Multi-View Geometry: Find Corresponding Points (New book: Ch7.4, 7.5, 7.6 Old book: 11.3-11.5)

Guido Gerig CS-GY 6643, Spring 2016 gerig@nyu.edu

Credit for materials: Trevor Darrell, Berkeley, C280, Marc Pollefeys, UNC/ETH-Z, CS6320 S012, Andrew Zisserman, MVG Book

Excellent Website: http://vision.middlebury.edu/stereo/

Stereo Evaluation • Datasets • Code • Submit

Daniel Scharstein - Richard Szeliski

Welcome to the Middlebury Stereo Vision Page, formerly located at whw.middlebury.edu/stereo. This website accompanies our taxonomy and comparison of two-frame stereo correspondence algorithms [1]. It contains:

- An on-line evaluation of current algorithms
- Many stereo datasets with ground-truth disparities
- Our stereo correspondence software
- An on-line submission script that allows you to evaluate your stereo algorithm in our framework

How to cite the materials on this website:
We grant permission to use and publish all images and numerical results on this website. If you report performance results, we request that you cite our paper [1]. Instructions on how to cite our datasets are listed on the datasets page. If you want to cite this website, please use the URL "vision.middle bury.edu/stereo/"

References:

[1] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms.
international Journal of Computer Vision, 47(1/2/3):7-42, April-June 2002.
Microsoft Research Technical Report MSR-TR-2001-81, November 2001.

 not necessarily reflect the views of the National Science Foundation.

Stereo reconstruction: main steps

- Calibrate cameras
- Rectify images
- Compute disparity
- Estimate depth

Stereo reconstruction: main steps

- Calibrate cameras
- Rectify images
- Compute disparity
- Estimate depth

Correspondence problem

Correspondence problem

- Beyond the hard constraint of epipolar geometry, there are "soft" constraints to help identify corresponding points
- Similarity
- Uniqueness
- Ordering
- Disparity gradient

Correspondence problem

- Beyond the hard constraint of epipolar geometry, there are "soft" constraints to help identify corresponding points
- Similarity
- Uniqueness
- Ordering
- Disparity gradient
- To find matches in the image pair, we will assume
- Most scene points visible from both views
- Image regions for the matches are similar in appearance

Your basic stereo algorithm

Your basic stereo algorithm

For each epipolar line:

Your basic stereo algorithm

For each epipolar line:
For each pixel in the left image

Your basic stereo algorithm

For each epipolar line:
For each pixel in the left image

- compare with every pixel on same epipolar line in right image

Your basic stereo algorithm

For each epipolar line:
For each pixel in the left image

- compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

Your basic stereo algorithm

For each epipolar line:
For each pixel in the left image

- compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

Your basic stereo algorithm

For each epipolar line:
For each pixel in the left image

- compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

Improvement: match windows

- This should look familiar...
- E.g. SSD, correlation etc.

Stereo matching

- Search is limited to epipolar line (1D)
- Look for "most similar pixel"

```
for x=1:w,
    for y=1:h,
        bestdist=inf;
        for i=-dr:0,
            if (dist(pix(x,y),pix(x+i,y))<bestdist)
            d(x,y)=i; best=sim(pix(x,y),pix(x+i,y)); end
        end
    end
end
```


Stereo matching algorithms

- Match Pixels in Conjugate Epipolar Lines
- Assume brightness constancy
- This is a tough problem
- Numerous approaches
- dynamic programming [Baker 81,Ohta 85]
- smoothness functionals
- more images (trinocular, N -ocular) [Okutomi 93]
- graph cuts [Boykov 00]
- A good survey and evaluation:
- http://vision.middlebury.edu/stereo/

Correspondence using Discrete Search

Comparing image regions

Compare intensities pixel-by-pixel

Similarity measures

Census

$$
C_{I}(i, j)=(I(x+i, y+j)>I(x, y))
$$

125	126	125				
127	128	130				
129	132	135	\rightarrow	0	0	0
:---	:---	:---				
0		1				
1	1	1	$\rightarrow[00001111]$			

Sum of Squared Differences (SSD)

Left

w_{L} and w_{R} are corresponding m by m windows of pixels.
We define the window function :
$W_{m}(x, y)=\left\{u, v \left\lvert\, x-\frac{m}{2} \leq u \leq x+\frac{m}{2}\right., y-\frac{m}{2} \leq v \leq y+\frac{m}{2}\right\}$
The SSD cost measures the intensity difference as a function of disparity :
$C_{r}(x, y, d)=\sum_{(u, v) \in W_{m}(x, y)}\left[I_{L}(u, v)-I_{R}(u-d, v)\right]^{2}$

Example

Feature Matching

Evaluate NCC for all features with similar coordinates

$$
\text { e.g. }\left(x^{\prime}, y^{\prime}\right) \in\left[x-\frac{w}{10}, x+\frac{w}{10}\right] \times\left[y-\frac{h}{10}, y+\frac{h}{10}\right]
$$

Keep mutual best matches
Still many wrong matches!

