## Geometric Camera Calibration Chapter 2

## Guido Gerig CS 6643 Spring 2017

Slides modified from Marc Pollefeys, UNC Chapel Hill, Comp256, Other slides and illustrations from J. Ponce, addendum to course book, and Trevor Darrell, Berkeley, C280 Computer Vision Course.


Equation: World coordinates to image pixels
pixel coordinates

$$
\begin{aligned}
& \vec{p}=\frac{1}{Z} M{ }^{W} \stackrel{W}{p} \\
& \left(\begin{array}{l}
u \\
v \\
1
\end{array}\right)=\frac{1}{z}\left(\begin{array}{llll}
\cdot & m_{1}^{T} & \cdot & \cdot \\
\cdot & m_{2}^{T} & \cdot & \cdot\left(\begin{array}{c}
W \\
{ }^{W} \\
p_{x} \\
.
\end{array} m_{y}^{T}\right. \\
{ }^{W} \\
p_{z} \\
1
\end{array}\right) \quad\left\{\begin{array}{l}
u=\frac{m_{1} \cdot \vec{P}}{m_{3} \cdot \vec{P}} \\
v=\frac{m_{2} \cdot \vec{P}}{m_{3} \cdot \vec{P}}
\end{array}\right.
\end{aligned}
$$

Conversion back from homogeneous coordinates leads to:


## Calibration target



The Opti-CAL Calibration Target Image Find the position, $\mathrm{u}_{\mathrm{i}}$ and $\mathrm{v}_{\mathrm{i}}$, in pixels, of each calibration object feature point. http://www.kinetic.bc.ca/CompVision/opti-CAL.html

## Camera calibration

From before, we had these equations relating image positions, $u, v$, to points at 3-d positions P (in homogeneous coordinates):

$$
\begin{aligned}
& u=\frac{m_{1} \cdot \vec{P}}{m_{3} \cdot \vec{P}} \\
& v=\frac{m_{2} \cdot \vec{P}}{m_{3} \cdot \vec{P}}
\end{aligned}
$$



So for each feature point, i, we have:

$$
\begin{aligned}
& \left(m_{1}-u_{i} m_{3}\right) \cdot \vec{P}_{i}=0 \\
& \left(m_{2}-v_{i} m_{3}\right) \cdot \vec{P}_{i}=0
\end{aligned}
$$

## Camera calibration

Stack all these measurements of $\mathrm{i}=1 \ldots \mathrm{n}$ points

$$
\begin{aligned}
& \left(m_{1}-u_{i} m_{3}\right) \cdot \vec{P}_{i}=0 \\
& \left(m_{2}-v_{i} m_{3}\right) \cdot \vec{P}_{i}=0
\end{aligned}
$$

into a big matrix:

$$
\left(\begin{array}{ccc}
P_{1}^{T} & 0^{T} & -u_{1} P_{1}^{T} \\
0^{T} & P_{1}^{T} & -v_{1} P_{1}^{T} \\
& \cdots & \cdots \\
P_{n}^{T} & 0^{T} & -u_{n} P_{n}^{T} \\
0^{T} & P_{n}^{T} & -v_{n} P_{n}^{T}
\end{array}\right)\left(\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right)
$$



In vector form $\left(\begin{array}{lll}P_{1}^{T} & 0^{T} & -u_{1} P_{1}^{T}\end{array}\right) \quad(0) \quad$ Camera $\left(\begin{array}{ccc}0^{T} & P_{1}^{T} & -v_{1} P_{1}^{T} \\ \cdots & \cdots & \cdots \\ P_{n}^{T} & 0^{T} & -u_{n} P_{n}^{T} \\ 0^{T} & P_{n}^{T} & -v_{n} P_{n}^{T}\end{array}\right)\left(\begin{array}{c}m_{1} \\ m_{2} \\ m_{3}\end{array}\right)=\left(\begin{array}{c}0 \\ \vdots \\ 0 \\ 0\end{array}\right)$ calibration

