding of shape/covariate relationship.

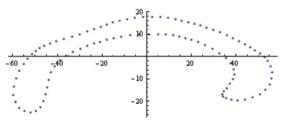


Shape representation and statistics

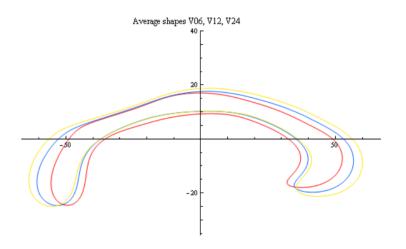
Shape space is non-Euclidean: Geodesic model on Riemannian manifold. $_{\text{\tiny Wr}}$



1040 corpus callosum shapes, ACE-IBIS, sampled by boundary points.

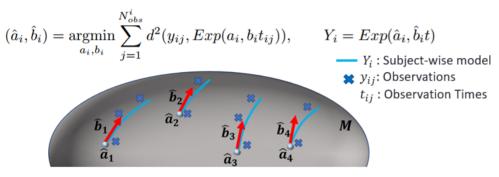


Longitudinal Shape Change per Subject



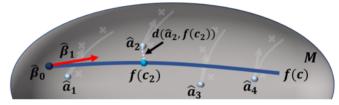
Hierarchical Model ("mixed effects model", but covariate and time)

Estimate a subject-wise trend as a univariate geodesic model [1].

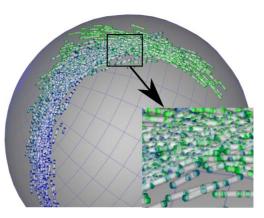


The intercept model $f(\eta)$ formulated as a multivariate geodesic model [2]. Models the effects of covariates to the baselines of subject-specific trends.

$$f(\boldsymbol{\eta}) = Exp(\beta_0, \beta_1\eta_1 + \dots + \beta_{N_\eta}\eta_{N_\eta})$$

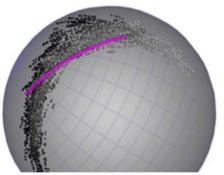


Synthetic Model: Statistical Analysis in Complex Shape Space

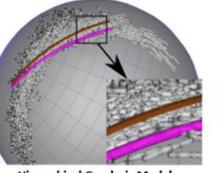


1000 subjects with 3500 points total, covariate c = [0..5]

Lines: longitudinal subject trends



Geodesic Model



Hierarchical Geodesic Model

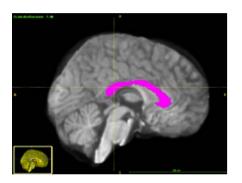
Geodesic and Hierarchical Geodesic models fail, cannot account for covariate. Ground Truth: Yellow Lines

Proposed Hierarchical Multi-Geodesic Model

Proposed HMS: Proper model of covariate and individual trends

Study on ACE-IBIS Data (72 shapes, 24 ASD subjects)

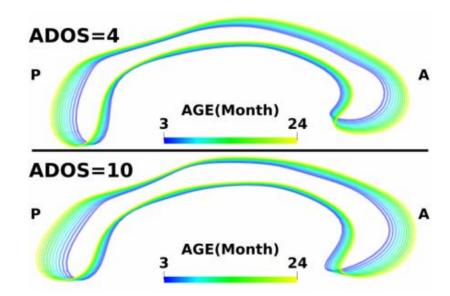
Corpus Callosum



Autism Diagnostic Observation Schedule (ADOS) Score

- Clinical test score on the behavioral and cognitive abilities
- 4 : Low ~ 10 : High

Shape Space : Scale x Kendall Shape - $M = R \times CP^{k-2}$

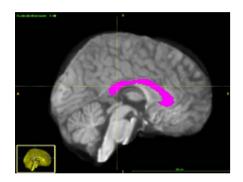


Finding: Increased expansion of the anterior CC (genu and rostral body) over time for subjects with higher ADOS scores confirms expansion of CC in ASD.

* S. Hong, J. Fishbaugh, J. Wolff, M. Styner, G. Gerig, "HMG Model for Longitudinal Analysis of Temporal Trajectories of Anatomical Shape and Covariates," MICCAI 2019 (To appear)

Study on ACE-IBIS Data (72 shapes, 24 ASD subjects)

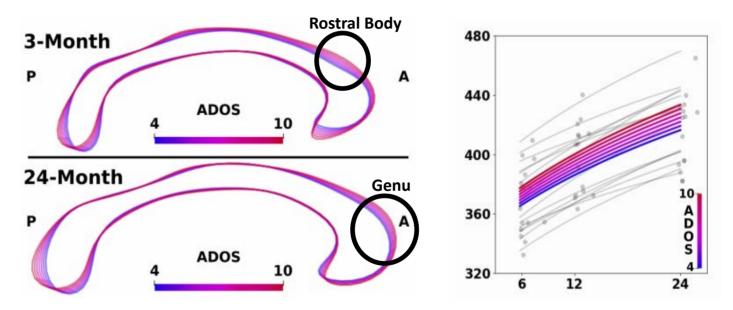
Corpus Callosum



Autism Diagnostic Observation Schedule (ADOS) Score

- Clinical test score on the behavioral and cognitive abilities
- 4 : Low ~ 10 : High

Shape Space : Scale x Kendall Shape - $M = R \times CP^{k-2}$



Finding: Increased expansion of the anterior CC (genu and rostral body) over time for subjects higher ADOS scores confirms expansion of CC in ASD.

* S. Hong, J. Fishbaugh, J. Wolff, M. Styner, G. Gerig, "HMG Model for Longitudinal Analysis of Temporal Trajectories of Anatomical Shape and Covariates," MICCAI 2019 (To appear)