Optical Flow II

Guido Gerig
 CS 6643, Spring 2016

(credits: Pollefeys Comp 256, UNC, Trucco \& Verri, Chapter 8, R. Szelisky, CS 223 Fall 2005)

Material

- R. Szelisky Computer Vision: Chapter 7.17.2, Chapter 8
- Trucco \& Verri Chapter 8 (handout, pdf)
- Hand-written notes G. Gerig (pdf)
- Horn \& Schunck Chapter 9
- Pollefeys CV course (ETH/UNC)
- Richard Szeliski, CS223B Fall 2005

Structure from Motion?

- Known: optical flow (instantaneous velocity)
- Motion of camera / object?

Structure from Motion?

Optical Flow

- Brightness Constancy
- The Aperture problem
- Regularization
- Lucas-Kanade
- Coarse-to-fine
- Parametric motion models
- Direct depth
- SSD tracking
- Robust flow
- Bayesian flow

Motion Field: Perspective Projection

Image velocity of a point moving in the scene

Perspective projection: $\frac{1}{f^{\prime}} \mathbf{r}_{i}=\frac{\mathbf{r}_{o}}{\mathbf{r}_{o} \cdot \hat{\mathbf{Z}}}=\frac{\mathbf{r}_{o}}{Z}$ Derivation (notes GG)
Motion field

$$
\mathbf{v}_{i}=\frac{d \mathbf{r}_{i}}{d t}=f^{\prime} \frac{\left(\mathbf{r}_{o} \cdot \mathbf{Z}\right) \mathbf{v}_{o}-\left(\mathbf{v}_{o} \cdot \mathbf{Z}\right) \mathbf{r}_{o}}{\left(\mathbf{r}_{o} \cdot \mathbf{Z}\right)^{2}}=f^{\prime} \frac{\left(\mathbf{r}_{o} \times \mathbf{v}_{o}\right) \times \mathbf{Z}}{\left(\mathbf{r}_{o} \cdot \mathbf{Z}\right)^{2}}
$$

Motion Field: Perspective Projection

Image velocity of a point moving in the scene

Motion field

$$
\mathbf{v}_{i}=\frac{d \mathbf{r}_{i}}{d t}=f^{\prime} \frac{\left(\mathbf{r}_{o} \cdot \hat{\mathbf{Z}}\right) \mathbf{v}_{o}-\left(\mathbf{v}_{o} \cdot \hat{\mathbf{Z}}\right) \mathbf{r}_{o}}{\left(\mathbf{r}_{o} \cdot \hat{\mathbf{Z}}\right)^{2}}=f^{\prime} \frac{\left(\mathbf{r}_{o} \times \mathbf{v}_{o}\right) \times \hat{\mathbf{Z}}}{\left(\mathbf{r}_{o} \cdot \hat{\mathbf{Z}}\right)^{2}}
$$

Discussion: \mathbf{v}_{i} is orthogonal to $\left(\mathbf{r}_{o} \times \mathbf{v}_{o}\right)$ and $\hat{Z} \rightarrow$ lies in image plane

Motion Field: Perspective Projection

Motion field

$$
\mathbf{v}_{i}=\frac{d \mathbf{r}_{i}}{d t}=f^{\prime} \frac{\left(\mathbf{r}_{o} \cdot \hat{\mathbf{Z}}\right) \mathbf{v}_{o}-\left(\mathbf{v}_{o} \cdot \hat{\mathbf{Z}}\right) \mathbf{r}_{o}}{\left(\mathbf{r}_{o} \cdot \hat{\mathbf{Z}}\right)^{2}}=f^{\prime} \frac{\left(\mathbf{r}_{o} \times \mathbf{v}_{o}\right) \times \hat{\mathbf{Z}}}{\left(\mathbf{r}_{o} \cdot \hat{\mathbf{Z}}\right)^{2}}
$$