Showing all the elements:
$\left(\begin{array}{ll}P_{1 x} & P_{1 y}\end{array}\right.$
$\begin{array}{llllllllllll}0 & 0 & 0 & 0 & P_{1 x} & P_{1 y} & P_{1 z} & 1 & -v_{1} P_{1 x} & -v_{1} P_{1 y} & -v_{1} P_{1 z} & -v_{1}\end{array}$
$P_{n x} \quad P_{n y} \quad P_{n z} \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad-u_{n} P_{n x}-u_{n} P_{n y}-u_{n} P_{n z} \quad-u_{n}$
$\left(\begin{array}{llllllllllll}0 & 0 & 0 & 0 & P_{n x} & P_{n y} & P_{n z} & 1 & -v_{n} P_{n x} & -v_{n} P_{n y} & -v_{n} P_{n z} & -v_{n}\end{array}\right)$
$\left(\begin{array}{l}m_{11} \\ m_{12} \\ m_{13} \\ m_{14} \\ m_{21} \\ m_{22} \\ m_{23} \\ m_{24} \\ m_{31} \\ m_{32} \\ m_{33} \\ m_{34}\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ \vdots \\ 0 \\ 0\end{array}\right)$

## Camera calibration

$$
\left(\begin{array}{cccccccccccc}
P_{1 x} & P_{1 y} & P_{12} & 1 & 0 & 0 & 0 & 0 & -u_{1} P_{1 x} & -u_{1} P_{1 y} & -u_{1} P_{1 z} & -u_{1} \\
0 & 0 & 0 & 0 & P_{1 x} & P_{1 y} & P_{12} & 1 & -v_{1} P_{1 x} & -v_{1} P_{1 y} & -v_{1} P_{12} & -v_{1} \\
P_{n x} & P_{n y} & P_{n z} & 1 & 0 & 0 & 0 & \ldots & \ldots & \ldots & -u_{n} P_{n x} & -u_{n} P_{n y} \\
0 & -u_{n} P_{n z} & -u_{n} \\
0 & 0 & 0 & 0 & P_{n x} & P_{n y} & P_{n z} & 1 & -v_{n} P_{n x} & -v_{n} P_{n y} & -v_{n} P_{n z} & -v_{n} \\
v_{12} \\
m_{12} \\
m_{21} \\
m_{22} \\
m_{23} \\
m_{24} \\
m_{31} \\
m_{31} \\
m_{32} \\
m_{33} \\
m_{34}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right)
$$

## Q

$$
\mathrm{m}=0
$$

We want to solve for the unit vector $m$ (the stacked one) that minimizes $|Q m|^{2}$

The eigenvector assoc. to the minimum eigenvalue of the matrix $\mathrm{Q}^{\mathrm{T}} \mathrm{Q}$ gives us that because it is the unit vector x that minimizes $\mathrm{x}^{\mathrm{T}} \mathrm{Q}^{\mathrm{T}} \mathrm{Q} \mathrm{x}$.

## Calibration Problem



Given $n$ points $P_{1}, \ldots, P_{n}$ with known positions and their images $p_{1}, \ldots, p_{n}$

Find $\boldsymbol{i}$ and $\boldsymbol{e}$ such that

## Analytical Photogrammetry

Given $n$ points $P_{1}, \ldots, P_{n}$ with known positions and their images $p_{1}, \ldots, p_{n}$

Find $\boldsymbol{i}$ and $\boldsymbol{e}$ such that

$$
\sum_{i=1}^{n}\left[\left(u_{i}-\frac{\boldsymbol{m}_{1}(\boldsymbol{i}, \boldsymbol{e}) \cdot \boldsymbol{P}_{i}}{\boldsymbol{m}_{3}(\boldsymbol{i}, \boldsymbol{e}) \cdot \boldsymbol{P}_{i}}\right)^{2}+\left(v_{i}-\frac{\boldsymbol{m}_{2}(\boldsymbol{i}, \boldsymbol{e}) \cdot \boldsymbol{P}_{i}}{\boldsymbol{m}_{3}(\boldsymbol{i}, \boldsymbol{e}) \cdot \boldsymbol{P}_{i}}\right)^{2}\right] \quad \text { is minimized }
$$

Non-Linear Least-Squares Methods

- Newton
- Gauss-Newton
- Levenberg-Marquardt

Iterative, quadratically convergent in favorable situations

Homogeneous Linear Systems


How do you solve overconstrained homogeneous linear equations ??

$$
E=|\mathcal{U} \boldsymbol{x}|^{2}=\boldsymbol{x}^{T}\left(\mathcal{U}^{T} \mathcal{U}\right) \boldsymbol{x}
$$