Example ctd

Feature Example

Gives satisfying results for small image motions

Example image pair - parallel cameras

First image

Second image

Intensity profiles

- Clear correspondence between intensities, but also noise and ambiguity

Dense correspondence algorithm

Parallel camera example - epipolar lines are corresponding rasters

Dense correspondence algorithm

Parallel camera example - epipolar lines are corresponding rasters

Dense correspondence algorithm

Parallel camera example - epipolar lines are corresponding rasters

Dense correspondence algorithm

Parallel camera example - epipolar lines are corresponding rasters

Search problem (geometric constraint): for each point in the left image, the corresponding point in the right image lies on the epipolar line (1D ambiguity)

Disambiguating assumption (photometric constraint): the intensity neighbourhood of corresponding points are similar across images

Measure similarity of neighbourhood intensity by cross-correlation

Correspondence problem

Neighborhood of corresponding points are similar in intensity patterns.

Correlation Methods (1970--) F\&P book new: 7.4, old 11.3

Slide the window along the epipolar line until w.w' is maximized.

Correlation Methods (1970--) F\&P book new: 7.4, old 11.3

Slide the window along the epipolar line until w.w' is maximized.

Correlation Methods (1970--) F\&P book new: 7.4, old 11.3

Slide the window along the epipolar line until w.w' is maximized.

Correlation Methods (1970--) F\&P book new: 7.4, old 11.3

Slide the window along the epipolar line until w.w' is maximized.

Correlation Methods (1970--) F\&P book new: 7.4, old 11.3

Slide the window along the epipolar line until w.w' is maximized.

Correlation Methods (1970--) F\&P book new: 7.4, old 11.3

Slide the window along the epipolar line until w.w' is maximized.

Correlation Methods (1970--) F\&P book new: 7.4, old 11.3

Slide the window along the epipolar line until w.w' is maximized.

Correlation Methods (1970--) F\&P book new: 7.4, old 11.3

Slide the window along the epipolar line until w.w' is maximized.

Correlation Methods (1970--) F\&P book new: 7.4, old 11.3

Slide the window along the epipolar line until w.w' is maximized.

Correlation Methods (1970--) F\&P book new: 7.4, old 11.3

Slide the window along the epipolar line until $w \cdot w^{\prime}$ ' is maximized. Normalized Correlation: minimize θ instead.

Correlation Methods (1970--) F\&P book new: 7.4, old 11.3

Slide the window along the epipolar line until $w . w^{\prime}$ is maximized.
Normalized Correlation: minimize θ instead. \Leftrightarrow Minimize $\left|w-w^{\prime}\right| .^{2}$

Cross-correlation of neighbourhood regions

- left and right windows encoded as vectors w and w^{\prime}
- zero-mean vectors ($w-\bar{w}$) and ($\left.w^{\prime}-\bar{w}^{\prime}\right)$
- Normalized cross-correlation:

$$
C(d)=\frac{1}{\|\boldsymbol{w}-\overline{\boldsymbol{w}}\|} \frac{1}{\left\|\boldsymbol{w}^{\prime}-\overline{\boldsymbol{w}}^{\prime}\right\|}\left[(\boldsymbol{w}-\overline{\boldsymbol{w}}) \cdot\left(\boldsymbol{w}^{\prime}-\overline{\boldsymbol{w}}^{\prime}\right)\right]
$$

- Advantage: Invariant to intensity differences: Invariant to affine intensity transformation $I^{\prime}=\alpha I+\mu$

Cross-correlation of neighbourhood regions

- left and right windows encoded as vectors w and w^{\prime}
- zero-mean vectors ($w-\bar{w}$) and ($\left.w^{\prime}-\bar{w}^{\prime}\right)$
- Normalized cross-correlation:

$$
C(d)=\frac{1}{\|\boldsymbol{w}-\overline{\boldsymbol{w}}\|} \frac{1}{\left\|\boldsymbol{w}^{\prime}-\overline{\boldsymbol{w}}^{\prime}\right\|}\left[(\boldsymbol{w}-\overline{\boldsymbol{w}}) \cdot\left(\boldsymbol{w}^{\prime}-\overline{\boldsymbol{w}}^{\prime}\right)\right]
$$

