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c Principle: Triangulation
Gives reconstruction as intersection of two rays
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c Principle: Triangulation
Gives reconstruction as intersection of two rays

Requires
— calibration
— point correspondence
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Stereo Constraints
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Iven p In left Image, where can the corresponding point p’
right image be?
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Demo Epipolar Geometry
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Java Applet credit to:
Quang-Tuan Luong

SRI Int.
Sylvain Bougnoux



http://www.ai.sri.com/%7Eluong/research/Meta3DViewer/EpipolarGeo.html

Epipolar constraint

P

http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

Source: M. Pollefeys


http://www.ai.sri.com/%7Eluong/research/Meta3DViewer/EpipolarGeo.html

Epipolar constraint

P

e Potential matches for p have to lie on the corresponding
epipolar line I'.

http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

Source: M. Pollefeys
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http://www.ai.sri.com/%7Eluong/research/Meta3DViewer/EpipolarGeo.html

Epipolar constraint

e Potential matches for p have to lie on the corresponding
epipolar line /.

e Potential matches for p” have to lie on the corresponding
epipolar line /.

http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

Source: M. Pollefeys


http://www.ai.sri.com/%7Eluong/research/Meta3DViewer/EpipolarGeo.html
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Andrea Fusiello, C\Vonline

Strong constraints for searching for
corresponding points!




Example

Parallel Cameras:
Corresponding
points on
horizontal lines.
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FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O of the two
cameras, and the two images p and p’ of P all lic in the same plane.

All epipolar lines contain epipole, the image of other camera center.
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FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O of the two
cameras, and the two lmages p and p’ of P all lie in the same plane.
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FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O of the two
cameras, and the two lmages p and p’ of P all lie in the same plane.
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FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O of the two
cameras, and the two lmages p and p’ of P all lie in the same plane.
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FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O of the two
cameras, and the two lmages p and p’ of P all lie in the same plane.




Uil
,ﬁ

Ui

From Geometry to Algebra

M

|

T r—
‘-‘ﬂ_—_-.,

vhb—U

.

FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O of the two
cameras, and the two lmages p and p’ of P all lie in the same plane.




Uil
,ﬁ

Ui

From Geometry to Algebra

M

|

T r—
‘-‘ﬂ_—_-.,

vhb—U

.

FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O of the two
cameras, and the two lmages p and p’ of P all lie in the same plane.
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FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O of the two
cameras, and the two lmages p and p’ of P all lie in the same plane.
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The epipolar constraint: these vectors are coplanar:
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p,p’ are image
coordinates of
Pincl andc2...

c2 is related to ¢l by
rotation R and
translation t



p.p’ are image
coordinates of / —
Pincl and c2... p . [t X (Rp )] O

c2 is related to ¢l by
rotation R and
translation t



p,p’ are image
coordinates of
Pincl andc2...

c2 is related to ¢l by
rotation R and
translation t

p-tx (Rp)|-0
Linear Constraint:

Should be able to express as matrix
multiplication.



Review: Matrix Form of Cross
Product

The vector cross product also acts on two vectors and returns a third
vector. Geometrically. this new vector is constructed such that its
projection onto either of the two input vectors is zero.
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Review: Matrix Form of Cross
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The Essential Matrix
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Matrix that relates image of point in one camera to a
second camera, given translation and rotation.
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The Essential Matrix

Based on the Relative Geometry of the
Cameras

Assumes Cameras are calibrated (i.e.,
Intrinsic parameters are known)

Relates image of point in one camera to
a second camera (points in camera
coordinate system).

Is defined up to scale
5 Independent parameters
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p Ep' =0

What is €p’ ?
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8p' 1s the epipolar line corresponding to p” in the
left camera.

au+bv+c=0

p=(uvl)
[ = (a,b,c)T

[-p=0

&ptp=0
p'Ep' =0

T
y & p is the epipolar line corresponding to p in the
era.
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What Is €e’ ?

e’

* line Ep’ converges to epipole e

» ¢’ (center of camera C, expressed
In frame C,,
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Pencil of epipolar lines
X

f

The intersection points between the base line and the image
planes are called epipoles.