- Orthonormal basis of eigenvectors: $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{q}$.
- Associated eigenvalues: $0 \leq \lambda_{1} \leq \ldots \leq \lambda_{q}$.
- Any vector can be written as

$$
\boldsymbol{x}=\mu_{1} \boldsymbol{e}_{1}+\ldots+\mu_{q} \boldsymbol{e}_{q}
$$

for some $\mu_{i}(i=1, \ldots, q)$ such that $\mu_{1}^{2}+\ldots+\mu_{q}^{2}=1$.

$$
\begin{aligned}
E(\boldsymbol{x})-E\left(\boldsymbol{e}_{1}\right) & =\boldsymbol{x}^{T}\left(\mathcal{U}^{T} \mathcal{U}\right) \boldsymbol{x}-\boldsymbol{e}_{1}^{T}\left(\mathcal{U}^{T} \mathcal{U}\right) \boldsymbol{e}_{1} \\
& =\lambda_{1}^{2} \mu_{1}^{2}+\ldots+\lambda_{q}^{2} \mu_{q}^{2}-\lambda_{1}^{2} \\
& \geq \lambda_{1}^{2}\left(\mu_{1}^{2}+\ldots+\mu_{q}^{2}-1\right)=0
\end{aligned}
$$

The solution is $e_{1}$.
remember: $\operatorname{EIG}\left(U^{T} U\right)=S V D(U)$, i.e. solution is $V_{n}$

## Matlab Solution



## Example: 60 point pairs

Figure 1: Checkerboard pattern on the wall corner and the world frame coordinate axes
Least squares method is used to estimate the calibration matrix. There are 120 homogeneous linear equations in twelve variables, which are the coefficients of the calibration matrix $\mathcal{M}$. Lets denote this system of linear equations as

$$
\mathcal{P} \mathbf{m}=0, \quad \mathbf{m}:=\left[\begin{array}{lll}
\mathbf{m}_{1} & \mathbf{m}_{2} & \mathbf{m}_{3} \tag{1}
\end{array}\right]^{T}
$$

where, $\mathbf{m}_{1}, \mathbf{m}_{2}, \mathbf{m}_{3}$ are first, second and third rows of the matrix $\mathcal{M}$ respectively. $\mathbf{m}$ is a $12 \times 1$ vector, and $\mathcal{P}$ is a $120 \times 12$ matrix. The problem of least square estimation of $\mathcal{P}$ is defined as

$$
\begin{equation*}
\min \|\mathcal{P} \mathbf{m}\|^{2}, \quad \text { subject to } \quad\|\mathbf{m}\|^{2}=1 \tag{2}
\end{equation*}
$$

As it turns out, the solution of above problem is given by the eigenvector of matrix $\mathcal{P}^{T} \mathcal{P}$ having the least eigenvalue. The eigenvectors of matrix $\mathcal{P}^{T} \mathcal{P}$ can also be computed by performing the singular value decomposition (SVD) of $\mathcal{P}$. The 12 right singular vectors of $\mathcal{P}$ are also the eigenvectors of $\mathcal{P}^{T} \mathcal{P}$.

```
%Perform SVD of P
[U S V] = svd(P);
[min_val, min_index] = min(diag(S(1:12,1:12)));
%m}\mathrm{ is given by right singular vector of min. singular value
m = V(1:12, min_index);
```


## Degenerate Point Configurations

Are there other solutions besides $M$ ??

