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Photometric Stereo, Shape
from Shading SfS
F&P Ch 5 (old) Ch 2 (new)

Guido Gerig
CS 6643, Spring 2017

Credits: M. Pollefey UNC CS256, Ohad Ben-Shahar CS BGU, Wolff JUN
(http://www.cs.jhu.edu/~wolff/course600.461/week9.3/index.htm)




Example

Reconstruct 3D Face Surface from unstructured image
data

Kemelmacher et al., “Face Reconstruction from the Wild”, ICCV 2011
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Photometric Stereo
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Depth from Shading?
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Photometric Surface
Normals Reconstruction
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Photometric Stereo
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Depth from Shading?
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First step: Surface
Normals from Shading

Second step:

Re-integration of
surface from Normals

Photometric Surface
Normals Reconstruction

€ €
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Original Image

Examples

http://www.youtube.com/watch?v=sfCQ7f7PMbc&feature=related

Simulated voyage over the surface of Neptune's large moon Triton

http://www.youtube.com/watch?v=nwzVrC2GQXE

http://www.youtube.com/watch?v=KiTA6ftyQuY

L Window


http://www.youtube.com/watch?v=sfCQ7f7PMbc&feature=related
http://www.youtube.com/watch?v=sfCQ7f7PMbc&feature=related
http://www.youtube.com/watch?v=KiTA6ftyQuY
http://www.youtube.com/watch?v=KiTA6ftyQuY
http://www.youtube.com/watch?v=nwzVrC2GQXE
http://www.youtube.com/watch?v=nwzVrC2GQXE
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Shape from Shading
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Inverting the image formation process

T r—

Image formation = “Shading from shape” (and light sources)

Credit: Ohad Ben-Shahar CS BGU




Authors: Emmanuel Prados and Olivier Faugeras

CVPR'2005, International Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, June 2005.

a) Synthetic image generated from the classical Mozart's face [Zhang-Tsai-etal99]; b) reconstructed surface from a) by new algorithm;
c) real image of a face; d)-e) reconstructed surface from c) by new algorithm.
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Photometric Stereo
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e Assume:
— a local shading model

— a set of point sources that are infinitely
distant

— a set of pictures of an object, obtained In
exactly the same camera/object
configuration but using different sources

— A Lambertian object (or the specular
component has been identified and
removed)




z

Setting for Photometric Stereo
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Multiple images with different lighting (vs
binocular/geometric stereo)

Camera
Eﬂ;
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Goal: 3D from One View and
multiple Source positions
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Usable Data

Input Images )
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Presentation Notes

Now this is really messed up. There’s just too much inter-reflection between the objects in the scene.
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Projection model for surface recovery -
usually called a Monge patch
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Image
Plane

direction
of projection

height




i
)

Lambertian Reflectance Map
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LAMBERTIAN MODEL

E =p<nn>=pCOS0
Y.

COS@Z 1+ ppL +qu
\/1+ p°+0° \/1+ p°+q,°




REFLECTANCE MAP IS A VIEWER-CENTERED
REPRESENTATION OF REFLECTANCE

(le K/ | '1) =

z=f(x,y)
Surface

Orientation
A J
('fX’ 'fy ] l)
vﬁ\

X

IMAGE PLANE




REFLECTANCE MAP IS A VIEWER-CENTERED
REPRESENTATION OF REFLECTANCE

(-fx,-fy,1)=(p,-q, 1)

P, g comprise a gradient or gradient space representation for
local surface orientation.

Reflectance map expresses the reflectance of a material directly

In terms of viewer-centered representation of local surface
orientation.
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Reflectance Map
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Shading on Lambertian surface — Overhead point source

~ 1
1) = PN 00D = p e = R0
P Tq

. -

(X,y,H(x,y)) L N

Credit: Ohad Ben-Shahar CS BGU
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Reflectance Map (ps=0, qgs=0)
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The Reflectance Map — Lambertian surface from overhead source position

R(p,q) =
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I=pN-L)=p
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Reflectance Map

Shape from Shading

Shading on Lambertian surface — General point source

_p'L'x_q.Ly_FLz

ppr+q-q;+1

(x, v, H(x,))

AT

Credit: Ohad Ben-Shahar CS BGU
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Reflectance Map
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The Reflectance Map — Lambertian surface from general source position

