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Figure 8.6 The point py as instantaneous
epipole.

8.2.5 The Instantaneous Epipole

We close this introductory section with an important remark. The point Po. being
the intersection of the image plane with the direction of translation of the center of
projection, can be regarded as the instantaneous epipole between pairs of consecutive
frames in the sequence (Figure 8.6). The main consequence of this property is that
it is possible to locate py without prior knowledge of the camera intrinsic parameters
(section 8.3.2).

&  Notice that. as in the case of stereo, knowing the epipole’s location in image coordinates
is not equivalent to knowing the direction of translation (the baseline vector for stereo).
The relation between epipole location and translation direction is specified by (8.9), which
is written in the camera (not image) frame, and contains the focal length f. Therefore,
the epipole’s location gives the direction of translation only if the intrinsic parameters of the
viewing camera are known.

8.3 The Notion of Optical Flow

We now move to the problem of estimating the motion field from tmage sequences, that
is, from the spatial and temporal variations of the image brightness. To do this, we
must model the link between brightness variations and motion field, and arrive at a
fundamental equation of motion analysis, the image brightness constancy equation. We
want also to analyze the power and validity of this equation, that is, understand how
much and how well it can help us to estimate the motion field. For simplicity, we will
assume that the image brightness is continuous and di fferentiable as many times as needed
in both the spatial and temporal domain.
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Chapter 8 Motion

8.3.1 The Image Brightness Constancy Equation

[t is common experience that, under most circumstances, the apparent brightness of
moving objects remains constant. We have seen in Chapter 2 that the image irradiance
is proportional to the scene radiance in the direction of the optical axis of the camera;
if we assume that the proportionality factor is the same across the entire image plane,
the constancy of the apparent brightness of the observed scene can be written as the
stationarity of the image brightness E over time:
dE ;
o 0. (8.15)
&  In (8.15), the image brightness, £. should be regarded as a function of both the spatial
coordinates of the image plane, x and v, and of time, that is, £ = E(x, y, 1). Since x and
y are in turn functions of ¢, the roral derivative in (8.15) should not be confused with the
partial derivative 3 E/dr.

Via the chain rule of differentiation. the total temporal derivative reads

dE(x(t),y(r),t) @dEdx dEdy JE
= ot — =t —— =) 8.16
dr dx dr ' 3y dr | ar (516)
The partial spatial derivatives of the image brightness are simply the components of
the spatial image gradient, VE, and the temporal derivatives, dx/dt and dy/dr, the
components of the motion field, v. Using these facts, we can rewrite (8.16) as the image
brightness constancy equation.

The Image Brightness Constancy Equation
Given the image brightness, £ = E(x. ¥, 1), and the motion field, v,
(VE) v+ E, =0. : (8.17)

The subscript ¢ denotes partial differentiation with respect to time.

We shall now discuss the relevance and applicability of this equation for the
estimation of the motion field.

8.3.2 The Aperture Problem

How much of the motion field can be determined through (8.17)? Only its component
in the direction of the spatial image gradient,’ v,. We can see this analytically by isolating
the measurable quantities in (8.17):

E, _(VE)TV
IVEI —~ |VE]

=it (8.18)

° This component is sometimes called the normal component, because the spatial image gradient is normal to
the spatial direction along which image intensity remains constant.
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(a) (b)

Figure 8.7 The aperture problem: the black and grey lines show two positions of
the same image line in two consecutive frames. The image velocity perceived in (a)
through the small aperture, v,, is only the component parallel to the image gradient of
the true image velocity, v, revealed in (b).

The Aperture Problem

The component of the motion field in the direction orthogonal to the spatial image gradient is
not constrained by the image brightness constancy equation.

The aperture problem can be visualized as follows. Imagine to observe a thin, black
rectangle moving against a white background through a small aperture. “Small” means
that the corners of the rectangle are not visible through the aperture (Figure 8.7(a));
the small aperture simulates the narrow support of a differential method. Clearly, there
are many, actually infinite, motions of the rectangle compatible with what you see
through the aperture (Figure 8.7(b)); the visual information available is only sufficient
to determine the velocity in the direction orthogonal to the visible side of the rectangle;
the velocity in the parallel direction cannot be estimated.