The epipole €’ in image 2 is the mapping of the camera center C.
The epipole e in image 1 is the mapping of the camera center C'.

Since all epipolar planes intersect both camera centers, all
epipolar lines will intersect the epipoles.
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Pencil of epipolar lines
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imagel image 2

Given a point in one image, how do we determine
the corresponding epipolar line to search along in
the second 1mage?

http://www.cse.psu.edu/~rcollins/CSE486/lecturel9 6pp.pdf
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e The epipolar line I' = Ex to each point
X (except e) intersects the epipole e,.
Thus e’ satisfies e T(Ex) = (€T E)x =0
for all x.

e This implies that e’ &€ = 0T or E€Te’ =
O. The epipole e’ is thus a null vector

to ET (in the left null-space of &).

e Similarly, €e = 0, i.e. e is a null-vector

to € (in the right null-space of &).

MVG Hartley & Zisserman
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Fig. 8.3. Converging cameras. (a) Epipolar geometry for converging cameras. (b) and
(¢) A pair of images with superimposed corresponding points and their epipolar lines (in
white). The motion between the views is a translation and rotation. In each image, the
direction of the other camera may be inferred from the intersection of the pencil of epipolar
lines. In this case, both epipoles lie outside of the visible image.

MVG Hartley & Zisserman
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parallel
lines

vanishing
point

image

¢ camera
centre

Fig. 8.7. Under a pure translational camera motion, 3D points appear to slide along parallel
rails. The images of these parallel lines intersect in a vanishing point corresponding to the
translation direction. The epipole e is the vanishing point.

MVG Hartley & Zisserman
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The Essential Matrix
&' =[t,|Re’'=0

Similarly, &e=R"[t ] e=-R"[t Je=0

The essential matrix € = [t]xR has 5 degrees of

freedom; 3 rotation angles in R, 3 elements in t, but
arbitrary scale.
Essential Matrix is singular with rank 2.
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Review: Intrinsic Camera
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= Y ©) v(©) ()
Image plane \\/M(x Y©.z¢)

VY / 9
g L( / S X
Sy m Focal plane

o Tx©)
uV] [=f, 0 u, O :{((C) f =tk =«
vili= 0 -1, v, 0 S (© f =1tk =2
sjlo 0o 10" ® =90°
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Fundamental Matrix
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p'Ep'=0 pand p'are incamera coordinate system

T r—

If uand u’ are corresponding image coordinates then we
have:

u=K,p p=K'u— p' :(Kl‘lu)T =u'K;"
! y = / —1, .7
U =K,p P =K;u
uKTEK =0
:

=Uu'Fu'=0 F=K;"€K;"
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U'Fu'=0 F=K'€K;

Fundamental Matrix is singular with rank 2.

The fundamental matrix F has 7 degrees of freedom: A 3
X 3 homogenous matrix has 8 degrees of freedom. The
constraint rank(F) = 2 or det(F) = O reduces the number
to /.

In principal F has 7 parameters up to scale and can be
estimated from 7 point correspondences.

Direct Simpler Method requires 8 correspondences
(Olivier Faugeras, Computer Vision textbook).
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x = (z,y,1) ! is

line

0 €T
O O Y
0O O 1

first image

From 1’ = Fx the epipolar line for the point

The points (z,y,1)" and (0,0,1)T lie on this

e

second image

X e

X




|
;ﬁ

iy e
.__""' e
Ce=m q
R —
L i e—
L

Example: forward motion

courtesy of Andrew Zisserman
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courtesy of Andrew Zisserman
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Estimating Fundamental Matrix
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u'Fu =0 The 8-point algorithm (Faugeras)
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Each point correspondence can be expressed as a linear
equation:

Fll F12 F13 u’
[u v 1: Fu Fp Fyp |V =0
_F31 F32 F33__ _ — —
Fll
F12
Fl3
F21
uw w’ u uv w v u Vv 1]F,|=0

w

=

ol %TI L

w
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The 8-point Algorithm
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Scaling: Set F4; to 1 -> Solve for 8 parameters.
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8 corresponding points, 8 equations.
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Invert and solve for &.

