Optical Flow I

Guido Gerig

CS 6643, Spring 2017
(credits: Marc Pollefeys UNC Chapel Hill, Comp 256 / K.H. Shafique, UCSF, CAP5415 / S. Narasimhan, CMU / Bahadir K. Gunturk, EE 7730 / Bradski\&Thrun, Stanford CS223

Materials

- Gary Bradski \& Sebastian Thrun, Stanford CS223 http://robots.stanford.edu/cs223b/index.html
- S. Narasimhan, CMU: http://www.cs.cmu.edu/afs/cs/academic/class/15385-s06/lectures/ppts/lec-16.ppt
- M. Pollefeys, ETH Zurich/UNC Chapel Hill: http://www.cs.unc.edu/Research/vision/comp256/vision10.ppt
- K.H. Shafique, UCSF: http://www.cs.ucf.edu/courses/cap6411/cap5415/ - Lecture 18 (March 25, 2003), Slides: PDF/ PPT
- Jepson, Toronto: http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf
- Original paper Horn\&Schunck 1981:
http://www.csd.uwo.ca/faculty/beau/CS9645/PAPERS/Horn-Schunck.pdf
- MIT AI Memo Horn\& Schunck 1980: http://people.csail.mit.edu/bkph/AIM/AIM-572.pdf
- Bahadir K. Gunturk, EE 7730 Image Analysis II
- Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black, K. Toyama

Optical Flow and Motion

- We are interested in finding the movement of scene objects from timevarying images (videos).
- Lots of uses
- Motion detection
- Track objects
- Correct for camera jitter (stabilization)
- Align images (mosaics)
- 3D shape reconstruction
- Special effects
- Games: http://www.youtube.com/watch?v=JILkkom6tww
- User Interfaces: http://www.youtube.com/watch?v=Q3gT52sHDI4
- Video compression

Tracking - Rigid Objects

Tracking - Non-rigid Objects

(Comaniciu et al, Siemens)

Tracking - Non-rigid Objects

Optical Flow: Where do pixels move to?

Optical Flow: Where do pixels move to?

Optical Flow: Where do pixels move to?

What is Optical Flow (OF)?

Velocity vectors $\left\{\vec{v}_{i}\right\}$
Optical flow is the relation of the motion field:

- the 2D projection of the physical movement of points relative to the observer to 2 D displacement of pixel patches on the image plane.

Common assumption:
The appearance of the image patches do not change (brightness constancy)

$$
I\left(p_{i}, t\right)=I\left(p_{i}+\vec{v}_{i}, t+1\right)
$$

Note: more elaborate tracking models can be adopted if more frames are process all at once

Structure from Motion?

Optical Flow is NOT 3D motion field

http://en.wikipedia.org/wiki/File:Opticfloweg.png

Definition of optical flow

OPTICAL FLOW = apparent motion of brightness patterns

Ideally, the optical flow is the projection of the three-dimensional velocity vectors on the image

Optical Flow - Agenda

- Brightness Constancy
- The Aperture problem
- Regularization
- Lucas-Kanade
- Coarse-to-fine
- Parametric motion models
- Direct depth
- SSD tracking
- Robust flow
- Bayesian flow

Optical Flow - Agenda

- Brightness Constancy
- The Aperture problem
- Regularization
- Lucas-Kanade
- Coarse-to-fine
- Parametric motion models
- Direct depth
- SSD tracking
- Robust flow
- Bayesian flow

Start with an Equation: Brightness Constancy

Point moves (small), but its brightness remains constant:

$$
\begin{gathered}
I_{t 1}(x, y)=I_{t 2}(x+u, y+v) \\
I=\text { constant } \rightarrow \frac{d I}{d t}=0
\end{gathered}
$$

Mathematical formulation (1D)

$I(x(t), t)=$ brightness at (x) at time t

Brightness constancy assumption (shift of location but brightness stays same):

$$
I\left(x+\frac{d x}{d t} \delta t, t+\delta t\right)=I(x, y, t)
$$

Optical flow constraint equation (chain rule):

$$
\frac{d I}{d t}=\frac{\partial I}{\partial x} \frac{d x}{d t}+\frac{\partial I}{\partial t}=0
$$

Optical Flow: 1D Case

Brightness Constancy Assumption:

$$
f(t) \equiv I(x(t), t)=I(x(t+d t), t+d t)
$$

Optical Flow: 1D Case

Brightness Constancy Assumption:

$$
\begin{aligned}
f(t) \equiv I \underbrace{(x(t), t})=I(x(t+d t), t+d t) \\
\frac{\partial f(x)}{\partial t}=0 \text { Because no change in brightness with time }
\end{aligned}
$$

Optical Flow: 1D Case

Brightness Constancy Assumption:

$$
\begin{aligned}
& f(t) \equiv I \underbrace{I(x(t), t})=I(x(t+d t), t+d t) \\
& \frac{\partial f(x)}{\partial t}=0 \text { Because no change in brightness with time } \\
& \left.\frac{\partial I}{\partial x}\right|_{t}\left(\frac{\partial x}{\partial t}\right)+\left.\frac{\partial I}{\partial t}\right|_{x(t)}=0
\end{aligned}
$$

Optical Flow: 1D Case

Brightness Constancy Assumption:

$$
\begin{aligned}
& f(t) \equiv I \underbrace{\left.\frac{\partial f(x)}{(x(t), t}\right)}=0 \text { Because no change in brightness with time } \\
& \left.\frac{\partial I}{\partial x}\right|_{t}\left(\frac{\partial x}{\partial t}\right)+\left.\frac{\partial I}{\partial t}\right|_{x(t)}=0 \\
& v v I_{t}
\end{aligned}
$$

