Image Formation I Chapter 1 (Forsyth\&Ponce) Cameras

Guido Gerig
 CS-GY 6643, Spring 2017

Acknowledgements:

- Slides used from Prof. Trevor Darrell, (http://www.eecs.berkeley.edu/~trevor/CS280.html)
- Some slides modified from Marc Pollefeys, UNC Chapel Hill. Other slides and illustrations from J. Ponce, addendum to course book.

GEOMETRIC CAMERA MODELS

- The Intrinsic Parameters of a Camera
- The Extrinsic Parameters of a Camera
- The General Form of the Perspective Projection Equation
- Line Geometry

Reading: Chapter 1.

Images are two-dimensional patterns of brightness values.

Figure from US Navy Manual of Basic Optics and Optical Instruments, prepared by Bureau of
Naval Personnel. Reprinted by Dover Publications, Inci, 1969
They are formed by the projection of 3D objects.

Photographic camera:
 Niepce, 1816.

illum in tabula per radios Solis, quảm in coelo contingit :hoc eft,fi in ceelo fuperior pars deliquiũ patiatur, in radiis apparebit inferior deficere,vt ratio exigit optica.

Sic nos exactì Anno.1544. Louanii celipfim Solis obferuauimus, inuenimuś́; deficere paulò plus ä dex-
Pinhole perspective projection: Brunelleschi, $\mathrm{XV}^{\text {th }}$ Century. Camera obscura: XVI ${ }^{\text {th }}$ Century.

Camera model

Relation between pixels and rays in space

Camera obscura + lens

The camera obscura (Latin for 'dark room') is an optical device that projects an image of its surroundings on a screen (source Wikipedia).

Limits for pinhole cameras

(A)

(B)

(C)

2.18 DIFFRACTION LIMITS THE QUALITY OF PINHOLE OPTICS. These three images of a bulb filament were made using pinholes with decreasing size. (A) When the pinhole is relatively large, the image rays are not properly converged, and the image is blurred. (B) Reducing the size of the pinhole improves the focus. (C) Reducing the size of the pinhole further worsens the focus, due to diffraction. From Ruechardt, 1958.

Physical parameters of image formation

- Geometric
- Type of projection
- Camera pose
- Optical
- Sensor's lens type
- focal length, field of view, aperture
- Photometric
- Type, direction, intensity of light reaching sensor
- Surfaces' reflectance properties
- Sensor
- sampling, etc.

Perspective and art

- Use of correct perspective projection indicated in $1^{\text {st }}$ century B.C. frescoes
- Skill resurfaces in Renaissance: artists develop systematic methods to determine perspective projection (around 1480-1515)

Durer, 1525

Perspective projection equations

- 3d world mapped to 2d projection in image plane

Affine projection models:

Weak perspective projection

$$
\left\{\begin{array}{l}
x^{\prime}=-m x \\
y^{\prime}=-m y
\end{array} \quad \text { where } \quad m=\frac{f^{\prime}}{z_{0}} \quad\right. \text { is the magnification. }
$$

When the scene relief is small compared to its distance from the Camera, m can be taken constant: weak perspective projection.

Affine projection models:
 Orthographic projection

$$
\left\{\begin{array}{l}
x^{\prime}=x \\
y^{\prime}=y
\end{array}\right.
$$

When the camera is at a (roughly constant) distance from the scene, take $m=1$.

Example Orthographic Projection

Projection of a single view of an object (as a view of the front) onto a drawing surface (in which the lines of projection are perpendicular to the drawing surface). Source: Merriam-Webster

Homogeneous coordinates

Is this a linear transformation?

- no-division by z is nonlinear

Trick: add one more coordinate:

$$
\begin{array}{cc}
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] & (x, y, z) \Rightarrow\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \\
\text { homogeneous image } & \text { homogeneous scene } \\
\text { coordinates } & \text { coordinates }
\end{array}
$$

Converting from homogeneous coordinates

$$
\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w) \quad\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right] \Rightarrow(x / w, y / w, z / w)
$$

Perspective Projection Matrix

- Projection is a matrix multiplication using homogeneous coordinates:

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 / f^{\prime} & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
z / f^{\prime}
\end{array}\right] \Rightarrow\left(f^{\prime} \frac{x}{z}, f^{\prime} \frac{y}{z}\right)
$$

Complete mapping from world points to image pixel positions?

Points at infinity, vanishing points

Points from infinity represent rays into camera which are close to the optical axis.

Image source: wikipedia

Perspective projection \& calibration

- Perspective equations so far in terms of camera's reference frame....
- Camera's intrinsic and extrinsic parameters needed to calibrate geometry.