$$
\begin{aligned}
& \mathbf{0}=\boldsymbol{P} \boldsymbol{l}=\left(\begin{array}{ccc}
\boldsymbol{P}_{1}^{T} & \mathbf{0}^{T} & -u_{1} \boldsymbol{P}_{1}^{T} \\
\mathbf{0}^{T} & \boldsymbol{P}_{1}^{T} & -v_{1} \boldsymbol{P}_{1}^{T} \\
\cdots & \cdots & \cdots \\
\boldsymbol{P}_{n}^{T} & \mathbf{0}^{T} & -u_{n} \boldsymbol{P}^{T} T \\
\mathbf{0}^{T} & \boldsymbol{P}_{n}^{T} & -v_{n} \boldsymbol{P}_{n}^{T}
\end{array}\right)\left(\begin{array}{c}
\boldsymbol{\lambda} \\
\boldsymbol{\mu} \\
\boldsymbol{\nu}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{P}_{1}^{T} \boldsymbol{\lambda}-u_{1} \boldsymbol{P}_{1}^{T} \boldsymbol{\nu} \\
\boldsymbol{P}_{1}^{T} \boldsymbol{\mu}-v_{1} \boldsymbol{P}_{1}^{T} \boldsymbol{\nu} \\
\boldsymbol{P}_{n}^{T} \boldsymbol{\lambda}-u_{n} \boldsymbol{P}_{n}^{T} \boldsymbol{\nu} \\
\boldsymbol{P}_{n}^{T} \boldsymbol{\mu}-v_{n} \boldsymbol{P}_{n}^{T} \boldsymbol{\nu}
\end{array}\right) \\
& \sum \\
& \left\{\begin{array} { l } 
{ \boldsymbol { P } _ { i } ^ { T } \boldsymbol { \lambda } - \frac { \boldsymbol { m } _ { 1 } ^ { T } \boldsymbol { P } _ { i } } { \boldsymbol { m } _ { 3 } ^ { T } \boldsymbol { P } _ { i } ^ { T } } \boldsymbol { P } _ { i } ^ { T } = 0 } \\
{ \boldsymbol { P } _ { i } ^ { T } \boldsymbol { \mu } - \frac { \boldsymbol { m } _ { 2 } ^ { T } } { \boldsymbol { m } _ { 3 } ^ { T } \boldsymbol { P } _ { i } } \boldsymbol { P } _ { i } ^ { T } \boldsymbol { P } _ { i } ^ { T } \boldsymbol { \nu } = 0 }
\end{array} \square \left\{\begin{array}{l}
\boldsymbol{P}_{i}^{T}\left(\boldsymbol{\lambda} \boldsymbol{m}_{3}^{T}-\boldsymbol{m}_{1} \boldsymbol{\nu}^{T}\right) \boldsymbol{P}_{i}=0 \\
\boldsymbol{P}_{i}^{T}\left(\boldsymbol{\mu} \boldsymbol{m}_{3}^{T}-\boldsymbol{m}_{2} \boldsymbol{\nu}^{T}\right) \boldsymbol{P}_{i}=0
\end{array}\right.\right.
\end{aligned}
$$

- Coplanar points: $(\lambda, \mu, v)=(\Pi, 0,0)$ or $(0, \Pi, 0)$ or $(0,0, \Pi)$
- Points lying on the intersection curve of two quadric surfaces $=$ straight line + twisted cubic

Does not happen for 6 or more random points!

## Camera calibration

Once you have the M matrix, can recover the intrinsic and extrinsic parameters.

Estimation of the Intrinsic and Extrinsic Parameters, see pdf slides S.M. Abdallah.

$$
\mathcal{M}=\left(\begin{array}{cc}
\alpha \boldsymbol{r}_{1}^{T}-\alpha \cot \theta \boldsymbol{r}_{2}^{T}+u_{0} \boldsymbol{r}_{3}^{T} & \alpha t_{x}-\alpha \cot \theta t_{y}+u_{0} t_{z} \\
\frac{\beta}{\sin \theta} \boldsymbol{r}_{2}^{T}+v_{0} \boldsymbol{r}_{3}^{T} & \frac{\beta}{\sin \theta} t_{y}+v_{0} t_{z} \\
\boldsymbol{r}_{3}^{T} & t_{z}
\end{array}\right)
$$

Once $M$ is known, you still got to recover the intrinsic and extrinsic parameters !!!

This is a decomposition problem, not an estimation problem.

$$
\boxed{\mathcal{M}}=\left(\begin{array}{cc}
\alpha \boldsymbol{r}_{1}^{T}-\alpha \cot \theta \boldsymbol{r}_{2}^{T}+u_{0} \boldsymbol{r}_{3}^{T} & \alpha t_{x}-\alpha \cot \theta t_{y}+u_{0} t_{z} \\
\frac{\beta}{\sin \theta} \boldsymbol{r}_{2}^{T}+v_{0} \boldsymbol{r}_{3}^{T} & \frac{\beta}{\sin \theta} t_{y}+v_{0} t_{z} \\
\boldsymbol{r}_{3}^{T} & t_{z}
\end{array}\right)
$$

