Sources, shading and photometric stereo
 F\&P Ch 5 (old), Ch 2 (new)

Guido Gerig
 CS 6643, Spring 2016

Credits: modified from original slides by David A. Forsyth plus modifications by Marc Pollefeys, Materials from Ohad Ben-Shahar, CS 202-1-5261, http://www.cs.bgu.ac.il/~ben-shahar/

Shape from Shading

Courtesy Ohad Ben-Shahar, BGU, http://www.cs.bgu.ac.il/~ben-shahar/

Shape from Shading

Courtesy Ohad Ben-Shahar, BGU, http://www.cs.bgu.ac.il/~ben-shahar/

Shape from Shading

Inverting the image formation process

Image formation = "Shading from shape" (and light sources)
Courtesy Ohad Ben-Shahar, BGU, http://www.cs.bgu.ac.il/~ben-shahar/

Shape from Shading

Image formation

Courtesy Ohad Ben-Shahar, BGU, http://www.cs.bgu.ac.il/~ben-shahar/

Shape from Shading

Polar representation of directions

Courtesy Ohad Ben-Shahar, BGU, http://www.cs.bgu.ac.il/~ben-shahar/

Shape from Shading

The Bidirectional Reflectance Distribution Function (BRDF)

$$
f_{\lambda}\left(\phi_{i}, \theta_{i} ; \phi_{r}, \theta_{r}\right)=\frac{L_{\lambda}\left(\phi_{r}, \theta_{r}\right)}{E_{\lambda}\left(\phi_{i}, \theta_{i}\right)}
$$

Helmholtz's reciprocity

$$
f\left(\phi_{i}, \theta_{i} ; \phi_{r}, \theta_{r}\right)=f\left(\phi_{r}, \theta_{r} ; \phi_{i}, \theta_{i}\right)
$$

Isotropic materials:

$$
f\left(\phi_{i}, \theta_{i} ; \phi_{r}, \theta_{r}\right)=f\left(\phi_{i}-\phi_{r}, \theta_{i}, \theta_{r}\right)
$$

Courtesy Ohad Ben-Shahar, BGU, http://www.cs.bgu.ac.il/~ben-shahar/

Shape from Shading

Total surface reflection

$$
L\left(\phi_{r}, \theta_{r}\right)=\int_{\omega} f\left(\phi_{i}, \theta_{i} ; \phi_{r}, \theta_{r}\right) \cdot E\left(\phi_{i}, \theta_{i}\right) \cos \theta d \omega
$$

Courtesy Ohad Ben-Shahar, BGU, http://www.cs.bgu.ac.il/~ben-shahar/

Shape from Shading

Total surface reflection

$$
L\left(\phi_{r}, \theta_{r}\right)=\int_{-\pi}^{\pi \pi / 2} \int_{0}^{\pi / 2} f\left(\phi_{i}, \theta_{i} ; \phi_{r}, \theta_{r}\right) \cdot E\left(\phi_{i}, \theta_{i}\right) \cdot \sin \theta_{i} \cdot \cos \theta_{i} \cdot \delta \theta_{i} \delta \phi_{i}
$$

Courtesy Ohad Ben-Shahar, BGU, http://www.cs.bgu.ac.il/~ben-shahar/

Shape from Shading

Mirrored (perfectly secular) surfaces
$f_{S}\left(\phi_{i}, \theta_{i} ; \phi_{r}, \theta_{r}\right)=\frac{\delta\left(\theta_{r}-\theta_{i}\right) \delta\left(\phi_{r}-\phi_{i}-\pi\right)}{\sin \theta_{i} \cos \theta_{i}}$

Courtesy Ohad Ben-Shahar, BGU, http://www.cs.bgu.ac.il/~ben-shahar/

Shape from Shading

Point light source from direction $\left(\phi_{L}, \theta_{L}\right)$

$$
E\left(\phi_{i}, \theta_{i}\right)=E \cdot \frac{\delta\left(\theta_{L}-\theta_{i}\right) \cdot \delta\left(\phi_{L}-\phi_{i}\right)}{\sin \theta_{L}}
$$

Courtesy Ohad Ben-Shahar, BGU, http://www.cs.bgu.ac.il/~ben-shahar/

Shape from Shading

Surface brightness - appearance in the Lambertian case and point light source

$$
\begin{gathered}
f_{L}\left(\phi_{i}, \theta_{i} ; \phi_{r}, \theta_{r}\right)=\rho \frac{1}{\pi} \\
\left.I(x, y) \propto L\left(\phi_{i}, \theta_{i}\right)=\frac{\delta\left(\theta_{L}-\theta_{i}\right) \delta\left(\phi_{L}-\phi_{i}\right)}{\sin \theta_{L}}\right)=\int_{-\pi}^{\pi} \int_{0}^{\pi / 2} f\left(\phi_{i}, \theta_{i} ; \phi_{r}, \theta_{r}\right) \cdot E\left(\phi_{i}, \theta_{i}\right) \cdot \sin \theta_{i} \cdot \cos \theta_{i} \cdot \delta \theta_{i} \delta \phi_{i}
\end{gathered}
$$

$L=\rho \frac{1}{\pi} E \cos \theta_{L} \propto \rho(\hat{N} \cdot \hat{L})$

Courtesy Ohad Ben-Shahar, BGU, http://www.cs.bgu.ac.il/~ben-shahar/

Shape from Shading

Authors: Emmanuel Prados and Olivier Faugeras

CVPR'2005, International Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, June 2005.

a)

b)

a) Synthetic image generated from the classical Mozart's face [Zhang-Tsai-etal:99]; b) reconstructed surface from a) by new algorithm; c) real image of a face; d)-e) reconstructed surface from c) by new algorithm.

Photometric stereo

- Assume:
- a local shading model
- a set of point sources that are infinitely distant
- a set of pictures of an object, obtained in exactly the same camera/object configuration but using different sources
- A Lambertian object (or the specular component has been identified and removed)

Photometric Stereo Christopher Bireley

Bandage Dog

Imaging Setup

Preprocessing

- Remove background isolate dog
- Filter with NL Means

Photometric Stereo Christopher Bireley

Albedo image
Surface Normals

3D mesh