-p;+q-q; +1
R(p.g) =L LT 0L
\/p +q +1\/pl +q, +1

-

Gradient point of maximum brightness
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Reflectance Map (General)
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Isophote

Figure 10-13. The reflectance map is a plot of brightness as a function of
surface orientation. Here it is shown as a contour map in gradient space. In the
case of a Lambertian surface under point-source illumination, the contours turn
out to be nested conic sections. The maximum of R(p,q) occurs at the point
(p,q) = (ps,qs), found inside the nested conic sections, while R(p,q) = 0 all
along the line on the left side of the contour map.
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Reflectance Map
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Isophote |

combinations (= surface oz
orientations). ' Y

Given Intensity | in image, 01 \ b
there are multiple (p,q) o \

Figure 10-13. The reflectance map is a plot of brightness as a function of

= Use mu Itl ple |mag es Wlth surface orientation. Here it is shown as a contour map in gradient space. In the

case of a Lambertian surface under point-source illumination, the contours turn

d|ffe rent ||ght source out to be nested conic sections. The maximum of R(p,q) occurs at the point

; . (p,q) = (ps,4s), found inside the nested conic sections, while R(p,q) = 0 all
directions. along the line on the left side of the contour map.
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Multiple Images = Multiple
Maps
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Can isolate p, g as contour intersection

Figure 10-21. In the case of a Lambertian surface illuminated successively by
two different point sources, there are at most two surface orientations that pro-
duce a particular pair of brightness values. These are found at the intersection
of the corresponding contours in two superimposed reflectance maps.




Example: Two Views

]l(xny) — Rl(p3Q)
Il(xny) :Rz(p:Q)

Photometric Stereo

-5

L L
=23 =& =15 =1 =5 [ a5 ] 15 £ 25 ¥

Still not unique for certain intensity pairs.




Constant Albedo

I, = pS,.N

Photometric Stereo

Solve linear equation system

_ gl =
PN =8"1 to calculate N.
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= Varying Albedo
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gy Solution Forsyth & e QOut of shadow:
Ponce:
I(z,y) = kB(x)
For each point source, we = kB(x,y)
know the source vector (by :@p (x QLN L, y) @

assumption). We assume we
know the scaling constant of
the linear camera (k). Fold
the normal (N) and the
reflectance (p(Xx,y)) into one
vector g, and the scaling = In shadow:
constant and source vector I (X, y) =0
into another V;.

— g(xay) v 1

where g(z,y) = p(xz,y) N (x,y) and V| = kS, where k is the constant connecting
the camera response to the input radiance.
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Multiple Images:
Linear Least Sguares Approach

Combine albedo and normal
e Separate lighting parameters
e More than 3 images == overdetermined system
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'i(.‘II, y) — {Il(may)ﬂlr?(:r:y): s ?In(:ray)}T

i(z,y) = Vg(z,y) _
g is obtained by solving this linear system: g_ (X,y):V_ll(X,y)

e How to calculate albedo p and N?
g, y) = p(x, yIN(xy)

- N=2%, p(xy) = |7
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Example LS InpUt

Problem: Some regions in some images are in
the shadow (no image intensity).
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r each point source, ® QOut of shadow:
know the source

l.(X,y) =kB(X,
tor (by assumption). (%) *.¥)
> assume we know the = Kp(X, y)(N (X,y)eS j)
1ling constant of the =g(x,y)e V.
ear camera. Fold the
mal and the
lectance into one ® |In shadow:
tor g, and the scaling

I;(x,y)=0

stant and source
tor into another Vj No partial shadow
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Matrix Trick for Complete
Shadows

e Matrix from Image Vector:

I(z,y) = 0 L(z,y) ... 0
0

0 ... In(z,y)
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e Multiply LHS and RHS with diag matrix

Ii =1IVg(z,y)
(120, y)) [ 1(X,y) 0 . 0 \(VlT\
LIZ(X,WJ:{ 0 Lo HVZJQ(M)
12(x,Yy) 0 y o 1L,y V' T

I I
Known Known Unknown

Known

= Relevant elements of the left vector and the matrix
are zero at points that are in shadow.
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Obtaining Normal and Albedo
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Given sufficient sources, we can solve the
previous equation (most likely need a least
squares solution) for g(x, y).