- Advantage: Invariant to intensity differences: Invariant to affine intensity transformation $I^{\prime}=\alpha I+\mu$

Cross-correlation of neighbourhood regions

- left and right windows encoded as vectors w and w^{\prime}
- zero-mean vectors $(w-\bar{w})$ and $\left(w^{\prime}-\bar{w}^{\prime}\right)$
- Normalized cross-correlation:

$$
C(d)=\frac{1}{\|\boldsymbol{w}-\overline{\boldsymbol{w}}\|} \frac{1}{\left\|\boldsymbol{w}^{\prime}-\overline{\boldsymbol{w}}^{\prime}\right\|}\left[(\boldsymbol{w}-\overline{\boldsymbol{w}}) \cdot\left(\boldsymbol{w}^{\prime}-\overline{\boldsymbol{w}}^{\prime}\right)\right]
$$

- Advantage: Invariant to intensity differences: Invariant to affine intensity transformation $I^{\prime}=\alpha I+\mu$

Cross-correlation of neighbourhood regions

- left and right windows encoded as vectors w and w^{\prime}
- zero-mean vectors ($w-\bar{w}$) and ($\left.w^{\prime}-\bar{w}^{\prime}\right)$
- Normalized cross-correlation:

$$
C(d)=\frac{1}{\|\boldsymbol{w}-\overline{\boldsymbol{w}}\|} \frac{1}{\left\|\boldsymbol{w}^{\prime}-\overline{\boldsymbol{w}}^{\prime}\right\|}\left[(\boldsymbol{w}-\overline{\boldsymbol{w}}) \cdot\left(\boldsymbol{w}^{\prime}-\overline{\boldsymbol{w}}^{\prime}\right)\right]
$$

- Advantage: Invariant to intensity differences: Invariant to affine intensity transformation $I^{\prime}=\alpha I+\mu$

Cross-correlation of neighbourhood regions

- left and right windows encoded as vectors w and w^{\prime}
- zero-mean vectors ($w-\bar{w}$) and ($\left.w^{\prime}-\bar{w}^{\prime}\right)$
- Normalized cross-correlation:

$$
C(d)=\frac{1}{\|\boldsymbol{w}-\overline{\boldsymbol{w}}\|} \frac{1}{\left\|\boldsymbol{w}^{\prime}-\overline{\boldsymbol{w}}^{\prime}\right\|}\left[(\boldsymbol{w}-\overline{\boldsymbol{w}}) \cdot\left(\boldsymbol{w}^{\prime}-\overline{\boldsymbol{w}}^{\prime}\right)\right]
$$

- Advantage: Invariant to intensity differences: Invariant to affine intensity transformation $I^{\prime}=\alpha I+\mu$

Correlation-based window matching

left image band (x)

Correlation-based window matching

left image band (x)
right image band (x^{\prime})

Correlation-based window matching

left image band (x)
right image band (x^{\prime})
cross
correlation

Correlation-based window matching

left image band (x)
right image band (x^{\prime})
cross
correlation

Correlation-based window matching

left image band (x)
right image band (x^{\prime})
cross
correlation

Textureless regions

target region

left image band (x)

Textureless regions

target region

left image band (x)

Textureless regions

target region
left image band (x)
right image band (x^{\prime})
cross
correlation

Textureless regions are non-distinct; high ambiguity for matches.

Textureless regions

Textureless regions

target region
left image band (x)
right image band (x^{\prime})
cross
correlation
Textureless regions are non-distinct; high ambiguity for matches,
\rightarrow wrong matches

Effect of window size

Effect of window size

Effect of window size

Problems with window matching

Patch too small?
Patch too large?

Can try variable patch size [Okutomi and Kanade], or arbitrary window shapes [Veksler and Zabih]

Effect of window size

Want window large enough to have sufficient intensity variation, yet small enough to contain only pixels with about the same disparity.

Effect of window size

$\mathrm{W}=3$

$W=20$

Want window large enough to have sufficient intensity variation, yet small enough to contain only pixels with about the same disparity.

Problems?