(Use more points it available; tind least-squares
solution to minimize § (7 £y )

1=1
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a0
100
150

100 200 300 400

-0.00310695 -0.0025646 296584
F= | -0.028094 -0.00771621 56.3813
13.1905 -29.2007 -9999.79

http://www.cse.psu.edu/~rcollins/CSE486/lecturel9 6pp.pdf
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=== Example ctd.
':_.._: g :_.".-= u'Fu = 0 — Fu’=I’, where I’ is epipolar line associated to u.
—— ~/ N
" -0.00310695 -0.0025646 2.96584 | 343.53
F= | -0.028094 -0.00771621 56.3813 |221.70
13.1905 -29.2007 -9999.79 PS 1.0 )

-265.1531

normalize so sum of squares *
of first two terms 1s 1 (optional)

refers to normal form of line:
rho = x cos(phi) +y sin(phi)

http://www.cse.psu.edu/~rcollins/CSE486/lecturel9 6pp.pdf



Presenter
Presentation Notes
Why normalization: look at line equation: rho = xcos(phi)+ysin(phi) -> cos2 + sin2 = 1 -> normal form of line


s = . |

= Example: Left to Right

= —

| —— - ~ ~

= -0.00310695 -0.0025646 2.96584 | 343.53

F= | -0.028094 -0.00771621 56.3813 |221.70

13.1905 -29.2007 -9999.79 1.0
. A -

0.0295

0.9996
-265.1531

x=3435300 y=221.7005

http://www.cse.psu.edu/~rcollins/CSE486/lecturel9 6pp.pdf




S — 3 -
= = Example: Right to Left
E .‘“.a
——— b
™ e S ( 205.5526 80.5 1.0)| -0.00310695 -0.0025646 2.96584
-0.028094 -0.00771621 56.3813
13.1905 -29.2007 -9999.79
o

L=(0.3211 -0.9470 -151.39)

x= 205.5526 y=80.5000

http://www.cse.psu.edu/~rcollins/CSE486/lecturel9 6pp.pdf
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Example: Epipoles?

where 1s the epipole?

F*e, =0
100

150 vector 1 the right

nullspace of matrix F

A0

0 . However, due to noise.
400 2= .ot wded . | .

wf T fpmes—s 1 oae—o I may not be singular.
500 = So mstead, next best

S50

thing 1s eigenvector
associated with smallest
eigenvalue of F

http://www.cse.psu.edu/~rcollins/CSE486/lecturel9 6pp.pdf
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Example: Epipoles?

AfH

#

T r—

== [u.d] = e1gs(F” * F)

u= d=10e8*
-0.0013 0.2586 |-0.9660 -1.0000 0 0
0.0029 -0.9660 |-0.2584 0 -0.0000 0
1.0000 0.0032 |-0.0005 0 0 -0.0000

eigenvector associated with smallest eigenvalue

=>=>uu=u(:,3)
uu= ( -0.9660 -0.2586 -0.0005)

=>uu/uu(3) :to get pixel coords
(1861.02 49821 1.0)

EE® D

http://www.cse.psu.edu/~rcollins/CSE486/lecturel9 6pp.pdf




Summary: Properties of the Fundamental matrix

F is a rank 2 homogeneous matrix with 7 degrees
of freedom.

Point correspondence:

if x and x’ are corresponding image points, then
x'TFx = 0.

Epipolar lines:

¢ I' =Fx is the epipolar line corresponding to x.

o 1=FTx' is the epipolar line corresponding to x'.

Epipoles:
¢ Fe = 0.

o Fle = 0.

Computation from camera matrices P, P':
P=K[I|0], P =K[R|t], F=K~T[t]xRK™!
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