H

Recall that N(X, y) Is the unit normal.

This means that p(x,y) is the magnitude of
a(Xx, y).
This yields a check

— If the magnitude of g(Xx, y) is greater than 1,
there’s a problem.

And N(X, y) = g(x, y) / p(x,y).
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Example LS InpUt
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Example LLS Result
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e Reflectance / albedo:
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Goal
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Shape as surface with depth and normal,

so far only normal
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Recovering a surface from

1%
ﬁ

= =
=" == normails - 1
== ®Rccall the surface is ® If we write the known
ritten as vector g as
(x,y, f(x,y)) (9,(x,y))
his means the normal 9(x.¥) = ng (X y)J
s the form 0s(%, Y)

(—f)® Then we obtain values
( 1 ) for the partial derivatives
el

of the surface:

£ (6 Y)=(0.(,¥)/95(x,y))
f,(%y) =(9,(x.y)/9;(x.y))
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Presentation Notes
G3 = albedo / mag of n
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Recovering a surface from
normals - 2

AfH

;

® Recall that mixed second @ \We can now recover the

partials are equal --- this surface height at any
g;]veskus V?/n mtegrﬁbllly point by integration
check. We must have: along some path, e.g.

(9,(% Y)/ 9%, ¥)) _

2 f(x,y) =f f,(s,y)ds +
(9, (%, ¥)/95(x,Y)) 0
OX

y
[ f,(x.t)dt+c
0
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Height Map from Integration

35

How to integrate?



Possible Solutions

* Engineering approach: Path integration
(Forsyth & Ponce)

 In general: Calculus of Variation
Approaches

e Horn: Characteristic Strip Method

« Kimmel, Siddigi, Kimia, Bruckstein: Level
set method

 Many others ....



Shape by Integation (Forsyth&Ponce)

« The partial derivative gives the change in surface height
with a small step in either the x or the y direction

* \We can get the surface by summing these changes in
height along some path.

C(Of O
f(xay):jé (aiag) -dl +c

For example, we can reconstruct the surface at (u,v) by starting at (0,0), sum-
ming the y-derivative along the line z = 0 to the point (0,v), and then summing
the x-derivative along the line y = v to the point (u,v)

B U (‘_)f | 1L 8f ‘
f(um—'/o Loy /0 o @ 0)de+ e



Obtain many images in a fixed view under different illuminants
Determine the matrix ) from source and camera information

Create arrays for albedo, normal (3 components),
p (measured value of 97) and
&3
q (measured value of ay)

For each point in the image array
Stack image values into a vector ¢
Construct the diagonal matrix 7
Solve IVg =11%

to obtain g for this point

albedo at this point is | g |
normal at this point is %%

p at this point is %%
72

. . . N
g at this point is A
end

Check: 1is (QEAA—fE)Q small everywhere?
top left corner of height map is zero
for each pixel in the left column of height map
height value=previous height value + corresponding q value

end

for each row
for each element of the row except for leftmost

height value = previous height value + corresponding p value

end
end

Simple Algorithm
Forsyth & Ponce

Problem: Noise and
numerical (in)accuracy are
added up and result in
distorted surface.

Solution: Choose several
different integration paths,
and build average height
map.



Mathematical Property:
Integrability

e Smooth, C2 continuous surface:
Z(x, y)xy:Z(x» Y)yx
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i 0 0 :
= check if (ai — aj’c)z is small




SHAPE FROM SHADING
(Calculus of Variations Approach)

 First Attempt: Minimize error in agreement
with Image Irradiance Equation over the
region of interest:

|] (1%, y) = R(p, q))* dxdy

object




SHAPE FROM SHADING
(Calculus of Variations Approach)

o Better Attempt: Regularize the Minimization of
error in agreement with Image Irradiance Equation
over the region of interest:

[[ 2 +p,2 +0%+0% + 2(1(x,y) - R(p, q))* dxdy

object
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Linear Approaches for SFS
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e Linear approaches reduce the non-linear problem
into a linear through the linearization of the image
iIrradiance equation .