Optical Flow: 1D Case

Brightness Constancy Assumption:

$$
\begin{aligned}
& f(t) \equiv I \underbrace{\frac{\partial f(x)}{\partial t}}=0 \text { Because no change in brightness with time } \\
& \left.\frac{\partial I}{\partial x}\right|_{t}\left(\frac{\partial x}{\partial t}\right)+\left.\frac{\partial I}{\partial t}\right|_{x(t)}=0 \\
& I_{x} \quad v(x(t+d t), t+d t) \\
& \Rightarrow \quad v=-\frac{I_{t}}{I_{x}}
\end{aligned}
$$

Tracking in the 1D case:

Spatial derivative

Tracking in the 1D case:

Spatial derivative

$$
I_{x}=\left.\frac{\partial I}{\partial x}\right|_{t} \quad I_{t}=\left.\frac{\partial I}{\partial t}\right|_{x=p} \quad \square \quad \vec{v} \approx-\frac{I_{t}}{I_{x}} \quad\left\{\begin{array}{l}
\text { Assumptions: } \\
\cdot \text { Brightness constancy } \\
\cdot \text { Small motion } 21
\end{array}\right.
$$

Tracking in the 1D case:

Iterating helps refining the velocity vector

Tracking in the 1D case:

Iterating helps refining the velocity vector

Tracking in the 1D case:

Iterating helps refining the velocity vector

Tracking in the 1D case:

Iterating helps refining the velocity vector

Can keep the same estimate for spatial derivative

Tracking in the 1D case:

Iterating helps refining the velocity vector

Can keep the same estimate for spatial derivative

$$
\vec{v} \leftarrow \vec{v}_{\text {previous }}-\frac{I_{t}}{I_{x}}
$$

Tracking in the 1D case:

Iterating helps refining the velocity vector

Can keep the same estimate for spatial derivative

$$
\vec{v} \leftarrow \vec{v}_{\text {previous }}-\frac{I_{t}}{I_{x}}
$$

Tracking in the 1D case:

Iterating helps refining the velocity vector

Can keep the same estimate for spatial derivative

$$
\vec{v} \leftarrow \vec{v}_{\text {previous }}-\frac{I_{t}}{I_{x}}
$$

Converges in about 5 iterations

From 1D to 2D tracking

$$
\text { 1D: }\left.\frac{\partial I}{\partial x}\right|_{t}\left(\frac{\partial x}{\partial t}\right)+\left.\frac{\partial I}{\partial t}\right|_{x(t)}=0
$$

From 1D to 2D tracking

$$
\text { 1D: }\left.\frac{\partial I}{\partial x}\right|_{t}\left(\frac{\partial x}{\partial t}\right)+\left.\frac{\partial I}{\partial t}\right|_{x(t)}=0
$$

From 1D to 2D tracking

$$
\text { 1D: }\left.\frac{\partial I}{\partial x}\right|_{t}\left(\frac{\partial x}{\partial t}\right)+\left.\frac{\partial I}{\partial t}\right|_{x(t)}=0
$$

From 1D to 2D tracking

$$
\begin{aligned}
& \text { 1D: }\left.\frac{\partial I}{\partial x}\right|_{t}\left(\frac{\partial x}{\partial t}\right)+\left.\frac{\partial I}{\partial t}\right|_{x(t)}=0 \\
& \text { 2D: }\left.\frac{\partial I}{\partial x}\right|_{t}\left(\frac{\partial x}{\partial t}\right)+\left.\frac{\partial I}{\partial y}\right|_{t}\left(\frac{\partial y}{\partial t}\right)+\left.\frac{\partial I}{\partial t}\right|_{x(t)}=0
\end{aligned}
$$

From 1D to 2D tracking

$$
\begin{aligned}
& \text { 1D: }\left.\frac{\partial I}{\partial x}\right|_{t}\left(\frac{\partial x}{\partial t}\right)+\left.\frac{\partial I}{\partial t}\right|_{x(t)}=0 \\
& \text { 2D: }\left.\frac{\partial I}{\partial x}\right|_{t}\left(\frac{\partial x}{\partial t}\right)+\left.\frac{\partial I}{\partial y}\right|_{t}\left(\frac{\partial y}{\partial t}\right)+\left.\frac{\partial I}{\partial t}\right|_{x(t)}=0
\end{aligned}
$$

From 1D to 2D tracking

$$
\begin{aligned}
& \text { 1D: }\left.\frac{\partial I}{\partial x}\right|_{t}\left(\frac{\partial x}{\partial t}\right)+\left.\frac{\partial I}{\partial t}\right|_{x(t)}=0 \\
& \text { 2D: }\left.\frac{\partial I}{\partial x}\right|_{t}\left(\frac{\partial x}{\partial t}\right)+\left.\frac{\partial I}{\partial y}\right|_{t}\left(\frac{\partial y}{\partial t}\right)+\left.\frac{\partial I}{\partial t}\right|_{x(t)}=0 \\
& \left.\quad \frac{\partial I}{\partial x}\right|_{t} u+\left.\frac{\partial I}{\partial y}\right|_{t} v_{t}+\left.\frac{\partial I}{\partial t}\right|_{x(t)}=0
\end{aligned}
$$

From 1D to 2D tracking

$$
\begin{aligned}
& \text { 1D: }\left.\frac{\partial I}{\partial x}\right|_{t}\left(\frac{\partial x}{\partial t}\right)+\left.\frac{\partial I}{\partial t}\right|_{x(t)}=0 \\
& \text { 2D: }\left.\frac{\partial I}{\partial x}\right|_{t}\left(\frac{\partial x}{\partial t}\right)+\left.\frac{\partial I}{\partial y}\right|_{t}\left(\frac{\partial y}{\partial t}\right)+\left.\frac{\partial I}{\partial t}\right|_{x(t)}=0 \\
& \left.\quad \frac{\partial I}{\partial x}\right|_{t} u+\left.\frac{\partial I}{\partial y}\right|_{t} v+\left.\frac{\partial I}{\partial t}\right|_{x(t)}=0
\end{aligned}
$$

Shoot! One equation, two velocity (u, v) unknowns...