- Intrinsic parameters
- Extrinsic parameters

$$
\mathcal{M}=\left(\begin{array}{c:c}
3 \times 3 & 3 \times 1 \\
\alpha \boldsymbol{r}_{1}^{T}-\alpha \cot \theta \boldsymbol{r}_{2}^{T}+u_{0} \boldsymbol{r}_{3}^{T} & \alpha t_{x}-\alpha \cot \theta t_{y}+u_{0} t_{z} \\
\frac{\beta}{\sin \theta} \boldsymbol{r}_{2}^{T}+v_{0} \boldsymbol{r}_{3}^{T} & \frac{\beta}{\sin \theta} t_{y}+v_{0} t_{z} \\
\boldsymbol{r}_{3}^{T} & t_{z} \\
\mathcal{A} & b
\end{array}\right)
$$

we have

$$
\rho\left(\begin{array}{l}
\boldsymbol{a}_{1}^{T} \\
\boldsymbol{a}_{2}^{T} \\
\boldsymbol{a}_{3}^{T}
\end{array}\right)<\left(\begin{array}{c}
\alpha \boldsymbol{r}_{1}^{T}-\alpha \cot \theta \boldsymbol{r}_{2}^{T}+u_{0} \boldsymbol{r}_{3}^{T} \\
\frac{\beta}{\sin \theta} \boldsymbol{r}_{2}^{T}+v_{0} \boldsymbol{r}_{3}^{T} \\
\boldsymbol{r}_{3}^{T}
\end{array}\right)
$$

In particular, using the fact that the rows of a rotation matrix have unit length and are perpendicular to each other yields immediately

$$
\left\{\begin{array}{l}
\rho=\varepsilon /\left|\boldsymbol{a}_{3}\right|,  \tag{6.5.5}\\
\boldsymbol{r}_{3}=\rho \boldsymbol{a}_{3},
\end{array}\right.
$$

## Orthogonality of r3 and r2


$\rho$ is known -> calculate v0 via dot product of a2 and a3

## Slide Samer M Abdallah, Beirut

## Estimation of the intrinsic and extrinsic parameters

Write $M=(A, b)$, therefore

$$
\rho\left(\begin{array}{ll}
\mathcal{A} & b
\end{array}\right)=\mathcal{K}\left(\begin{array}{ll}
\mathcal{R} & t
\end{array}\right) \longleftrightarrow \rho\left(\begin{array}{l}
\boldsymbol{a}_{1}^{T} \\
\boldsymbol{a}_{2}^{T} \\
\boldsymbol{a}_{3}^{T}
\end{array}\right)=\left(\begin{array}{c}
\alpha \boldsymbol{r}_{1}^{T}-\alpha \cot \theta \boldsymbol{r}_{2}^{T}+u_{0} \boldsymbol{r}_{3}^{T} \\
\frac{\beta}{\sin \theta} \boldsymbol{r}_{2}^{T}+v_{o} r_{3}^{T} \\
r_{3}^{T}
\end{array}\right)
$$

Using the fact that the rows of a rotation matrix have unit length and are perpendicular to each other yields

$$
\left\{\begin{array}{l}
\rho=\varepsilon /\left|\boldsymbol{a}_{3}\right|, \\
\boldsymbol{r}_{3}=\rho \boldsymbol{a}_{3}, \\
u_{0}=\rho^{2}\left(\boldsymbol{a}_{1} \cdot \boldsymbol{a}_{3}\right), \\
v_{0}=\rho^{2}\left(\boldsymbol{a}_{2} \cdot \boldsymbol{a}_{3}\right),
\end{array} \quad \text { where } \quad \varepsilon=\mp 1\right.
$$

Since $\theta$ is always in the neighborhood of $\pi / 2$ with a positive sine, we have

$$
\left\{\begin{array} { l } 
{ \rho ^ { 2 } ( \boldsymbol { a } _ { 1 } \times \boldsymbol { a } _ { 3 } ) = - \alpha \boldsymbol { r } _ { 2 } - \alpha \operatorname { c o t } \theta \boldsymbol { r } _ { 1 } , } \\
{ \rho ^ { 2 } ( \boldsymbol { a } _ { 2 } \times \boldsymbol { a } _ { 3 } ) = \frac { \beta } { \operatorname { s i n } \theta } \boldsymbol { r } _ { 1 } , }
\end{array} \text { and } \quad \left\{\begin{array}{l}
\rho^{2}\left|\boldsymbol{a}_{1} \times \boldsymbol{a}_{3}\right|=\frac{|\alpha|}{\sin \theta}, \\
\rho^{2}\left|\boldsymbol{a}_{2} \times \boldsymbol{a}_{3}\right|=\frac{|\beta|}{\sin \theta} .
\end{array}\right.\right.
$$

