

Structured Light II

Guido Gerig
 CS 6643, Spring 2016

(thanks: slides Prof. S. Narasimhan, CMU, Marc Pollefeys, UNC)
http://www.cs.cmu.edu/afs/cs/academic/class/15385-s06/lectures/ppts/lec-17.ppt

Variant

- Pattern projection
- project a pattern instead of a single point
- needs only a single image, one-shot recording
- ...but matching is no longer unique (although still easier)
- more on this later

Results

betulang eqpocires wet petas-shilled frallein the complete surfact dataet corsinba of 43,000 peyectod dols. Beralls of a subloet of slout 18,000 dols we ibven in Figue 6 - Figure 8 Fig-re 8 alows a photorealitic viwulization of the dataset which tas been geferdsed Imm the photogmentertisally detrminod

Ngaref Devfowee- Thworeufide vinasheting

Active triangulation: Structured light

- One of the cameras is replaced by a light emitter
- Correspondence problem is solved by searching the pattern in the camera image (pattern decoding)
- No geometric constraints

Faster Acquisition?

- Project multiple stripes/patterns simultaneously.
- Correspondence problem: which stripe/pattern is which? How to uniquely identify patterns?

Zhang 2002: Works in real-time and on dynamic scenes

Space-time stereo Zhang, Curless and Seitz, CVPR' 03

Coded structured light

- Correspondence without need for geometrical constraints
- For dense correspondence, we need many light planes:
- Move the projection device
- Project many stripes at once: needs encoding
- Each pixel set is distinguishable by its encoding
- Codewords for pixels:
- Grey levels
- Color
- Geometrical considerations

Codeword Classification

- Time-multiplexing:
- Binary codes
- N-ary codes
- Gray code + phase shift
- Spatial Codification
- De Bruijn sequences
- M-arrays
- Direct encoding
- Grey levels
- Colour

Time-Coded Light Patterns

- Assign each stripe a unique illumination code over time [Posdamer 82]

Time

Binary Coding: Bit Plane Stack

- Assign each stripe a unique illumination code over time [Posdamer 82]
Time

1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0
1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0
1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0

Time Multiplexing

A set of patterns are successively projected onto the measuring surface, codeword for a given pixel is formed by a sequence of patterns.
The most common structure of the patterns is a sequence of stripes increasing its width by the time \rightarrow single-axis encoding

Advantages:

- high resolution \rightarrow a lot of 3D points
- High accuracy (order of $\mu \mathrm{m}$)
- Robustness against colorful objects since binary patterns can be used

Drawbacks:

- Static objects only
- Large number of patterns

Example: 5 binary-encoded patterns which allows the measuring surface to be divided in 32 sub-regions

Binary Coding

Structured Lighting: Swept-Planes Revisited

- Swept-plane scanning recovers 3D depth using ray-plane intersection
- Use a data projector to replace manually-swept laser/shadow planes
- How to assign correspondence from projector planes to camera pixels?
- Solution: Project a spatially- and temporally-encoded image sequence
- What is the optimal image sequence to project?

Structured Lighting: Binary Codes

Binary Image Sequence [Posdamer and Altschuler 1982]

- Each image is a bit-plane of the binary code for projector row/column
- Minimum of 10 images to encode 1024 columns or 768 rows
- In practice, 20 images are used to encode 1024 columns or 768 rows
- Projector and camera(s) must be synchronized

Examples

http://www.youtube.com/watch?v=wryJeq3kdSg

Towards higher precision and real time scanning

Direct encoding with color

- Every encoded point of the pattern is identified by its colour

Tajima and Iwakawa rainbow
pattern
(the rainbow is generated with a source of white light
passing through a crystal prism)

T. Sato patterns capable of cancelling the object colour by projecting three shifted patterns
(it can be implemented with an LCD projector if few colours are projected)

Rainbow Pattern

http://cmp.felk.cvut.cz/cmp/demos/RangeAcquisition.html

Real time by direct encoding

Works despite complex appearances

Works in real-time and on dynamic scenes

- Need very few images (one or two).
- But needs a more complex correspondence algorithm

De Bruijn Sequences

- A De Bruijn sequence (or pseudorandom sequence) of order m over an alphabet of n symbols is a circular string of length n^{m} that contains every substring of length m exactly once (in this case the windows are one-dimensional).

$$
1000010111101001\left\{\begin{array}{l}
m=4 \text { (window size) } \\
n=2 \text { (alphabet symbols) }
\end{array}\right.
$$

- The De Bruijn sequences are used to define colored slit patterns (single axis codification) or grid patterns (double axis codification)
- In order to decode a certain slit it is only necessary to identify one of the windows in which it belongs to) can resolve occlusion problem.

Zhang et al.: 125 slits encoded with a De Bruijn sequence of 8 colors and window size of 3 slits

Salvi et al.: grid of 29×29 where a De Bruijn sequence of 3 colors and window size of 3 slits is used to encode the vertical and horizontal slits

M-Arrays

- An m-array is the bidimensional extension of a De Bruijn sequence. Every window of $w \times h$ units appears only once. The window size is related with the size of the m-array and the number of symbols used

$$
\begin{array}{llllllll}
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0
\end{array}
$$

Example: binary marray of size 4×6 and window size of 2×2

Morano et al. M-array represented with an array of coloured dots

M-array proposed by Vuylsteke et al. Represented with shape primitives

Shape primitives used to represent every symbol of the alphabet

Binary spatial coding

http://cmp.felk.cvut.cz/cmp/demos/RangeAcquisition.html

Problems in recovering pattern

Local spatial Coherence

http://www.mri.jhu.edu/~cozturk/sl.html
-Medical Imaging Laboratory
Departments of Biomedical Engineering and Radiology
Johns Hopkins University School of Medicine
Baltimore, MD 21205

Experimental results

Gühring

Morano (45x45 dot array)

Discussion Structured Light

- Advantages
- robust - solves the correspondence problem
- fast - instantaneous recording, real-time processing
- Limitations
- less flexible than passive sensing: needs specialised
- equipment and suitable environment
- Applications
- industrial inspection
- entertainment
- healthcare
- heritage documentation
-

Microsoft Kinect

Microsoft Kinect

The Kinect combines structured light with two classic computer vision techniques: depth from focus, and depth from stereo.

Stage 1: The depth map is constructed by analyzing a speckle pattern of infrared laser light

The Kinect uses infrared laser light, with a speckle pattern

Shpunt et al, PrimeSense patent application US 2008/0106746

Consumer application

- Now people have it in their living room
- Xbox Kinect - periodic infrared dot pattern

Microsoft Kinect

Inferring body position is a two-stage process: first compute a depth map, then infer body position

$\underline{\text { http://users.dickinson.edu/~jmac/selected-talks/kinect.pdf }}$

Conclusions

Types of techniques	$\hat{6}$	
Time-multiplexing	- Highest resolution - High accuracy - Easy implementation	- Inapplicability to moving objects - Large number of patterns
Spatial codification	- Can measure moving objects - A unique pattern is required	- Lower resolution than timemultiplexing - More complex decoding stage - Occlusions problem
Direct codification	- High resolution - Few patterns	- Very sensitive to image noise - Inapplicability to moving objects

Guidelines

Requirements	Best technique
- High accuracy - Highest resolution - Static objects - No matter the number of patterns	Phase shift + Gray code \rightarrow Gühring's line-shift technique
- High accuracy - High resolution - Static objects - Minimum number of patterns	N-ary pattern \rightarrow Horn \& Kiryati Caspi et al.
- High accuracy - Good resolution - Moving objects	De Bruijn pattern \rightarrow Zhang et al.