The aperture problem

$$
u=\frac{d x}{d t}, \quad v=\frac{d y}{d t}
$$

$$
I_{x}=\frac{\partial I}{\partial x}, \quad I_{y}=\frac{\partial I}{\partial y}, \quad I_{t}=\frac{\partial I}{\partial t}
$$

$$
I_{x} u+I_{y} v+I_{t}=0
$$

Horn and Schunck optical flow equation

The aperture problem

$$
u=\frac{d x}{d t}, \quad v=\frac{d y}{d t}
$$

$$
I_{x}=\frac{\partial I}{\partial x}, \quad I_{y}=\frac{\partial I}{\partial y}, \quad I_{t}=\frac{\partial I}{\partial t}
$$

$$
I_{x} u+I_{y} v+I_{t}=0
$$

Horn and Schunck optical flow equation
1 equation in 2 unknowns

Optical Flow

- Brightness Constancy
- The Aperture problem
- Regularization
- Lucas-Kanade
- Coarse-to-fine
- Parametric motion models
- Direct depth
- SSD tracking
- Robust flow
- Bayesian flow

How does this show up visually? Known as the "Aperture Problem"

Gary Bradski \& Sebastian Thrun, Stanford CS223
http://robots.stanford.edu/cs223b/index.html

How does this show up visually? Known as the "Aperture Problem"

Gary Bradski \& Sebastian Thrun, Stanford CS223
http://robots.stanford.edu/cs223b/index.html

Aperture Problem Exposed

Motion along just an edge is ambiguous
Gary Bradski \& Sebastian Thrun, Stanford CS223
http://robots.stanford.edu/cs223b/index.html

Aperture Problem Exposed

Motion along just an edge is ambiguous
Gary Bradski \& Sebastian Thrun, Stanford CS223
http://robots.stanford.edu/cs223b/index.html

How does this show up visually? Known as the "Aperture Problem"

Gary Bradski \& Sebastian Thrun, Stanford CS223
http://robots.stanford.edu/cs223b/index.html

How does this show up visually? Known as the "Aperture Problem"

Gary Bradski \& Sebastian Thrun, Stanford CS223
http://robots.stanford.edu/cs223b/index.html

How does this show up visually? Known as the "Aperture Problem"

Gary Bradski \& Sebastian Thrun, Stanford CS223
http://robots.stanford.edu/cs223b/index.html

How does this show up visually? Known as the "Aperture Problem"

Gary Bradski \& Sebastian Thrun, Stanford CS223
http://robots.stanford.edu/cs223b/index.html

How does this show up visually? Known as the "Aperture Problem"

Gary Bradski \& Sebastian Thrun, Stanford CS223
http://robots.stanford.edu/cs223b/index.html

How does this show up visually? Known as the "Aperture Problem"

Gary Bradski \& Sebastian Thrun, Stanford CS223
http://robots.stanford.edu/cs223b/index.html

Optical Flow vs. Motion: Aperture Problem

Barber shop pole:
http://www.youtube.com/watch?v=VmqQs613SbE

Optical Flow vs. Motion: Aperture Problem

Barber shop pole:
http://www.youtube.com/watch?v=VmqQs613SbE
Barber pole illusion

Normal Flow

$$
\begin{gathered}
I_{x} u+I_{y} v+I_{t}=0 \\
\downarrow I^{T} \mathbf{u}=-I_{t} \\
\mathbf{u}=\left[\begin{array}{l}
u \\
v
\end{array}\right] \nabla I=\left[\begin{array}{l}
I_{x} \\
I_{y}
\end{array}\right]
\end{gathered}
$$

Normal Flow

At a single image pixel, we get a line:

$$
\begin{gathered}
I_{x} u+I_{y} v+I_{t}=0 \\
\downarrow \\
\nabla I^{T} \mathbf{u}=-I_{t} \\
\mathbf{u}=\left[\begin{array}{l}
u \\
v
\end{array}\right] \nabla I=\left[\begin{array}{l}
I_{x} \\
I_{y}
\end{array}\right]
\end{gathered}
$$

Normal Flow

At a single image pixel, we get a line:

$$
I_{x} u+I_{y} v=-I_{t}
$$

$$
\begin{gathered}
I_{x} u+I_{y} v+I_{t}=0 \\
\downarrow \\
\nabla I^{T} \mathbf{u}=-I_{t} \\
\mathbf{u}=\left[\begin{array}{l}
u \\
v
\end{array}\right] \nabla I=\left[\begin{array}{l}
I_{x} \\
I_{y}
\end{array}\right]
\end{gathered}
$$

We get at most "Normal Flow" - with one point we can only detect movement perpendicular to the brightness gradient. Solution is to take a patch of pixels around the pixel of interest.

Aperture Problem and Normal Flow

- let (u^{\prime}, v^{\prime}) be true flow
- true flow has two components:
- Normal flow: d
- Parallel flow: p
- normal flow can be computed
- parallel flow cannot

Aperture Problem and Normal Flow

Computing True Flow

- Schunck
- Horn \& Schunck
- Lukas and Kanade

Possible Solution: Neighbors

Two adjacent pixels which are part of the same rigid object:

- we can calculate normal flows $\mathbf{v}_{\mathrm{n} 1}$ and $\mathbf{v}_{\mathrm{n} 2}$
- Two OF equations for 2 parameters of flow: $\bar{v}=\binom{v}{u}$

$$
\begin{aligned}
& \nabla I_{1} \cdot \bar{v}+I_{t 1}=0 \\
& \nabla I_{2} \cdot \bar{v}+I_{t 2}=0
\end{aligned}
$$

Schunck: Considering Neighbor Pixels

- If two neighboring pixels move with same velocity
- Corresponding flow equations intersect at a point in (u,v) space
- Find the intersection point of lines
- If more than 1 intersection points find clusters
- Biggest cluster is true flow

Alper Yilmaz, Fall 2005 UCF

Schunck: Considering Neighbor Pixels

Cluster center provides velocity vector common for all pixels in patch.