Thus,

$$
\left\{\begin{array} { l } 
{ \operatorname { c o s } \theta = - \frac { ( \boldsymbol { a } _ { 1 } \times \boldsymbol { a } _ { 3 } ) \cdot ( \boldsymbol { a } _ { 2 } \times \boldsymbol { a } _ { 3 } ) } { | \boldsymbol { a } _ { 1 } \times \boldsymbol { a } _ { 3 } | | \boldsymbol { a } _ { 2 } \times \boldsymbol { a } _ { 3 } | } , } \\
{ \alpha = \rho ^ { 2 } | \boldsymbol { a } _ { 1 } \times \boldsymbol { a } _ { 3 } | \operatorname { s i n } \theta , } \\
{ \beta = \rho ^ { 2 } | \boldsymbol { a } _ { 2 } \times \boldsymbol { a } _ { 3 } | \operatorname { s i n } \theta , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
r_{1}=\frac{\rho^{2} \sin \theta}{\beta}\left(\boldsymbol{a}_{2} \times \boldsymbol{a}_{3}\right)=\frac{1}{\left|\boldsymbol{a}_{2} \times \boldsymbol{a}_{3}\right|}\left(\boldsymbol{a}_{2} \times \boldsymbol{a}_{3}\right), \\
r_{2}=\boldsymbol{r}_{3} \times \boldsymbol{r}_{1} .
\end{array}\right.\right.
$$

Note that there are two possible choices for the matrix $\mathcal{R}$ depending on the value of $\varepsilon$.

## Estimation of the intrinsic and extrinsic parameters

The translation parameters can now be recovered by writing $\mathcal{K} t=\bar{\rho} \boldsymbol{b}$, and hence $t=\rho \mathcal{K}^{-1} b$. In practical situations, the sign of $t_{z}$ is often known in advance (this corresponds to knowing whether the origin of the world coordinate system is in front or behind the camera), which allows the choice of a unique solution for the calibration parameters.

## Typical Result



| $\alpha$ | 2816.8 |
| :--- | :--- |
| $\beta$ | 2782.9 |
| $\theta$ | 1.5662 |
| $u_{0}$ | 510.2025 |
| $v_{0}$ | 318.3568 |

$89.74^{\circ}$
Sensor: 1075x806.

$$
\mathbf{R}=\left[\begin{array}{ccc}
0.6909 & 0.0101 & -0.7229 \\
0.0744 & -0.9956 & 0.0572 \\
-0.7191 & -0.0933 & -0.6886
\end{array}\right]
$$

There is considerable rotation around the $y$ axis (up) but the rotation around $x$ and $z$ was kept to a minimum.
$r_{x}=-5.3457^{\circ}, r_{y}=45.98^{\circ}$, and $r_{z}=6.1478^{\circ}$
$\mathbf{t}=\left[\begin{array}{lll}1.2279 & 72.0368 & 135.7777\end{array}\right]^{T}$
Camera was roughly 72 cm up from the floor, and 136 cm back from the pattern.

## Degenerate Point Configurations

Are there other solutions besides $M$ ??