%  Notice that the parallel between (8.17) and Figure 8.7 is not perfect. Equation (8.17) relates
the image gradient and the motion field at the same image point, thereby establishing
a constraint on an infinitely small spatial support; instead, Figure 8.7 describes a state
of affairs over a small but finite spatial region. This immediately suggests that a possible
strategy for solving the aperture problem is to look at the spatial and temporal variations
of the image brightness over a neighborhood of each point. 10

' Incidentally, this strategy appears to be adopted by the visual system of primates.
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8.3.3 The Validity of the Constancy Equation: Optical Flow

How well does (8.17) estimate the normal component of the motion field? To answer
this question, we can look at the difference, Av, between the true value and the one
estimated by the equation. To do this, we must introduce a model of image formation.
accounting for the reflectance of the surfaces and the illumination of the scene.

For the purposes of this discussion. we restrict ourselves to a Lambertian surface.
S, illuminated by a pointwise light source infinitely far away from the camera (Chap-
ter 2). Therefore, ignoring photometric distorsion, we can write the image brightness,
E, as

E = pl'n, (8.19)

where p is the surface albedo, I identifies the direction and intensity of illumination.
and n is the unit normal to § at P.

Let us now compute the total temporal derivative of both sides of (8.19). The only
quantity that depends on time on the right hand side is the normal to the surface. If
the surface is moving relative to the camera with translational velocity T and angular
velocity w, the orientation of the normal vector n will change according to

dn

dt
where x indicates vector product. Therefore, taking the total temporal derivative of
both sides of (8.19), and using (8.17) and (8.20), we have

R T (8.20)

VE w4 E== o (@ m): (8.21)
We can obtain the desired expression for Av from (8.18) and (8.21):

ITew x n|

Av| =
Avi= =S

We conclude that, even under the simplifying assumption of Lambertian reflectance,
the image brightness constancy equation yields the true normal component of the
motion field (that is, [Av| is identically O for every possible surface) only for (a) purely
translational motion, or (b) for any rigid motion such that the illumination direction is
parallel to the angular velocity.

Other factors being equal, the difference Au decreases as the magnitude of the
spatial gradient increases: this suggests that points with high spatial image gradient are
the locations at which the motion field can be best estimated by the image brightness
constancy equation.

In general, |Av]| is unlikely to be identically zero, and the apparent motion of the
image brightness is almost always different from the motion field. For this reason, to
avoid confusion, we call the apparent motion an oprical flow, and refer to techniques
estimating the motion field from the image brightness constancy equation as optical flow
techniques. Here is a summary of similarities and differences between motion field and
optical flow.
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Definition: Optical Flow

The optical flow is a vector field subject to the constraint (8.17). and loosely defined as the apparent
motion of the image brightness pattern.

Optical Flow and Motion Field

The optical flow is the approximation of the motion field which can be computed from time-varying
image sequences. Under the simplifying assumptions of

* Lambertian surfaces
® pointwise light source at infinity
® no photometric distortion

the error of this approximation is

® small at points with high spatial gradient

® exactly zero only for translational motion or for any rigid motion such that the illumination
direction is parallel to the angular velocity

We are now ready to learn algorithms estimating the motion field.

8.4 Estimating the Motion Field

* They are not iterative: therefore, they are genuinely local, and less biased than
iterative methods by possible discontinuities of the motion field.

* They do not involve derivatives of order higher than the first; therefore, they are
less sensitive to noise than methods requiring higher-order derivatives.

-
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We describe a differential technique that gives good results. The basic assumption
is that the motion field is well approximated by a constant vector field, v, within any
small region of the image plane.!'!

Assumptions

L. The image brightness constancy equation yields a good approximation of the normal
component of the motion field.

2. The motion field is well approximated by a consrant vector field within any small patch of
the image plane.

An Optical Flow Algorithm. Given Assumption 1, for each point p; within a
small. N x N patch, Q. we can write

(VE)'v+E, =0

where the spatial and temporal derivatives of the image brightness are computed at
PL,P2...Py2-

& A typical size of the “small patch” is 5 x 5.

Therefore, the optical flow can be estimated within Q as the constant vector, v,
that minimizes the functional

UUEDY [(VE)'_V + E,.T.
picQ
The solution to this least squares problem can be found by solving the linear system
"ATAv=ATb. . (8.22)
The i-th row of the N2 x 2 matrix A is the spatial image gradient evaluated at point p;:

VE(p1) 7
VE(pz)

- VE(PN:-:N) =

and b is the N*-dimensional vector of the partial temporal derivatives of the image
brightness, evaluated at py, . . . P2, after a sign change:

b=—[E:/(p1).....E(pnxn)] . (8.24)

' Notice that this is in agreement with the first conclusion of section 8.2.3 (motion field of moving planes)
regarding the approximation of smooth motion fields.