Optical Flow

- Brightness Constancy
- The Aperture problem
- Regularization: Horn \& Schunck
- Lucas-Kanade
- Coarse-to-fine
- Parametric motion models
- Direct depth
- SSD tracking
- Robust flow
- Bayesian flow

Horn \& Schunck algorithm

Horn and Schunck's approach - Regularization
Two terms are defined as follows:

- Departure from smoothness

$$
e_{s}=\iint_{\Omega}\left(\left(u_{x}^{2}+u_{y}^{2}\right)+\left(v_{x}^{2}+v_{y}^{2}\right)\right) d x d y
$$

- Error in optical flow constaint equation

$$
e_{c}=\iint_{\Omega}\left(E_{x} u+E_{y} v+E_{t}\right)^{2} d x d y
$$

The formulation is to minimize the linear combination of e_{s} and e_{c},

$$
e_{s}+\lambda e_{c}
$$

where λ is a parameter.
Note: In this formulation, u and v are functions of x and y. Physically, u is the x-component of the motion, and v is the y-component of the motion.

Horn \& Schunck algorithm

Additional smoothness constraint (usually motion field varies smoothly in the image \rightarrow penalize departure from smoothness) :

$$
e_{s}=\iint\left(\left(u_{x}^{2}+u_{y}^{2}\right)+\left(v_{x}^{2}+v_{y}^{2}\right)\right) d x d y
$$

OF constraint equation term
(formulate error in optical flow constraint) :

$$
e_{c}=\iint\left(I_{x} u+I_{y} v+I_{t}\right)^{2} d x d y
$$

Horn \& Schunck algorithm

Additional smoothness constraint (usually motion field varies smoothly in the image \rightarrow penalize departure from smoothness) :

$$
e_{s}=\iint\left(\left(u_{x}^{2}+u_{y}^{2}\right)+\left(v_{x}^{2}+v_{y}^{2}\right)\right) d x d y
$$

OF constraint equation term
(formulate error in optical flow constraint) :

$$
e_{c}=\iint\left(I_{x} u+I_{y} v+I_{t}\right)^{2} d x d y
$$

minimize $\mathrm{e}_{s}+\lambda \mathrm{e}_{c}$

Horn \& Schunck algorithm

Variational calculus: Pair of second order differential equations that can be solved iteratively.

- Define an energy function and minimize

$$
E(x, y)=\left(u I_{x}+v I_{y}+I_{t}\right)^{2}+\lambda \overbrace{\left(u_{x}^{2}+u_{y}^{2}+v_{x}^{2}+v_{y}^{2}\right)}
$$

- Differentiate w.r.t. unknowns u and v

$$
\begin{aligned}
& \frac{\partial E}{\partial u}=2 I_{x}\left(u I_{x}+v I_{y}+I_{t}\right)+\frac{\partial f}{\partial u} \quad \frac{\partial f}{\partial u}=\frac{\partial}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial}{\partial u} \frac{\partial u}{\partial y}=2\left(u_{x x}+u_{x y}\right) \\
& \frac{\partial E}{\partial v}=2 I_{y}\left(u I_{x}+v I_{y}+I_{t}\right)+2\left(v_{x x}+v_{y y}\right)
\end{aligned}
$$

Horn \& Schunck algorithm

$$
\begin{aligned}
& I_{x}\left(I_{x} u+I_{y} v+I_{t}\right)+\lambda \Delta u=0 \\
& I_{y}\left(I_{x} u+I_{y} v+I_{t}\right)+\lambda \Delta v=0
\end{aligned}
$$

Approximate Laplacian by weight averaged computed in a neighborhood around the pixel (x,y):

$$
\begin{aligned}
& \Delta u(x, y)=u(x, y)-\bar{u}(x, y) \\
& \Delta v(x, y)=v(x, y)-\bar{v}(x, y)
\end{aligned}
$$

Rearranging terms:

$$
\begin{aligned}
0 & =I_{x}\left(I_{x} u+I_{y} v+I_{t}\right)+\lambda(u-\bar{u}) \\
& =u\left(\lambda+I_{x}^{2}\right)+v I_{x} I_{y}+I_{x} I_{t}-\lambda \bar{u} \\
0 & =I_{y}\left(I_{x} u+I_{y} v+I_{t}\right)+\lambda(v-\bar{v}) \\
& =v\left(\lambda+I_{y}^{2}\right)+u I_{x} I_{y}+I_{y} I_{t}-\lambda \bar{v}
\end{aligned}
$$

2 equations in 2 unknowns, write v in terms of u and plug it

Horn \& Schunck algorithm

$$
\begin{aligned}
& u=\frac{\lambda \bar{u}-v I_{x} I_{y}-I_{x} I_{t}}{\lambda+I_{x}^{2}} \\
& v=\frac{\lambda \bar{v}-u I_{x} I_{y}-I_{y} I_{t}}{\lambda+I_{y}^{2}}
\end{aligned}
$$

2 equations in 2 unknowns, write v in terms of u and plug it in the other equation

Horn \& Schunck algorithm

$$
\begin{aligned}
& u=\frac{\lambda \bar{u}-v I_{x} I_{y}-I_{x} I_{t}}{\lambda+I_{x}^{2}} \\
& v=\frac{\lambda \bar{v}-u I_{x} I_{y}-I_{y} I_{t}}{\lambda+I_{y}^{2}}
\end{aligned}
$$