The CCD camera

CCD camera

Perspective projection \& calibration

Extrinsic:
Camera frame $\leftarrow \rightarrow$ World frame

Intrinsic:
Image coordinates relative to camera $\leftarrow \rightarrow$ Pixel coordinates

Intrinsic parameters: from idealized world coordinates to pixel values

Perspective projection

$$
\begin{aligned}
& u=f \frac{x}{z} \\
& v=f \frac{y}{z}
\end{aligned}
$$

Intrinsic parameters

Intrinsic parameters

Maybe pixels are not square

$$
\begin{aligned}
& u=\alpha \frac{x}{Z} \\
& v=\beta \frac{y}{z}
\end{aligned}
$$

Intrinsic parameters

Intrinsic parameters

May be skew between
camera pixel axes

$$
\begin{aligned}
& u=\alpha \frac{x}{z}-\alpha \cot (\theta) \frac{y}{z}+u_{0} \\
& v=\frac{\beta}{\sin (\theta)} \frac{y}{z}+v_{0}
\end{aligned}
$$

Intrinsic parameters, homogeneous coordinates

 we can write this as:
or:

$$
\begin{gathered}
\left(\begin{array}{l}
u \\
v \\
1
\end{array}\right)=\frac{1}{z}\left(\begin{array}{cccc}
\alpha & -\alpha \cot (\theta) & u_{0} & 0 \\
0 & \frac{\beta}{\sin (\theta)} & v_{0} & 0 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right) \\
\vec{p}=\frac{1}{z} \quad(\mathrm{~K})^{C} \overrightarrow{ }{ }^{\mathrm{C}}
\end{gathered}
$$

In pixels

Perspective projection \& calibration

Extrinsic:
Camera frame $\leftarrow \rightarrow$ World frame

Intrinsic:
Image coordinates relative to camera $\leftarrow \rightarrow$ Pixel coordinates

Coordinate Changes: Pure Translations

$$
\overrightarrow{O_{B} P}=\overrightarrow{O_{B} O_{A}}+\overrightarrow{O_{A} P}, \quad B P={ }^{A} P+{ }^{B} O_{A}
$$

Coordinate Changes: Pure Rotations

$$
{ }_{A}^{B} R=\left[\begin{array}{c|c|c}
\mathbf{i}_{A} \cdot \mathbf{i}_{B} & \mathbf{j}_{A} \cdot \mathbf{i}_{B} & \mathbf{k}_{A} \cdot \mathbf{i}_{B} \\
\hline \mathbf{i}_{A} \cdot \mathbf{j}_{B} & \mathbf{j}_{A} \cdot \mathbf{j}_{B} & \mathbf{k}_{A} \cdot \mathbf{j}_{B} \\
\hline \mathbf{i}_{A} \cdot \mathbf{k}_{B} & \mathbf{j}_{A} \cdot \mathbf{k}_{B} & \mathbf{k}_{A} \cdot \mathbf{k}_{B}
\end{array}\right]=\left({ }^{B} \mathbf{i}_{A},{ }^{B} \mathbf{j}_{A},{ }^{B}, \mathbf{k}_{4}\right)=\left[\begin{array}{r}
{ }^{A} \mathbf{i}_{B}^{T} \\
{ }^{A} \mathbf{j}_{B}^{T} \\
{ }^{A} \mathbf{k}_{B}^{T}
\end{array}\right]
$$

Coordinate Changes: Rotations about the k Axis

A rotation matrix is characterized by the following properties:

- Its inverse is equal to its transpose, and
- its determinant is equal to 1 .

Or equivalently:

- Its rows (or columns) form a right-handed orthonormal coordinate system.

Coordinate Changes: Pure Rotations

$$
\overrightarrow{O P}=\left[\begin{array}{lll}
\mathbf{i}_{A} & \mathbf{j}_{A} & \mathbf{k}_{A}
\end{array}\right]\left[\begin{array}{c}
{ }^{A} X \\
{ }^{A} y \\
{ }^{A} Z
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{i}_{B} & \mathbf{j}_{B} & \mathbf{k}_{B}
\end{array}\right]\left[\begin{array}{c}
{ }^{B} X \\
{ }^{B} y \\
{ }^{B} Z
\end{array}\right]
$$

$$
\Rightarrow \quad{ }^{B} P={ }_{A}^{B} R^{A} P
$$

Coordinate Changes: Rigid Transformations

$$
{ }^{B} P={ }_{A}^{B} R{ }^{A} P+{ }^{B} O_{A}
$$

Block Matrix Multiplication

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \quad B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]
$$

What is $A B$?

$$
A B=\left[\begin{array}{ll}
A_{11} B_{11}+A_{12} B_{21} & A_{11} B_{12}+A_{12} B_{22} \\
A_{21} B_{11}+A_{22} B_{21} & A_{21} B_{12}+A_{22} B_{22}
\end{array}\right]
$$

Homogeneous Representation of Rigid Transformations

$$
\left[\begin{array}{c}
{ }^{B} P \\
1
\end{array}\right]=\left[\begin{array}{cc}
{ }_{A}^{B} R & { }^{B} O_{A} \\
\mathbf{0}^{T} & 1
\end{array}\right]\left[\begin{array}{c}
{ }^{A} P \\
1
\end{array}\right]=\left[\begin{array}{c}
{ }_{A}^{B} R{ }^{A} P+{ }^{B} O_{A} \\
1
\end{array}\right]={ }_{A}^{B} T\left[\begin{array}{c}
{ }^{A} P \\
1
\end{array}\right]
$$