$$
\begin{aligned}
& \mathbf{0}=\boldsymbol{P} \boldsymbol{l}=\left(\begin{array}{ccc}
\boldsymbol{P}_{1}^{T} & \mathbf{0}^{T} & -u_{1} \boldsymbol{P}_{1}^{T} \\
\mathbf{0}^{T} & \boldsymbol{P}_{1}^{T} & -v_{1} \boldsymbol{P}_{1}^{T} \\
\cdots & \cdots & \cdots \\
\boldsymbol{P}_{n}^{T} & \mathbf{0}^{T} & -u_{n} \boldsymbol{P}^{T} T \\
\mathbf{0}^{T} & \boldsymbol{P}_{n}^{T} & -v_{n} \boldsymbol{P}_{n}^{T}
\end{array}\right)\left(\begin{array}{c}
\boldsymbol{\lambda} \\
\boldsymbol{\mu} \\
\boldsymbol{\nu}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{P}_{1}^{T} \boldsymbol{\lambda}-u_{1} \boldsymbol{P}_{1}^{T} \boldsymbol{\nu} \\
\boldsymbol{P}_{1}^{T} \boldsymbol{\mu}-v_{1} \boldsymbol{P}_{1}^{T} \boldsymbol{\nu} \\
\boldsymbol{P}_{n}^{T} \boldsymbol{\lambda}-u_{n} \boldsymbol{P}_{n}^{T} \boldsymbol{\nu} \\
\boldsymbol{P}_{n}^{T} \boldsymbol{\mu}-v_{n} \boldsymbol{P}_{n}^{T} \boldsymbol{\nu}
\end{array}\right) \\
& \sum \\
& \left\{\begin{array} { l } 
{ \boldsymbol { P } _ { i } ^ { T } \boldsymbol { \lambda } - \frac { \boldsymbol { m } _ { 1 } ^ { T } \boldsymbol { P } _ { i } } { \boldsymbol { m } _ { 3 } ^ { T } \boldsymbol { P } _ { i } ^ { T } } \boldsymbol { P } _ { i } ^ { T } = 0 } \\
{ \boldsymbol { P } _ { i } ^ { T } \boldsymbol { \mu } - \frac { \boldsymbol { m } _ { 2 } ^ { T } } { \boldsymbol { m } _ { 3 } ^ { T } \boldsymbol { P } _ { i } } \boldsymbol { P } _ { i } ^ { T } \boldsymbol { P } _ { i } ^ { T } \boldsymbol { \nu } = 0 }
\end{array} \square \left\{\begin{array}{l}
\boldsymbol{P}_{i}^{T}\left(\boldsymbol{\lambda} \boldsymbol{m}_{3}^{T}-\boldsymbol{m}_{1} \boldsymbol{\nu}^{T}\right) \boldsymbol{P}_{i}=0 \\
\boldsymbol{P}_{i}^{T}\left(\boldsymbol{\mu} \boldsymbol{m}_{3}^{T}-\boldsymbol{m}_{2} \boldsymbol{\nu}^{T}\right) \boldsymbol{P}_{i}=0
\end{array}\right.\right.
\end{aligned}
$$

- Coplanar points: $(\lambda, \mu, v)=(\Pi, 0,0)$ or $(0, \Pi, 0)$ or $(0,0, \Pi)$
- Points lying on the intersection curve of two quadric surfaces $=$ straight line + twisted cubic

Does not happen for 6 or more random points!

## Other Slides following Forsyth\&Ponce

Just for additional information on previous slides

## Linear Systems



Square system:

- unique solution
- Gaussian elimination



## Rectangular system ??

- underconstrained: infinity of solutions
- overconstrained: no solution
Minimize $|A x-b|^{2}$


## How do you solve overconstrained linear equations ??

- Define $E=|\boldsymbol{e}|^{2}=\boldsymbol{e} \cdot \boldsymbol{e}$ with

$$
\begin{aligned}
\boldsymbol{e} & =A \boldsymbol{x}-\boldsymbol{b}=\left[\boldsymbol{c}_{1}\left|\boldsymbol{c}_{2}\right| \ldots \mid \boldsymbol{c}_{n}\right]\left[\begin{array}{l}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]-\boldsymbol{b} \\
& =x_{1} \boldsymbol{c}_{1}+x_{2} \boldsymbol{c}_{2}+\cdots x_{n} \boldsymbol{c}_{n}-\boldsymbol{b}
\end{aligned}
$$

- At a minimum,

$$
\begin{aligned}
\frac{\partial E}{\partial x_{i}} & =\frac{\partial \boldsymbol{e}}{\partial x_{i}} \cdot \boldsymbol{e}+\boldsymbol{e} \cdot \frac{\partial \boldsymbol{e}}{\partial x_{i}}=2 \frac{\partial \boldsymbol{e}}{\partial x_{i}} \cdot \boldsymbol{e} \\
& =2 \frac{\partial}{\partial x_{i}}\left(x_{1} \boldsymbol{c}_{1}+\cdots+x_{n} \boldsymbol{c}_{n}-\boldsymbol{b}\right) \cdot \boldsymbol{e}=2 \boldsymbol{c}_{i} \cdot \boldsymbol{e} \\
& =2 \boldsymbol{c}_{i}^{T}(A \boldsymbol{x}-\boldsymbol{b})=0
\end{aligned}
$$

- or

$$
0=\left[\begin{array}{l}
\boldsymbol{c}_{i}^{T} \\
\vdots \\
\boldsymbol{c}_{n}^{T}
\end{array}\right](A \boldsymbol{x}-\boldsymbol{b})=A^{T}(A \boldsymbol{x}-\boldsymbol{b}) \Rightarrow A^{T} A \boldsymbol{x}=A^{T} \boldsymbol{b}
$$

where $\boldsymbol{x}=A^{\dagger} \boldsymbol{b}$ and $A^{\dagger}=\left(A^{T} A\right)^{-1} A^{T}$ is the pseudoinverse of $A$ !

