

Multi-View Geometry: Find Corresponding Points (New book: Ch7.4, 7.5, 7.6 Old book: 11.3-11.5)

> Guido Gerig CS-GY 6643, Spring 2016 gerig@nyu.edu

Credit for materials: Trevor Darrell, Berkeley, C280, Marc Pollefeys, UNC/ETH-Z, CS6320 S012, Andrew Zisserman, MVG Book

Excellent Website: http://vision.middlebury.edu/stereo/

<u>Daniel Scharstein</u> • <u>Richard Szeliski</u>

Welcome to the Middlebury Stereo Vision Page, formerly located at <u>www.middlebury.edu/stereo</u>. This website accompanies our taxonomy and comparison of two-frame stereo correspondence algorithms [1]. It contains:

- An <u>on-line evaluation</u> of current algorithms
- Many stereo datasets with ground-truth disparities
- Our stereo correspondence software
- · An on-line submission script that allows you to evaluate your stereo algorithm in our framework

How to cite the materials on this website:

We grant permission to use and publish all images and numerical results on this website. If you report performance results, we request that you cite our paper [1]. Instructions on how to cite our datasets are listed on the <u>datasets page</u>. If you want to cite this website, please use the URL **"vision.middlebury.edu/stereo/**".

References:

[1] D. Scharstein and R. Szeliski. <u>A taxonomy and evaluation of dense two-frame stereo correspondence algorithms</u>. International Journal of Computer Vision, 47(1/2/3):7-42, April-June 2002. <u>Microsoft Research Technical Report MSR-TR-2001-81</u>, November 2001.

Support for this work was provided in part by NSF CAREER grant 9984485 and NSF grant IIS-0413169. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Stereo reconstruction: main steps

- Calibrate cameras
- Rectify images
- Compute disparity
- Estimate depth

Stereo reconstruction: main steps

- Calibrate cameras
- Rectify images
- Compute disparity
- Estimate depth

Multiple match hypotheses satisfy epipolar constraint, but which is correct?

Figure from Gee & Cipolla 1999

Grauman

- Beyond the hard constraint of epipolar geometry, there are "soft" constraints to help identify corresponding points
 - Similarity
 - Uniqueness
 - Ordering
 - Disparity gradient

- Beyond the hard constraint of epipolar geometry, there are "soft" constraints to help identify corresponding points
 - Similarity
 - Uniqueness
 - Ordering
 - Disparity gradient
- To find matches in the image pair, we will assume
 - Most scene points visible from both views
 - Image regions for the matches are similar in appearance

Grauman

For each epipolar line:

For each epipolar line:

For each pixel in the left image

For each epipolar line:

For each pixel in the left image

• compare with every pixel on same epipolar line in right image

For each epipolar line:

For each pixel in the left image

- compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

For each epipolar line:

For each pixel in the left image

- compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

For each epipolar line:

For each pixel in the left image

- compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

Improvement: match windows

- This should look familiar...
- E.g. SSD, correlation etc.

Adapted from Li Zhang

Stereo matching

- Search is limited to epipolar line (1D)
- Look for "most similar pixel"

```
for x=1:w,
  for y=1:h,
    bestdist=inf;
  for i=-dr:0,
    if (dist(pix(x,y),pix(x+i,y))<bestdist)
        d(x,y)=i; best=sim(pix(x,y),pix(x+i,y)); end
    end
  end
end
end</pre>
```

Stereo matching algorithms

- Match Pixels in Conjugate Epipolar Lines
 - Assume brightness constancy
 - This is a tough problem
 - Numerous approaches
 - dynamic programming [Baker 81,Ohta 85]
 - smoothness functionals
 - more images (trinocular, N-ocular) [Okutomi 93]
 - graph cuts [Boykov 00]
 - A good survey and evaluation:
 - <u>http://vision.middlebury.edu/stereo/</u>

Correspondence using Discrete Search

Left

Criterion function:

Comparing image regions

Compare intensities pixel-by-pixel

Similarity measures

Census

(Real-time chip from TYZX based on Census)