T: Transformation

Extrinsic parameters: translation and rotation of camera frame

${ }^{C} \vec{p}={ }_{W}^{C} R{ }^{W} \vec{p}+{ }_{W}^{C} \vec{t}$

Non-homogeneous coordinates

Homogeneous coordinates

Combining extrinsic and intrinsic calibration parameters, in homogeneous coordinates

Other ways to write the same equation

pixel coordinates

$\| \vec{p}=\frac{1}{Z} M^{W}{ }^{W} \underset{\sim}{p}$
$\left(\begin{array}{l}u \\ v \\ 1\end{array}\right)=\frac{1}{z}\left(\begin{array}{llll}\cdot & m_{1}^{T} & \cdot & \cdot \\ \cdot & m_{2}^{T} & \cdot & \cdot\left(\begin{array}{c}W \\ p_{x} \\ \cdot \\ \cdot\end{array} m_{3}^{T}\right. \\ p_{y} \\ { }^{W} \\ p_{z} \\ 1\end{array}\right) \quad$ world coordinates
Conversion back from homogeneous coordinates leads to (note that $\mathrm{z}=\mathrm{m}^{\top}{ }_{3}{ }^{*} \mathrm{P}$) :

Other ways to write the same equation

pixel coordinates

Conversion back from homogeneous coordinates leads to (note that $z=\mathrm{m}_{3}{ }^{*} \mathrm{P}$) :
Z is not independent of M and P !

Extrinsic Parameters

- When the camera frame (C) is different from the world frame (W),

$$
\binom{{ }^{C} P}{1}=\left(\begin{array}{cc}
{ }_{W} \mathcal{R} & { }^{C} O_{W} \\
\mathbf{0}^{T} & 1
\end{array}\right)\binom{{ }^{W} P}{1}
$$

- Thus,

$$
\boldsymbol{p}=\frac{1}{z} \mathcal{M} \boldsymbol{P}, \quad \text { where }\left\{\begin{array}{l}
\mathcal{M}=\mathcal{K}(\mathcal{R} \quad \boldsymbol{t}), \\
\mathcal{R}={ }_{W}^{C} \mathcal{R}, \\
\boldsymbol{t}={ }^{C} O_{W}, \\
\boldsymbol{P}=\binom{W}{1} .
\end{array}\right.
$$

- Note: z is not independent of \mathcal{M} and \boldsymbol{P} :

$$
\mathcal{M}=\left(\begin{array}{l}
\boldsymbol{m}_{1}^{T} \\
\boldsymbol{m}_{2}^{T} \\
\boldsymbol{m}_{3}^{T}
\end{array}\right) \Longrightarrow z=\boldsymbol{m}_{3} \cdot \boldsymbol{P}, \quad \text { or } \quad\left\{\begin{array}{l}
u=\frac{\boldsymbol{m}_{1} \cdot \boldsymbol{P}}{\boldsymbol{m}_{3} \cdot \boldsymbol{P}} \\
v=\frac{\boldsymbol{m}_{2} \cdot \boldsymbol{P}}{\boldsymbol{m}_{3} \cdot \boldsymbol{P}}
\end{array}\right.
$$

Explicit Form of the Projection Matrix

$$
\mathcal{M}=\left(\begin{array}{cc}
\alpha \boldsymbol{r}_{1}^{T}-\alpha \cot \theta \boldsymbol{r}_{2}^{T}+u_{0} \boldsymbol{r}_{3}^{T} & \alpha t_{x}-\alpha \cot \theta t_{y}+u_{0} t_{z} \\
\frac{\beta}{\sin \theta} \boldsymbol{r}_{2}^{T}+v_{0} \boldsymbol{r}_{3}^{T} & \frac{\beta}{\sin \theta} t_{y}+v_{0} t_{z} \\
\boldsymbol{r}_{3}^{T} & t_{z}
\end{array}\right)
$$

Note: \quad If $\mathcal{M}=\left(\begin{array}{ll}\mathcal{A} & \boldsymbol{b}\end{array}\right)$ then $\left|\boldsymbol{a}_{3}\right|=1$.
Replacing \mathcal{M} by $\lambda \mathcal{M}$ in

$$
\left\{\begin{array}{l}
u=\frac{\boldsymbol{m}_{1} \cdot \boldsymbol{P}}{\boldsymbol{m}_{3} \cdot \boldsymbol{P}} \\
v=\frac{\boldsymbol{m}_{2} \cdot \boldsymbol{P}}{\boldsymbol{m}_{3} \cdot \boldsymbol{P}}
\end{array}\right.
$$

does not change u and v.
M is only defined up to scale in this setting!!

Calibration target

The Opti-CAL Calibration Target Image Find the position, u_{i} and v_{i}, in pixels, of each calibration object feature point.