- Ordering
- Occlusion
- Foreshortening

Solutions:

- Formulate Constraints
- Use more than two views
- Smart solutions vs. "brute force" searches with statistics

Exploiting scene constraints

Additional geometric constraints for correspondence

[Faugeras, pp. 321]

- Ordering of points: Continuous surface: same order in both images.
- Is that always true?

The Ordering Constraint

> In general the points are in the same order on both epipolar lines.

The Ordering Constraint

But it is not always the case..

Ordering constraint

surface slice

surface as a path

Stereo matching

Constraints

- epipolar
- ordering
- uniqueness
- disparity limit

Trade-off

- Matching cost (data)
- Discontinuities (prior)

Consider all paths that satisfy the constraints
pick best using dynamic programming

Stereo matching

Constraints

- epipolar
- ordering
- uniqueness
- disparity limit

Trade-off
g) - Matching cost (data)

- Discontinuities (prior)

Consider all paths that satisfy the constraints
pick best using dynamic programming

Dynamic Programming (Baker and Binford, 1981)

Dynamic Programming (Baker and Binford, 1981)

\% Loop over all nodes (k, l) in ascending order.
for $k=1$ to m do
for $l=1$ to n do
\% Initialize optimal cost $C(k, l)$ and backward pointer $B(k, l)$.
$C(k, l) \leftarrow+\infty ; B(k, l) \leftarrow$ nil;
\% Loop over all inferior neighbors (i, j) of (k, l).
for $(i, j) \in \operatorname{Inferior}-\operatorname{Neighbors}(k, l)$ do
\% Compute new path cost and update backward pointer if necessary. $d \leftarrow C(i, j)+\operatorname{Arc}-\operatorname{Cost}(i, j, k, l) ;$ if $d<C(k, l)$ then $C(k, l) \leftarrow d ; B(k, l) \leftarrow(i, j)$ endif, endfor;
endfor;
endfor;
\% Construct optimal path by following backward pointers from (m, n).
$P \leftarrow\{(m, n)\} ;(i, j) \leftarrow(m, n) ;$
while $B(i, j) \neq$ nil do $(i, j) \leftarrow B(i, j) ; P \leftarrow\{(i, j)\} \cup P$ endwhile.

Dynamic Programming (Baker and Binford, 1981)

\% Loop over all nodes (k, l) in ascending order.
for $k=1$ to m do
for $l=1$ to n do
\% Initialize optimal cost $C(k, l)$ and backward pointer $B(k, l)$.
$C(k, l) \leftarrow+\infty ; B(k, l) \leftarrow$ nil;
\% Loop over all inferior neighbors (i, j) of (k, l).
for $(i, j) \in \operatorname{Inferior}-\operatorname{Neighbors}(k, l)$ do
\% Compute new path cost and update backward pointer if necessary. $d \leftarrow C(i, j)+\operatorname{Arc}-\operatorname{Cost}(i, j, k, l) ;$ if $d<C(k, l)$ then $C(k, l) \leftarrow d ; B(k, l) \leftarrow(i, j)$ endif; endfor;
endfor;
endfor;
\% Construct optimal path by following backward pointers from (m, n).
$P \leftarrow\{(m, n)\} ;(i, j) \leftarrow(m, n) ;$
while $B(i, j) \neq$ nil do $(i, j) \leftarrow B(i, j) ; P \leftarrow\{(i, j)\} \cup P$ endwhile.

Dynamic Programming (Baker and Binford, 1981)

\% Loop over all nodes (k, l) in ascending order.
for $k=1$ to m do
for $l=1$ to n do
\% Initialize optimal cost $C(k, l)$ and backward pointer $B(k, l)$.
$C(k, l) \leftarrow+\infty ; B(k, l) \leftarrow$ nil;
\% Loop over all inferior neighbors (i, j) of (k, l).
for $(i, j) \in \operatorname{Inferior}-\operatorname{Neighbors}(k, l)$ do
\% Compute new path cost and update backward pointer if necessary. $d \leftarrow C(i, j)+\operatorname{Arc}-\operatorname{Cost}(i, j, k, l) ;$ if $d<C(k, l)$ then $C(k, l) \leftarrow d ; B(k, l) \leftarrow(i, j)$ endif; endfor;
endfor;
endfor;
\% Construct optimal path by following backward pointers from (m, n).
$P \leftarrow\{(m, n)\} ;(i, j) \leftarrow(m, n) ;$
while $B(i, j) \neq$ nil do $(i, j) \leftarrow B(i, j) ; P \leftarrow\{(i, j)\} \cup P$ endwhile.