T r—

e The idea is based on the assumption that the lower
order components in the reflectance map
dominate. Therefore, these algorithms only work
well under this assumption.
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Simple Scenario

AfH

3

e We will be concerned with the simplest scenario, where the
following assumptions hold;
— Camera; orthographic projection.
— Surface reflectivity; Lambertian surface
— Known/estimated illumination direction.
— Known/estimated surface albedo/
— The optical axis is the Z axis of the camera and the surface can
be parameterized as Z = Z(X,Y).

e The image irradiance (amount of light received by the
camera to which the gray-scale produced is directly
proportional) can be defined as follows;

[ Te———

E(LY)=R,, (p.q)=pl'n=—L—1"[-p—q1]" (A
\/1+p2+q2

e Eqg(A) is the typical starting point of many shape from
shading techniques, yet it is of a great mathematical
complexity, it is a non-linear partial differential equation in p
= p(x,y) and g = q(x,y), which are the gradients of the
unknown surface Z = Z(Xx,y)
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Pentland’s Approach

AfH
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e Under the assumptions of :
— Lambertian surface,
— orthographic projections,

— the surface being illuminated by distant light sources,
and

— the surface is not self-shadowing,

e Pentland defined the image irradiance equation as
follows;

,o(iX p+i,q —iz)_ psino cosz +gsinosinz + coso

E(x,y)=R(p,q) =
\/1+ P +q° \/1+ p*+q°
Where light source direction is defined as:

| =[sin o cosz,sinosinz,coso]’

Pentland, A., "Shape Information From Shading: A Theory About Human Perception,” Computer
Vision., Second International Conference on, vol., no., pp.404-413, 5-8 Dec 1988.
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Pentland’s Approach
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Pentland, A., "Shape Information From Shading: A Theory About Human Perception,” Computer
Vision., Second International Conference on, vol., no., pp.404-413, 5-8 Dec 1988.
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Deformable Models: SNAKES

Geodesic Snake
formulated as PDE

Speed

Curve evolves Normal direction
over time to curve

INSTITUTE -~ S0




Deformable Models: SNAKES

Geodesic Snake:

K‘]N
8t /
Curvature (cok
concave)

Curve evolves Normal direction

over time to curve Mathematical
solution Is circle




Deformable Models: SNAKES

Geodesic Snake:

OC

ot /
/ Speed

Curve evolves
over time

© _leraly (®

Normal direction
to curve

INSTITUTE -~ S0
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Another Solution to SFS:
Kimmel, Siddiqgi, Kimia, Bruckstein

Proposed Solution: Evolve a curve such that
it tracks the height contours of z(x, y).

[Kimmel et al., IJCV95]

Height climbed while progressing a distance
IAC in the direction n in_the (z.y) plane is
given by |AC| = |Az|cot(a).

Let » denote time in the course of evolution,
i.e., z=1t. Since E = pAcos(a), we have

B/ oA (11)

I T

pdf document

height z(x)

______

i ar:l cns(a]zﬁ
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Kimmel, Siddiqgi, Kimia, Bruckstein
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Proposed Solution: Evolve a curve such that
it tracks the height contours of z(x, y).
[Kimmel et al., IJCV9I5]

T r—

T he curve evolution equation is:
oc /X
{ 8/1 Ez/(ﬁ)’ﬂ)2

C(s.0)
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== Kimmel, Siddiqi, Kimia, Bruckstein
h{ Moy
—. “.'_" Examples - Pyramids e
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shaded image equal height contours

numerical solution true surface




== Kimmel, Siddiqi, Kimia, Bruckstein
E _ | —, Examples - Three Mountains R
e
R
shaded image equal height contours

numerical solution true surface
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Appllcatlon Area: Geography
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Application: Braille Code
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Abbaldung 5

Ciben imks: Messanordnung mit einer Kamera und vier blauen LED-Leuchtfeldern.
Liten finkez: Ausschnitt einer Maltschachtel mit Glindenschrift-MNragung.

Rechits: 3D-Bild nach SFS-Analyse. Darmunter ist ein Hohenprofil durch drei Braille-Punkte dargestelit

pdf document
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Mars Rover Heads to a New
Crater NYT Sept 22, 2008
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Limitations
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e Controlled lighting environment
— Specular highlights?
— Partial shadows?
— Complex interrreflections?

e Fixed camera
— Moving camera?
— Multiple cameras?

== Another approach: binocular /
geometric stereo
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