Sum of Squared Differences (SSD)

 w_L and w_R are corresponding *m* by *m* windows of pixels. We define the window function :

$$W_m(x, y) = \{u, v \mid x - \frac{m}{2} \le u \le x + \frac{m}{2}, y - \frac{m}{2} \le v \le y + \frac{m}{2}\}$$

The SSD cost measures the intensity difference as a function of disparity :

$$C_{r}(x, y, d) = \sum_{(u,v) \in W_{m}(x,y)} [I_{L}(u,v) - I_{R}(u-d,v)]^{2}$$

Example

Feature Matching

Evaluate NCC for all features with similar coordinates

e.g. $(x', y') \in [x - \frac{w}{10}, x + \frac{w}{10}] \times [y - \frac{h}{10}, y + \frac{h}{10}]$

Example ctd

Feature Example

Gives satisfying results for small image motions

Example image pair – parallel cameras

First image

Second image

Intensity profiles

• Clear correspondence between intensities, but also noise and ambiguity

Parallel camera example – epipolar lines are corresponding rasters

Parallel camera example – epipolar lines are corresponding rasters

Parallel camera example – epipolar lines are corresponding rasters

Parallel camera example – epipolar lines are corresponding rasters

Search problem (geometric constraint): for each point in the left image, the corresponding point in the right image lies on the epipolar line (1D ambiguity)

Disambiguating assumption (photometric constraint): the intensity neighbourhood of corresponding points are similar across images

Measure similarity of neighbourhood intensity by cross-correlation

Neighborhood of corresponding points are similar in intensity patterns.

Source: Andrew Zisserman

Slide the window along the epipolar line until *w.w*' is maximized.

Slide the window along the epipolar line until *w.w*' is maximized.

Slide the window along the epipolar line until *w.w*' is maximized.

Slide the window along the epipolar line until *w.w*' is maximized. Normalized Correlation: minimize θ instead.

Slide the window along the epipolar line until *w.w*' is maximized. Normalized Correlation: minimize θ instead. \Leftrightarrow Minimize |w-w'|.²

- left and right windows encoded as vectors w and w'
- zero-mean vectors $(w \overline{w})$ and $(w' \overline{w'})$
- Normalized cross-correlation:

$$C(d) = \frac{1}{||\boldsymbol{w} - \bar{\boldsymbol{w}}||} \frac{1}{||\boldsymbol{w}' - \bar{\boldsymbol{w}}'||} [(\boldsymbol{w} - \bar{\boldsymbol{w}}) \cdot (\boldsymbol{w}' - \bar{\boldsymbol{w}}')],$$

- left and right windows encoded as vectors w and w'
- zero-mean vectors $(w \overline{w})$ and $(w' \overline{w'})$
- Normalized cross-correlation:

$$C(d) = \frac{1}{||\boldsymbol{w} - \bar{\boldsymbol{w}}||} \frac{1}{||\boldsymbol{w}' - \bar{\boldsymbol{w}}'||} [(\boldsymbol{w} - \bar{\boldsymbol{w}}) \cdot (\boldsymbol{w}' - \bar{\boldsymbol{w}}')],$$

- left and right windows encoded as vectors w and w'
- zero-mean vectors $(w \overline{w})$ and $(w' \overline{w'})$
- Normalized cross-correlation:

$$C(d) = \frac{1}{||\boldsymbol{w} - \bar{\boldsymbol{w}}||} \frac{1}{||\boldsymbol{w}' - \bar{\boldsymbol{w}}'||} [(\boldsymbol{w} - \bar{\boldsymbol{w}}) \cdot (\boldsymbol{w}' - \bar{\boldsymbol{w}}')],$$

- left and right windows encoded as vectors w and w'
- zero-mean vectors $(w \overline{w})$ and $(w' \overline{w'})$
- Normalized cross-correlation:

$$C(d) = \frac{1}{||\boldsymbol{w} - \bar{\boldsymbol{w}}||} \frac{1}{||\boldsymbol{w}' - \bar{\boldsymbol{w}}'||} [(\boldsymbol{w} - \bar{\boldsymbol{w}}) \cdot (\boldsymbol{w}' - \bar{\boldsymbol{w}}')],$$

- left and right windows encoded as vectors w and w'
- zero-mean vectors $(w \overline{w})$ and $(w' \overline{w'})$
- Normalized cross-correlation:

$$C(d) = \frac{1}{||\boldsymbol{w} - \bar{\boldsymbol{w}}||} \frac{1}{||\boldsymbol{w}' - \bar{\boldsymbol{w}}'||} [(\boldsymbol{w} - \bar{\boldsymbol{w}}) \cdot (\boldsymbol{w}' - \bar{\boldsymbol{w}}')],$$

Source: A

Problems with window matching

Patch too small? Patch too large?