Dynamic Programming (Baker and Binford, 1981)

\% Loop over all nodes (k, l) in ascending order.
for $k=1$ to m do
for $l=1$ to n do
\% Initialize optimal cost $C(k, l)$ and backward pointer $B(k, l)$.
$C(k, l) \leftarrow+\infty ; B(k, l) \leftarrow$ nil;
\% Loop over all inferior neighbors (i, j) of (k, l).
for $(i, j) \in \operatorname{Inferior}-\operatorname{Neighbors}(k, l)$ do
\% Compute new path cost and update backward pointer if necessary. $d \leftarrow C(i, j)+\operatorname{Arc}-\operatorname{Cost}(i, j, k, l) ;$ if $d<C(k, l)$ then $C(k, l) \leftarrow d ; B(k, l) \leftarrow(i, j)$ endif; endfor;
endfor;
endfor;
\% Construct optimal path by following backward pointers from (m, n).
$P \leftarrow\{(m, n)\} ;(i, j) \leftarrow(m, n) ;$
while $B(i, j) \neq$ nil do $(i, j) \leftarrow B(i, j) ; P \leftarrow\{(i, j)\} \cup P$ endwhile.

Dynamic Programming (Baker and Binford, 1981)

\% Loop over all nodes (k, l) in ascending order.
for $k=1$ to m do
for $l=1$ to n do
\% Initialize optimal cost $C(k, l)$ and backward pointer $B(k, l)$.
$C(k, l) \leftarrow+\infty ; B(k, l) \leftarrow$ nil;
\% Loop over all inferior neighbors (i, j) of (k, l).
for $(i, j) \in \operatorname{Inferior}-\operatorname{Neighbors}(k, l)$ do
\% Compute new path cost and update backward pointer if necessary. $d \leftarrow C(i, j)+\operatorname{Arc}-\operatorname{Cost}(i, j, k, l) ;$ if $d<C(k, l)$ then $C(k, l) \leftarrow d ; B(k, l) \leftarrow(i, j)$ endif; endfor;
endfor;
endfor;
\% Construct optimal path by following backward pointers from (m, n).
$P \leftarrow\{(m, n)\} ;(i, j) \leftarrow(m, n) ;$
while $B(i, j) \neq$ nil do $(i, j) \leftarrow B(i, j) ; P \leftarrow\{(i, j)\} \cup P$ endwhile.

The Ordering Constraint

> In general the points are in the same order on both epipolar lines.

The Ordering Constraint

But it is not always the case..

Forbidden Zone

Forbidden Zone

Forbidden Zone

Forbidden Zone

Practical applications:

- Object bulges out: ok
- In general: ordering across whole image is not reliable feature
- Use ordering constraints for neighbors of M within small neighborhood only

Disparity map

image $I(x, y)$
Disparity map $D(x, y)$ image $I^{\prime}\left(x^{\prime}, y^{\prime}\right)$

$$
\left(x^{\prime}, y^{\prime}\right)=(x+D(x, y), y)
$$

Hierarchical stereo matching

Allows faster computation
Deals with large disparity
 ranges

uopqebedond Kqueds!a

Dynamic Programming (Ohta and Kanade, 1985)

Reprinted from "Stereo by Intra- and Intet-Scanline Search," by Y. Ohta and T. Kanade, IEEE Trans. on Pattern Analysis and Machine Intelligence, 7(2):139-154 (1985). © 1985 IEEE.

Real-time stereo on graphics hardware

Ruigang Yang and Marc Pollefeys, UNC

- Computes Sum-of-Square-Differences
- Hardware mip-map generation used to aggregate results over support region
- Trade-off between small and large support window

Shape of a kernel for summing up 6 levels

140M disparity hypothesis/sec on Radeon 9700pro e.g. $512 \times 512 \times 20$ disparities at 30 Hz

Stereo results

- Data from University of Tsukuba
- Similar results on other images without ground truth

Scene
Ground truth

True disparities

16 - Fast Correlation

Results with window correlation

Window-based matching
Ground truth (best window size)

Results with better method

State of the art method

Boykov et al., Fast Approximate Energy Minimization via Graph Cuts,
Ground truth International Conference on Computer Vision, September 1999.