2 equations in 2 unknowns, write v in terms of u and plug it in the other equation

$$
u=u_{\text {avg }}-I_{x}\left(\frac{I_{x} u_{\text {avg }}+I_{y} v_{\text {avg }}+I_{t}}{I_{x}^{2}+I_{y}^{2}+\lambda}\right) \quad v=v_{\text {avg }}-I_{y}\left(\frac{I_{x} u_{\text {avg }}+I_{y} v_{\text {avg }}+I_{t}}{I_{x}^{2}+I_{y}^{2}+\lambda}\right)
$$

- Iteratively compute u and v
- Assume initially u and v are 0
- Compute $u_{\text {avg }}$ and $v_{\text {avg }}$ in a neighborhood

Horn \& Schunck algorithm

 The Euler-Lagrange equations:$$
\begin{aligned}
& F_{u}-\frac{\partial}{\partial x} F_{u_{x}}-\frac{\partial}{\partial y} F_{u_{y}}=0 \\
& F_{v}-\frac{\partial}{\partial x} F_{v_{x}}-\frac{\partial}{\partial y} F_{v_{y}}=0
\end{aligned}
$$

In our case,

$$
F=\left(u_{x}^{2}+u_{y}^{2}\right)+\left(v_{x}^{2}+v_{y}^{2}\right)+\lambda\left(I_{x} u+I_{y} v+I_{t}\right)^{2}
$$

Horn \& Schunck algorithm

The Euler-Lagrange equations:

In our case,

$$
\begin{aligned}
& F_{u}-\frac{\partial}{\partial x} F_{u_{x}}-\frac{\partial}{\partial y} F_{u_{y}}=0 \\
& F_{v}-\frac{\partial}{\partial x} F_{v_{x}}-\frac{\partial}{\partial y} F_{v_{y}}=0
\end{aligned}
$$

$$
F=\left(u_{x}^{2}+u_{y}^{2}\right)+\left(v_{x}^{2}+v_{y}^{2}\right)+\lambda\left(I_{x} u+I_{y} v+I_{t}\right)^{2}
$$

so the Euler-Lagrange equations are

$$
\begin{gathered}
\Delta u=\lambda\left(I_{x} u+I_{y} v+I_{t}\right) I_{x}, \\
\Delta v=\lambda\left(I_{x} u+I_{y} v+I_{t}\right) I_{y}, \\
\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} \quad \text { is the Laplacian operator }
\end{gathered}
$$

Horn \& Schunck algorithm

Remarks:

Horn \& Schunck algorithm

Remarks:

Horn \& Schunck algorithm

Remarks :

1. Coupled PDEs solved using iterative methods and finite differences

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\Delta u-\lambda\left(I_{x} u+I_{y} v+I_{t}\right) I_{x} \\
& \frac{\partial v}{\partial t}=\Delta v-\lambda\left(I_{x} u+I_{y} v+I_{t}\right) I_{y}
\end{aligned}
$$

Horn \& Schunck algorithm

Remarks :

1. Coupled PDEs solved using iterative methods and finite differences

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\Delta u-\lambda\left(I_{x} u+I_{y} v+I_{t}\right) I_{x} \\
& \frac{\partial v}{\partial t}=\Delta v-\lambda\left(I_{x} u+I_{y} v+I_{t}\right) I_{y}
\end{aligned}
$$

2. More than two frames allow a better estimation of $I t$

Horn \& Schunck algorithm

Remarks :

1. Coupled PDEs solved using iterative methods and finite differences

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\Delta u-\lambda\left(I_{x} u+I_{y} v+I_{t}\right) I_{x} \\
& \frac{\partial v}{\partial t}=\Delta v-\lambda\left(I_{x} u+I_{y} v+I_{t}\right) I_{y}
\end{aligned}
$$

2. More than two frames allow a better estimation of $I t$

Horn \& Schunck algorithm

Remarks :

1. Coupled PDEs solved using iterative methods and finite differences

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\Delta u-\lambda\left(I_{x} u+I_{y} v+I_{t}\right) I_{x} \\
& \frac{\partial v}{\partial t}=\Delta v-\lambda\left(I_{x} u+I_{y} v+I_{t}\right) I_{y}
\end{aligned}
$$

2. More than two frames allow a better estimation of $I t$

Horn \& Schunck algorithm

Remarks :

1. Coupled PDEs solved using iterative methods and finite differences

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\Delta u-\lambda\left(I_{x} u+I_{y} v+I_{t}\right) I_{x} \\
& \frac{\partial v}{\partial t}=\Delta v-\lambda\left(I_{x} u+I_{y} v+I_{t}\right) I_{y}
\end{aligned}
$$

2. More than two frames allow a better estimation of I_{t}
3. Information spreads from corner-type patterns

Discrete Optical Flow Algorithm

Consider image pixel (i, $j)$

- Departure from Smoothness Constraint:

$$
\begin{array}{r}
s_{i j}=\frac{1}{4}\left[\left(u_{i+1, j}-u_{i, j}\right)^{2}+\left(u_{i, j+1}-u_{i, j}\right)^{2}+\right. \\
\left.\left(v_{i+1, j}-v_{i, j}\right)^{2}+\left(v_{i, j+1}-v_{i, j}\right)^{2}\right]
\end{array}
$$

Discrete Optical Flow Algorithm

Consider image pixel (i, $j)$

- Departure from Smoothness Constraint:

$$
\begin{array}{r}
s_{i j}=\frac{1}{4}\left[\left(u_{i+1, j}-u_{i, j}\right)^{2}+\left(u_{i, j+1}-u_{i, j}\right)^{2}+\right. \\
\left.\left(v_{i+1, j}-v_{i, j}\right)^{2}+\left(v_{i, j+1}-v_{i, j}\right)^{2}\right]
\end{array}
$$

-Error in Optical Flow constraint equation:

$$
c_{i j}=\left(I_{x}^{i j} u_{i j}+I_{y}^{i j} v_{i j}+I_{t}^{i j}\right)^{2}
$$