Can try variable patch size [Okutomi and Kanade], or arbitrary window shapes [Veksler and Zabih]

Want window large enough to have sufficient intensity variation, yet small enough to contain only pixels with about the same disparity.

Figures from Li Zhang

W = 3

W = 20

Want window large enough to have sufficient intensity variation, yet small enough to contain only pixels with about the same disparity.

Problems?

- Ordering
- Occlusion
- Foreshortening

Solutions:

- Formulate Constraints
- Use more than two views
- Smart solutions vs. "brute force" searches with statistics

Exploiting scene constraints

Additional geometric constraints for correspondence

The Ordering Constraint

In general the points are in the same order on both epipolar lines.

The Ordering Constraint

But it is not always the case..

Ordering constraint

Stereo matching

Constraints

- epipolar
- ordering
- uniqueness
- disparity limit

Trade-off

- Matching cost (data)
- Discontinuities (prior)

Consider all paths that satisfy the constraints pick best using dynamic programming

Stereo matching

- Constraints
- epipolar
- ordering
- uniqueness
- disparity limit

Trade-off

- Matching cost (data)
- Discontinuities (prior)

Consider all paths that satisfy the constraints pick best using dynamic programming

Dynamic Programming (Baker and Binford, 1981)

Dynamic Programming (Baker and Binford, 1981)

% Loop over all nodes (k, l) in ascending order. for k = 1 to m do for l = 1 to n do % Initialize optimal cost C(k, l) and backward pointer B(k, l). $C(k, l) \leftarrow +\infty; B(k, l) \leftarrow \text{nil};$ % Loop over all inferior neighbors (i, j) of (k, l). for $(i, j) \in \text{Inferior} - \text{Neighbors}(k, l)$ do % Compute new path cost and update backward pointer if necessary. $d \leftarrow C(i, j) + \operatorname{Arc} - \operatorname{Cost}(i, j, k, l);$ if d < C(k, l) then $C(k, l) \leftarrow d$; $B(k, l) \leftarrow (i, j)$ endif; endfor; endfor; endfor; % Construct optimal path by following backward pointers from (m, n). $P \leftarrow \{(m, n)\}; (i, j) \leftarrow (m, n);$ while $B(i, j) \neq \text{nil do } (i, j) \leftarrow B(i, j); P \leftarrow \{(i, j)\} \cup P \text{ endwhile.}$

The Ordering Constraint

In general the points are in the same order on both epipolar lines.

The Ordering Constraint

But it is not always the case..

Practical applications:

- Object bulges out: ok
- In general: ordering across whole image is not reliable feature
- Use ordering constraints for neighbors of M within small neighborhood only

Disparity map

image I(x,y)

Disparity map D(x,y)

image l´(x´,y´)

(x',y')=(x+D(x,y),y)

Hierarchical stereo matching

(Gaussian pyramid

Downsampling

Dynamic Programming (Ohta and Kanade, 1985)

Reprinted from "Stereo by Intra- and Intet-Scanline Search," by Y. Ohta and T. Kanade, IEEE Trans. on Pattern Analysis and Machine Intelligence, 7(2):139-154 (1985). © 1985 IEEE.