D
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The least squares solution of the overconstrained system (8.22) can be obtained as!2
v=(ATA)"'ATb. (8.25)

v is the optical flow (the estimate of the motion field) at the center of patch Q: repeating
this procedure for all iImage points, we obtain a dense optical flow. We summarize the
algorithm as follows:

Algorithm CONSTANT_FLOW

The input is a time-varying sequence of » images. £, E5, ... E,. Let Q be a square region of
N x N pixels (typically. N = 3),

L. Filter each image of the sequence with a Gaussian filter of standard deviation equal to o,
(typically o, = 1.5 pixels) along each spatial dimension.

2. Filter each image of the sequence along the temporal dimension with a Gaussian filter of
standard deviation o, (typically o, = 1.5 frames). If 2k + 1 is the size of the temporal filter,
leave out the first and last & images.

3. For each pixel of each image of the sequence:

(a) compute the matrix A and the vector b using (8.23) and (8.24)
(b) compute the optical flow using (8.25)

The output is the optical flow computed in the last step.

%  The purpose of spatial filtering is to attenuate noise in the estimation of the spatial image
gradient; temporal filtering prevents aliasing in the time domain. For the implementation
of the temporal filtering, imagine to stack the images one on top of the other, and filter
sequences of pixels having the same coordinates, Note that the size of the temporal filter
1s linked to the maximum speed that can be “measured” by the algorithm.

An Improved Optical Flow Algorithm. We can improve CONSTANT_FLOW
by observing that the error made by approximating the motion field at p with its estimate
at the center of a patch increases with the distance of p from the center itself. This
suggests a weighted least-square algorithm. in which the points close to the center of
the patch are given more weight than those at the periphery. If W is the weight matrix,
the solution, v, is given by

Vu=(ATW2A) "1 AT w2h.

Concluding Remarks on Optical Flow Methods. Tt is instructive to examine the
image locations at which CONSTANT_FLOW fails. As we have seen in Chapter 4, the
2 x 2 matrix

wan DELE i

> EE, Y E? (8:26)




—4—

198 Chapter 8 Motion

computed over an image region Q, is singular if and only if all the spatial gradients in
Q are null or parallel. In this case the aperture problem cannot be solved, and the only
possibility is to pick the solution of minimum norm. that is, the normal flow. The fact
that we have already met the matrix AT A in Chapter 4 is not a coincidence: the next
section tells you why.

Notice that CONSTANT_FLOW gives good results because the spatial structure
of the motion field of a rigid motion is well described by a low-degree polynomial in the
image coordinates (as shown in section 8.2.3). For this reason, the assumption of local
constancy of the motion field over small image patches is quite effective.

8.4.2 Feature-based Techniques

The second class of methods for estimating the motion field is formed by so-called
matching techniques, which estimate the motion field at feature points only. The result
is a sparse motion field. We start with a two-frame analysis (finding feature disparities
between consecutive frames), then illustrate how tracking the motion of a feature across
a long image sequence can improve the robustness of frame-to-frame matching.

Two-Frame Methods: Feature Martching. 1f motion analysis is restricted to two
consecutive frames, the same matching methods can be used for stereo and motion. !
This is true for both correlation-based and feature-based methods (Chapter 7). Here we
concentrate on matching feature points. You can easily adapt this method for the stereo
case too.

The point-matching method we describe is reminiscent of the CONSTANT_
FLOW algorithm, and based on the features we met in Chapter 4. There, we looked at
the matrix AT A of (8.26), computed over small, square image regions: the features were
the centers of those regions for which the smallest eigenvalue of AT A was larger than
a threshold. The idea of our matching method is simple: compute the displacement of
such feature points by iterating algorithm CONSTANT_FLOW.

The procedure consists of three steps. First, the uniform displacement of the
square region Q is estimated through CONSTANT_FLOW, and added to the current
displacement estimate (initially set to 0). Second. the patch Q is warped according to
the estimated flow. This means that Q is displaced according to the estimated flow, and
the resulting patch, Q’, is resampled in the pixel grid of frame [>. If the estimated flow
equals (v, v,), the gray value at pixel (i, j) of Q' can be obtained from the gray values
of the pixels of Q close to (i — Vy, J — vx). For our purpose, bilinear interpolation'* is
sufficient. Third, the first and second steps are iterated until a stopping criterion is met.
Here is the usual algorithm box. containing an example of stopping criterion.

'3 But keep in mind the discussion of section 8.2.1 on the differences between stereo and motion disparities,

14 Bilinear interpolation means that the interpolation is linear in each of the four pixels closest to (i — v,, j —
Ue).