Discrete Optical Flow Algorithm

Consider image pixel (i, $j)$

- Departure from Smoothness Constraint:

$$
\begin{array}{r}
s_{i j}=\frac{1}{4}\left[\left(u_{i+1, j}-u_{i, j}\right)^{2}+\left(u_{i, j+1}-u_{i, j}\right)^{2}+\right. \\
\left.\left(v_{i+1, j}-v_{i, j}\right)^{2}+\left(v_{i, j+1}-v_{i, j}\right)^{2}\right]
\end{array}
$$

-Error in Optical Flow constraint equation:

$$
c_{i j}=\left(I_{x}^{i j} u_{i j}+I_{y}^{i j} v_{i j}+I_{t}^{i j}\right)^{2}
$$

- We seek the set $\left\{u_{i j}\right\} \&\left\{v_{i j}\right\}$ that minimize:

$$
e=\sum_{i} \sum_{j}\left(S_{i j}+\lambda C_{i j}\right) \quad \begin{aligned}
& \text { NOTE: }\left\{u_{i j}\right\} \&\left\{v_{i j}\right\} \\
& \text { show up in more than one } \\
& \text { term }
\end{aligned}
$$

Discrete Optical Flow Algorithm

- Differentiating e w.r.t $V_{k l} \& u_{k l}$ and setting to zero:

$$
\begin{aligned}
& \frac{\partial e}{\partial u_{k l}}=2\left(u_{k l}-\overline{u_{k l}}\right)+2 \lambda\left(I_{x}^{k l} u_{k l}+I_{y}^{k l} v_{k l}+I_{t}^{k l}\right) I_{x}^{k l}=0 \\
& \frac{\partial e}{\partial v_{k l}}=2\left(v_{k l}-\overline{v_{k l}}\right)+2 \lambda\left(I_{x}^{k l} u_{k l}+I_{y}^{k l} v_{k l}+I_{t}^{k l}\right) I_{y}^{k l}=0
\end{aligned}
$$

- $v_{k l} \& u_{k l}$ are averages of (u, v) around pixel (k, l)

Discrete Optical Flow Algorithm

- Differentiating e w.r.t $V_{k l} \& u_{k l}$ and setting to zero:

$$
\begin{aligned}
& \frac{\partial e}{\partial u_{k l}}=2\left(u_{k l}-\overline{u_{k l}}\right)+2 \lambda\left(I_{x}^{k l} u_{k l}+I_{y}^{k l} v_{k l}+I_{t}^{k l}\right) I_{x}^{k l}=0 \\
& \frac{\partial e}{\partial v_{k l}}=2\left(v_{k l}-\overline{v_{k l}}\right)+2 \lambda\left(I_{x}^{k l} u_{k l}+I_{y}^{k l} v_{k l}+I_{t}^{k l}\right) I_{y}^{k l}=0
\end{aligned}
$$

- $v_{k l} \& u_{k l}$ are averages of (u, v) around pixel (k, l)

Discrete Optical Flow Algorithm

- Differentiating e w.r.t $v_{k l} \& u_{k l}$ and setting to zero:

$$
\begin{aligned}
& \frac{\partial e}{\partial u_{k l}}=2\left(u_{k l}-\overline{u_{k l}}\right)+2 \lambda\left(I_{x}^{k l} u_{k l}+I_{y}^{k l} v_{k l}+I_{t}^{k l}\right) I_{x}^{k l}=0 \\
& \frac{\partial e}{\partial v_{k l}}=2\left(v_{k l}-\overline{v_{k l}}\right)+2 \lambda\left(I_{x}^{k l} u_{k l}+I_{y}^{k l} v_{k l}+I_{t}^{k l}\right) I_{y}^{k l}=0
\end{aligned}
$$

- $v_{k l} \& u_{k l}$ are averages of (u, v) around pixel (k, l)

Update Rule:

$$
\begin{aligned}
& u_{k l}^{n+1}=\overline{u_{k l}^{n}}-\frac{I_{x}^{k l} \overline{u_{k l}^{n}}+I_{y}^{k l} \overline{v_{k l}^{n}}+I_{t}^{k l}}{1+\lambda\left[\left(I_{x}^{k l}\right)^{2}+\left(I_{y}^{k l}\right)^{2}\right]} I_{x}^{k l} \\
& v_{k l}^{n+1}=\overline{v_{k l}^{n}}-\frac{I_{x}^{k l} \overline{u_{k l}^{n}}+I_{y}^{k l} \overline{v_{k l}^{n}}+I_{t}^{k l}}{1+\lambda\left[\left(I_{x}^{k l}\right)^{2}+\left(I_{y}^{k l}\right)^{2}\right]} I_{y}^{k l}
\end{aligned}
$$

Horn-Schunck Algorithm : Discrete Case

- Derivatives (and error functionals) are approximated by difference operators
- Leads to an iterative solution:

$$
\begin{array}{ll}
u_{i j}^{n+1}=\bar{u}_{i j}^{n}-\alpha I_{x} \\
v_{i j}^{n+1}=\bar{v}_{i j}^{n}-\alpha I_{y}
\end{array} \quad \alpha=\frac{I_{x} \bar{u}_{i j}^{n}+I_{y} \bar{v}_{i j}^{n}+I_{t}}{1+\lambda\left(I_{x}^{2}+I_{y}^{2}\right)}
$$

\bar{u}, \bar{v} are the averages of values of neighbors

Intuition of the Iterative Scheme

The new value of (u, v) at a point is equal to the average of surrounding values minus an adjustment in the direction of the brightness gradient