Real-time stereo on graphics hardware

Ruigang Yang and Marc Pollefeys, UNC

- Computes Sum-of-Square-Differences
- Hardware mip-map generation used to aggregate results over support region
- Trade-off between small and large support window

Shape of a kernel for summing up 6 levels

140M disparity hypothesis/sec on Radeon 9700pro e.g. 512x512x20disparities at 30Hz

Stereo results

- Data from University of Tsukuba
- Similar results on other images without ground truth

Ground truth

16 - Fast Correlation

*1-SSD+MF

Results with window correlation

Window-based matching (best window size) Ground truth

Results with better method

State of the art method

Boykov et al., <u>Fast Approximate Energy Minimization via Graph Cuts</u>, International Conference on Computer Vision, September 1999. Ground truth

Material I

http://vision.middlebury.edu/stereo/

- (online stereo pairs and truth (depth maps)
- Stereo correspondence software: e.g. <u>http://vision.middlebury.edu/stereo/data/sce</u> <u>nes2001/data/imagehtml/tsukuba.html</u>
- CVonline compendium: <u>http://homepages.inf.ed.ac.uk/rbf/CVonline/</u>

Material II

- Epipolar Geometry, Rectification:
- <u>http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/FUSIELLO2/rectif_cvol.html</u>
- and: <u>http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT_11/node11.html</u>
- Stereo:
- <u>http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT</u> <u>11/lect11.html</u>
- 3D Reconstruction:
- <u>http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT_11/node8.html</u>

Additional Materials

Problem: Foreshortening

Window methods assume fronto-parallel surface at 3-D point.

Initial estimates of the disparity can be used to warp the correlation windows to compensate for unequal amounts of foreshortening in the two pictures [Kass, 1987; Devernay and Faugeras, 1994].

- 1. The neighbourhood region does not have a "distinctive" spatial intensity distribution
- 2. Foreshortening effects

- 1. The neighbourhood region does not have a "distinctive" spatial intensity distribution
- 2. Foreshortening effects

- 1. The neighbourhood region does not have a "distinctive" spatial intensity distribution
- 2. Foreshortening effects

- 1. The neighbourhood region does not have a "distinctive" spatial intensity distribution
- 2. Foreshortening effects

fronto-parallel surface

imaged length the same

- 1. The neighbourhood region does not have a "distinctive" spatial intensity distribution
- 2. Foreshortening effects

fronto-parallel surface

imaged length the same

- 1. The neighbourhood region does not have a "distinctive" spatial intensity distribution
- 2. Foreshortening effects

fronto-parallel surface

imaged length the same

- 1. The neighbourhood region does not have a "distinctive" spatial intensity distribution
- 2. Foreshortening effects

fronto-parallel surface imaged length the same

slanting surface imaged lengths differ

Three Views

The third eye can be used for verification..

Demo epipolar geometry

Three Views

The third eye can be used for verification..

Demo epipolar geometry

Three Views

The third eye can be used for verification..

Demo epipolar geometry

More Views (Okutami and Kanade, 1993)

New book: Ch7.6 p. 215: Pick a reference image, and slide the corresponding window along the corresponding epipolar lines of all other images, using inverse depth (Z^{-1}) relative to the first image as the search parameter.

Reprinted from "A Multiple-Baseline Stereo System," by M. Okutami and T. Kanade, IEEE Trans. on Pattern Analysis and Machine Intelligence, 15(4):353-363 (1993). \copyright 1993 IEEE.

Use the sum of correlation scores to rank matches: SSD used as global evaluation function: Find Z^{-1} that minimizes SSD.

Multi-camera configurations

- 3 cameras give both robustness and precision
- 4 cameras give additional redundancy

3 cameras in a T arrangement allow the system to see vertical lines.

(illustration from Pascal Fua)

I1

I10

Reprinted from "A Multiple-Baseline Stereo System," by M. Okutami and T. Kanade, IEEE Trans. on Pattern Analysis and Machine Intelligence, 15(4):353-363 (1993). \copyright 1993 IEEE.

Normalized cross correlation

subtract mean: $A \leftarrow A - < A >, B \leftarrow B - < B >$

$$\mathsf{NCC} = \frac{\sum_{i} \sum_{j} A(i,j) B(i,j)}{\sqrt{\sum_{i} \sum_{j} A(i,j)^{2}} \sqrt{\sum_{i} \sum_{j} B(i,j)^{2}}}$$

Source: Andrew Zisserman

Aggregation window sizes

Small windows

- disparities similar
- more ambiguities
- accurate when correct

Large windows

- larger disp. variation
- more discriminant
- often more robust
- use shiftable windows to deal with discontinuities

R

14x14

(Illustration from Pascal Fua)