Material I

- http://vision.middlebury.edu/stereo/
- (online stereo pairs and truth (depth maps)
- Stereo correspondence software: e.g. http://vision.middlebury.edu/stereo/data/sce nes2001/data/imagehtml/tsukuba.html
- CVonline compendium:
http://homepages.inf.ed.ac.uk/rbf/CVonline/

Material II

- Epipolar Geometry, Rectification:
- http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL COPIES/FUSIELLO2/re ctif cvol.html
- and: http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL COPIES/OWENS/LECT 11/node11.html
- Stereo:
- http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL COPIES/OWENS/LECT 11/lect11.html
- 3D Reconstruction:
- http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL COPIES/OWENS/LECT 11/node8.html

Additional Materials

Problem: Foreshortening

Window methods assume fronto-parallel surface at 3-D point.

Initial estimates of the disparity can be used to warp the correlation windows to compensate for unequal amounts of foreshortening in the two pictures [Kass, 1987; Devernay and Faugeras, 1994].

Why is cross-correlation such a poor measure in the second case?

1. The neighbourhood region does not have a "distinctive" spatial intensity distribution
2. Foreshortening effects

Why is cross-correlation such a poor measure in the second case?

1. The neighbourhood region does not have a "distinctive" spatial intensity distribution
2. Foreshortening effects

Why is cross-correlation such a poor measure in the second case?

1. The neighbourhood region does not have a "distinctive" spatial intensity distribution
2. Foreshortening effects

Why is cross-correlation such a poor measure in the second case?

1. The neighbourhood region does not have a "distinctive" spatial intensity distribution
2. Foreshortening effects

fronto-parallel surface

imaged length the same

Why is cross-correlation such a poor measure in the second case?

1. The neighbourhood region does not have a "distinctive" spatial intensity distribution
2. Foreshortening effects

fronto-parallel surface

imaged length the same

Why is cross-correlation such a poor measure in the second case?

1. The neighbourhood region does not have a "distinctive" spatial intensity distribution
2. Foreshortening effects

fronto-parallel surface

imaged length the same

Why is cross-correlation such a poor measure in the second case?

1. The neighbourhood region does not have a "distinctive" spatial intensity distribution
2. Foreshortening effects

fronto-parallel surface
imaged length the same

slanting surface
imaged lengths differ

Three Views

The third eye can be used for verification..
Demo epipolar geometry

Three Views

The third eye can be used for verification..
Demo epipolar geometry

Three Views

The third eye can be used for verification..
Demo epipolar geometry

More Views (Okutami and Kanade, 1993)

New book: Ch7.6 p. 215: Pick a reference image, and slide the corresponding window along the corresponding epipolar lines of all other images, using inverse depth $\left(Z^{-1}\right)$ relative to the first image as the search parameter.

Reprinted from "A Multiple-Baseline Stereo System," by M. Okutami and T. Kanade, IEEE Trans. on Pattern Analysis and Machine Intelligence, 15(4):353-363 (1993). \copyright 1993 IEEE.
Use the sum of correlation scores to rank matches: SSD used as global evaluation function: Find Z^{-1} that minimizes SSD.

Multi-camera configurations

D日 Q 3 cameras give both robustness and precision

Q Q D 4 cameras give additional redundancy

Q D 3 cameras in a T arrangement
0 allow the system to see vertical lines.
(illustration from Pascal Fua)

Reprinted from "A Multiple-Baseline Stereo System," by M. Okutami and T. Kanade, IEEE Trans. on Pattern Analysis and Machine Intelligence, 15(4):353-363 (1993). \copyright 1993 IEEE.

Normalized cross correlation

subtract mean: $A \leftarrow A-\langle A\rangle, B \leftarrow B-<B\rangle$
$N C C=\frac{\sum_{i} \sum_{j} A(i, j) B(i, j)}{\sqrt{\sum_{i} \sum_{j} A(i, j)^{2}} \sqrt{\sum_{i} \sum_{j} B(i, j)^{2}}}$

Write regions as vectors
$\mathrm{A} \rightarrow \mathbf{a}, \mathrm{B} \rightarrow \mathbf{b}$

$$
\mathrm{NCC}=\frac{\mathrm{a} \cdot \mathrm{~b}}{|\mathbf{a}||\mathbf{b}|}
$$

$-1 \leq$ NCC ≤ 1

region B

Aggregation window sizes

Small windows

- disparities similar
- more ambiguities
- accurate when correct

Large windows

- larger disp. variation
- more discriminant
- often more robust
- use shiftable windows to deal with discontinuities

14×14
7×7

(Illustration from Pascal Fua)