Homogeneous Linear Systems


How do you solve overconstrained homogeneous linear equations ??

$$
E=|\mathcal{U} \boldsymbol{x}|^{2}=\boldsymbol{x}^{T}\left(\mathcal{U}^{T} \mathcal{U}\right) \boldsymbol{x}
$$

- Orthonormal basis of eigenvectors: $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{q}$.
- Associated eigenvalues: $0 \leq \lambda_{1} \leq \ldots \leq \lambda_{q}$.
- Any vector can be written as

$$
\boldsymbol{x}=\mu_{1} \boldsymbol{e}_{1}+\ldots+\mu_{q} \boldsymbol{e}_{q}
$$

for some $\mu_{i}(i=1, \ldots, q)$ such that $\mu_{1}^{2}+\ldots+\mu_{q}^{2}=1$.

$$
\begin{aligned}
E(\boldsymbol{x})-E\left(\boldsymbol{e}_{1}\right) & =\boldsymbol{x}^{T}\left(\mathcal{U}^{T} \mathcal{U}\right) \boldsymbol{x}-\boldsymbol{e}_{1}^{T}\left(\mathcal{U}^{T} \mathcal{U}\right) \boldsymbol{e}_{1} \\
& =\lambda_{1}^{2} \mu_{1}^{2}+\ldots+\lambda_{q}^{2} \mu_{q}^{2}-\lambda_{1}^{2} \\
& \geq \lambda_{1}^{2}\left(\mu_{1}^{2}+\ldots+\mu_{q}^{2}-1\right)=0
\end{aligned}
$$

The solution is $e_{1}$.
remember: $\operatorname{EIG}\left(U^{T} U\right)=S V D(U)$, i.e. solution is $V_{n}$

## Linear Camera Calibration

Given $n$ points $P_{1}, \ldots, P_{n}$ with known positions and their images $p_{1}, \ldots, p_{n}$

$$
\binom{u_{i}}{v_{i}}=\binom{\frac{\boldsymbol{m}_{1} \cdot \boldsymbol{P}_{i}}{\boldsymbol{m}_{3} \cdot \boldsymbol{P}_{i}}}{\frac{\boldsymbol{m}_{2} \cdot \boldsymbol{P}_{i}}{\boldsymbol{m}_{3} \cdot \boldsymbol{P}_{i}}} \Longleftrightarrow\binom{\boldsymbol{m}_{1}-u_{i} \boldsymbol{m}_{3}}{\boldsymbol{m}_{2}-v_{i} \boldsymbol{m}_{3}} \boldsymbol{P}_{i}=0
$$

$$
\mathcal{P} \boldsymbol{m}=0 \text { with } \mathcal{P} \stackrel{\text { def }}{=}\left(\begin{array}{ccc}
\boldsymbol{P}_{1}^{T} & \mathbf{0}^{T} & -u_{1} \boldsymbol{P}_{1}^{T} \\
\mathbf{0}^{T} & \boldsymbol{P}_{1}^{T} & -v_{1} \boldsymbol{P}_{1}^{T} \\
\cdots & \ldots & \ldots \\
\boldsymbol{P}_{n}^{T} & \mathbf{0}^{T} & -u_{n} \boldsymbol{P}_{n}^{T} \\
\mathbf{0}^{T} & \boldsymbol{P}_{n}^{T} & -v_{n} \boldsymbol{P}_{n}^{T}
\end{array}\right) \text { and } \boldsymbol{m} \stackrel{\text { def }}{=}\left(\begin{array}{l}
\boldsymbol{m}_{1} \\
\boldsymbol{m}_{2} \\
\boldsymbol{m}_{3}
\end{array}\right)=0
$$

## Useful Links

Demo calibration (some links broken):

- http://mitpress.mit.edu/ejournals/Videre/001/articles/Zhang/Calib Env/CalibEnv.html
Bouget camera calibration SW:
- http://www.vision.caltech.edu/bouguetj/ calib_doc/
CVonline: Monocular Camera calibration:
- http://homepages.inf.ed.ac.uk/cgi/rbf/C VONLINE/entries.pl?TAG250