Horn - Schunck Algorithm

```
begin
    for \(j:=1\) to \(N\) do for \(i:=1\) to \(M\) do begin
    calculate tie values \(E_{x}(i, j, i), E_{y}(i, j, r)\), and \(E_{i}(i, j, r)\) using
        a selected approximation formula;
            F spectal cases for inluge points at the innage berder
                        have to be taken into acoome
    initijelite the values \(u(i, j)\) and \(v(i, j)\) with zero
end ([fr]:
chocse a spitable weightiog valae \(\lambda\);
choose a suitable number \(\mathrm{r}_{\mathrm{p}} \geq \mathrm{l}\) of iterations;
    n:=1;
while \(4 \leq m\) do begin
    for \(j=1\) to \(M\) do for \(i:=1\) to \(M\) do begin
        \(\bar{u}:=\frac{1}{4}(u(i-1, j)+w(i+1, j)+u(i, j-i)+u(i, j+1)) ;\)
        \(\bar{v}:=\frac{1}{4}\left(v(i-1, j)+v\left(i+\left[_{1} j\right)+v(i, j-1)+v(i, j+1)\right) ;\right.\)
            \(\{\) treat inage points ar the image border separacly \}
            \(c:=\frac{E_{x}(i, j, r) \bar{u}+E_{y}(i, j, t) \bar{v} \div E_{d}\left(i_{1}, j_{1}\right)}{1+\lambda\left(E_{x}^{2}(i, j, i)+E_{y}^{2}(i, j, r)\right.} \cdot \lambda ;\)
        \(u(i, j)=\bar{u}-\alpha \cdot E_{u}(i, j, d) ; \quad v(i, j):=\bar{v}-\alpha \cdot E_{y}(i, j, t)\)
    end |fort;
    \(\pi:=n+1\)
end \{while\}
end;
```


Example

http://of-eval.sourceforge.net/

Results

(a)

(c)

Figure 12-8. Four frames of a synthetic image sequence showing a sphere slowly rotating in front of a randomly patterned background.

(b)
(d)

Figure 12-9. Estimates of the optical flow shown in the form of needle diagrams after 1, 4, 16, and 64 iterations of the algorithm.

Results

(a)

(b)

Figure 12-10. (a) The estimated optical flow after several more iterations. (b) The computed motion field.

Horn \& Schunck, remarks

$$
\int_{D}\left(\nabla I \cdot \vec{v}+I_{t}\right)^{2}+\lambda^{2}\left[\left(\frac{\partial v_{x}}{\partial x}\right)^{2}+\left(\frac{\partial v_{x}}{\partial y}\right)^{2}+\left(\frac{\partial v_{y}}{\partial x}\right)^{2}+\left(\frac{\partial v_{y}}{\partial y}\right)^{2}\right] d x d y
$$

1. Errors at boundaries (smooth over)
2. Example of regularization (selection principle for the solution of ill-posed problems)

Results of an enhanced system

Results

$\underline{\text { http://www-student.informatik.uni-bonn.de/~gerdes/OpticalFlow/index.html }}$

Gradient E_{x} (in $2 \times 2 \times 2$ Block)
Gradient E_{y} (in $2 \times 2 \times 2$ Block)

Results

http://www.cs.utexas.edu/users/jmugan/GraphicsProject/OpticalFlow/

Optical Flow

- Brightness Constancy
- The Aperture problem
- Regularization
- Lucas-Kanade
- Coarse-to-fine
- Parametric motion models
- Direct depth
- SSD tracking
- Robust flow
- Bayesian flow

Lucas \& Kanade

-Assume single velocity for all pixels within a patch. - Integrate over a patch.

Lucas \& Kanade

-Assume single velocity for all pixels within a patch.

- Integrate over a patch.
- Similar to line fitting we have seen
- Define an energy functional
- Take derivatives equate it to 0
- Rearrange and construct an observation matrix

$$
\begin{gathered}
E=\sum\left(u I_{x}+v I_{y}+I_{t}\right)^{2} \\
\frac{\partial E}{\partial u}=\sum 2 I_{x}\left(u I_{x}+v I_{y}+I_{t}\right)=0 \\
\frac{\partial E}{\partial v}=\sum 2 I_{y}\left(u I_{x}+v I_{y}+I_{t}\right)=0
\end{gathered}
$$

Lucas \& Kanade

$$
\begin{aligned}
& \frac{\partial E}{\partial u}=\sum 2 I_{x}\left(u I_{x}+v I_{y}+I_{t}\right)=0 \\
& \sum u I_{x}^{2}+\sum v I_{x} I_{y}+\sum I_{x} I_{t}=0 \\
& \sum u I_{x} I_{y}+\sum v I_{y}^{2}+\sum I_{y} I_{t}=0 \\
& u \sum I_{x}^{2}+v \sum I_{x} I_{y}=-\sum I_{x} I_{t} \\
& u \sum I_{x} I_{y}+v \sum I_{y}^{2}=-\sum I_{y} I_{t}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left[\begin{array}{ll}
\sum I_{x} I_{y} & \sum I_{y}^{2}
\end{array}\right] \begin{array}{l}
u \\
v
\end{array}\right]=-\sum I_{y} I_{t}
\end{aligned}
$$

Lucas \& Kanade

$$
\begin{aligned}
& A u=B \quad A^{-1} A u=A^{-1} B \quad I u=A^{-1} B \quad u=A^{-1} B \\
& {\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{ll}
\sum_{1} I_{x}^{2} & \sum_{I_{x}} I_{y} \\
\sum_{x} I_{y} & \sum I_{y}^{2}
\end{array}\right]^{-1}\left[\begin{array}{l}
-I_{x} I_{t} \\
-\sum I_{y} I_{t}
\end{array}\right]} \\
& {\left[\begin{array}{l}
u \\
v
\end{array}\right]=\frac{1}{\sum I_{x}^{2} \sum_{y}^{2}-\left(\sum I_{x} I_{y}\right)^{2}}\left[\begin{array}{cc}
\sum I_{y}^{2} & -\sum I_{x} I_{y} \\
-\sum I_{x} I_{y} & \sum I_{x}^{2}
\end{array}\right]\left[\begin{array}{l}
-\sum I_{x} I_{t} \\
-\sum I_{y} I_{t}
\end{array}\right]}
\end{aligned}
$$

Lucas-Kanade: Integrate over a Patch

Assume a single velocity for all pixels within an image patch

$$
E(u, v)=\sum_{x, y \in \Omega}\left(I_{x}(x, y) u+I_{y}(x, y) v+I_{t}\right)^{2}
$$

Solve with:

$$
\frac{d E(u, v)}{d v}=\sum 2 I_{y}\left(I_{x} u+I_{y} v+I_{t}\right)=0
$$

$$
\left[\begin{array}{cc}
\sum I_{x}^{2} & \sum I_{x} I_{y} \\
\sum I_{x} I_{y} & \sum I_{y}^{2}
\end{array}\right]\binom{u}{v}=-\binom{\sum I_{x} I_{t}}{\sum I_{y} I_{t}}
$$

On the LHS: sum of the 2 x 2 outer product tensor of the gradient vector

$$
\left(\sum \nabla \nabla \nabla I^{\prime}\right) \vec{\theta}=-\sum \nabla I I_{t}
$$

Lucas-Kanade: Singularities and the Aperture Problem

$$
\text { Let } \quad M=\sum(\nabla I)(\nabla I)^{T} \quad \text { and } \quad b=\left[\begin{array}{l}
-\sum_{I_{1}} I_{t} \\
-\sum_{I} I_{y} I_{t}
\end{array}\right]
$$

- Algorithm: At each pixel compute U by solving $M U=b$
- M is singular if all gradient vectors point in the same direction
-- e.g., along an edge
-- of course, trivially singular if the summation is over a single pixel
-- i.e., only normal flow is available (aperture problem)
- Corners and textured areas are OK

Discussion

- Horn-Schunck: Add smoothness constraint.

$$
\int_{D}\left(\nabla I \cdot \vec{v}+I_{t}\right)^{2}+\lambda^{2}\left[\left(\frac{\partial v_{x}}{\partial x}\right)^{2}+\left(\frac{\partial v_{x}}{\partial y}\right)^{2}+\left(\frac{\partial v_{y}}{\partial x}\right)^{2}+\left(\frac{\partial v_{y}}{\partial y}\right)^{2}\right] d x d y
$$

- Lucas-Kanade: Provide constraint by minimizing over local neighborhood:

$$
\sum_{x, y \in \Omega} W^{2}(x, y)\left[\nabla I(x, y, t) \cdot \vec{v}+I_{t}(x, y, t)\right]^{2}
$$

- Horn-Schunck and Lucas-Kanade optical methods work only for small motion.
- If object moves faster, the brightness changes rapidly, derivative masks fail to estimate spatiotemporal derivatives.
- Pyramids can be used to compute large optical flow vectors.

Iterative Refinement (Iterative Lucas-Kanade)

- Estimate velocity at each pixel using one iteration of Lucas and Kanade estimation
- Warp one image toward the other using the estimated flow field
(easier said than done)
- Refine estimate by repeating the process

Reduce the Resolution!

Optical Flow

- Brightness Constancy
- The Aperture problem
- Regularization
- Lucas-Kanade
- Coarse-to-fine
- Parametric motion models
- Direct depth
- SSD tracking
- Robust flow
- Bayesian flow

Limits of the (local) gradient method

1. Fails when intensity structure within window is poor
2. Fails when the displacement is large (typical operating range is motion of 1 pixel per iteration!)

- Linearization of brightness is suitable only for small displacements
Also, brightness is not strictly constant in images
- actually less problematic than it appears, since we can pre-filter images to make them look similar

Revisiting the Small Motion Assumption

- Is this motion small enough?
- Probably not-it's much larger than one pixel ($2^{\text {nd }}$ order terms dominate)
- How might we solve this problem?

Revisiting the Small Motion Assumption

- Is this motion small enough?
- Probably not-it's much larger than one pixel ($2^{\text {nd }}$ order terms dominate)
- How might we solve this problem?

Revisiting the Small Motion Assumption

- Is this motion small enough?
- Probably not-it's much larger than one pixel (2 $2^{\text {nd }}$ order terms dominate)
- How might we solve this problem?

Coarse-to-Fine Estimation

$$
I_{x} \cdot u+I_{y} \cdot v+I_{t} \approx 0 \quad=>\text { small } u \text { and } v \ldots
$$

Video Segmentation

Next: Motion Field Structure from Motion

Motion Field

- Image velocity of a point moving in the scene

Motion Field

- Image velocity of a point moving in the scene

Motion Field

- Image velocity of a point moving in the scene

Motion Field

- Image velocity of a point moving in the scene

Motion Field

- Image velocity of a point moving in the scene

Perspective projection: $\frac{1}{f^{\prime}} \mathbf{r}_{i}=\frac{\mathbf{r}_{o}}{\mathbf{r}_{o} \cdot \hat{\mathbf{Z}}}=\frac{\mathbf{r}_{o}}{Z}$

Motion Field

- Image velocity of a point moving in the scene

Perspective projection: $\frac{1}{f^{\prime}} \mathbf{r}_{i}=\frac{\mathbf{r}_{o}}{\mathbf{r}_{o} \cdot \hat{\mathbf{Z}}}=\frac{\mathbf{r}_{o}}{Z}$
Motion field

$$
\mathbf{v}_{i}=\frac{d \mathbf{r}_{i}}{d t}=f^{\prime} \frac{\left(\mathbf{r}_{o} \cdot \mathbf{Z}\right) \mathbf{v}_{o}-\left(\mathbf{v}_{o} \cdot \mathbf{Z}\right) \mathbf{r}_{o}}{\left(\mathbf{r}_{o} \cdot \mathbf{Z}\right)^{2}}=f^{\prime} \frac{\left(\mathbf{r}_{o} \times \mathbf{v}_{o}\right) \times \mathbf{Z}}{\left(\mathbf{r}_{o} \cdot \mathbf{Z}\right)^{2}}
$$