Set $\widehat{Z}=\left(\begin{array}{l}\mathbf{0} \\ \mathbf{0} \\ \mathbf{1}\end{array}\right)$ and do the math (see handwritten notes G. Gerig):

$$
\begin{aligned}
& v_{i x}=\frac{v_{o x} f}{Z}-\frac{x v_{o z}}{Z} \\
& v_{i y}=\frac{v_{o y} f}{Z}-\frac{y v_{o z}}{Z}
\end{aligned}
$$

Motion Field: Perspective Projection

$$
\begin{aligned}
& v_{i x}=\frac{v_{o x} f}{Z}-\frac{x v_{o z}}{Z} \\
& v_{i y}=\frac{v_{o y} f}{Z}-\frac{y v_{o z}}{Z}
\end{aligned}
$$

Discussion:
\square Component of optical flow in image only due to v_{x} and v_{y}, object motion parallel to image plane.

\squareComponent of optical flow in image only due to v_{z}, object motion towards/away from camera.

Motion Field: Perspective Projection

$$
\begin{aligned}
& v_{i x}=\frac{v_{o x} f}{Z}-\frac{x v_{o z}}{Z} \\
& v_{i y}=\frac{v_{o y} f}{Z}-\frac{y v_{o z}}{Z}
\end{aligned}
$$

Reformulate: perspective projection of velocity:

$$
\left[\begin{array}{l}
v_{i x} \\
v_{i y}
\end{array}\right]=\left[\begin{array}{lll}
f & 0 & -x \\
0 & f & -y
\end{array}\right] \frac{1}{Z}\left[\begin{array}{l}
v_{o x} \\
v_{o y} \\
v_{o z}
\end{array}\right]
$$

Rigid pose estimation

- Head pose model: 6 DOF

Please note notation: T stands for translational motion of object, Ω for rotational component.

Optic flow for rigid motion

- 3-D velocity:

$$
\begin{aligned}
V= & T+\Omega \times P=T-\hat{\mathbf{P}} \Omega=\left[\begin{array}{ll}
\mathbf{I} & -\hat{\mathbf{P}}\left[\begin{array}{l}
T \\
\Omega
\end{array}\right] \\
& {[V]\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & Z & -Y
\end{array}\right]}
\end{array} \begin{array}{c}
\hat{\mathbf{P}}=\left[\mathbf{P}_{x}\right] \\
\text { (skew-sym.) }
\end{array}\right.
\end{aligned}
$$

Optic flow for rigid motion

- Perspective projection

$$
\left[\begin{array}{l}
v_{i x} \\
v_{i y}
\end{array}\right]=\left[\begin{array}{lll}
f & 0 & -x \\
0 & f & -y
\end{array}\right] \frac{1}{Z}\left[\begin{array}{l}
v_{o x} \\
v_{o y} \\
v_{o z}
\end{array}\right]
$$

Optic flow for rigid motion

- Combine

$$
\begin{gathered}
V=\left[\begin{array}{l}
V_{x} \\
V_{y} \\
V_{z}
\end{array}\right]=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & Z & -Y \\
0 & 1 & 0 & -Z & 0 & X \\
0 & 0 & 1 & Y & -X & 0
\end{array}\right]\left[\begin{array}{c}
T \\
\Omega
\end{array}\right] \\
{\left[\begin{array}{c}
v_{i x} \\
v_{i y}
\end{array}\right]=\left[\begin{array}{lll}
f & 0 & -x \\
0 & f & -y
\end{array}\right] \frac{1}{Z}\left[\begin{array}{c}
v_{o x} \\
v_{o y} \\
v_{o z}
\end{array}\right]}
\end{gathered}
$$

Optic flow for rigid motion

- Rigid Motion (for small v): $\left[\begin{array}{l}v_{x} \\ v_{y}\end{array}\right]=\mathbf{H}\left[\begin{array}{l}T \\ \Omega\end{array}\right]$

$$
\begin{aligned}
& \mathbf{H}=\left[\begin{array}{lll}
f & 0 & -x \\
0 & f & -y
\end{array}\right] \frac{1}{Z^{\prime}}\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & Z & -Y \\
0 & 1 & 0 & -Z & 0 & X \\
0 & 0 & 1 & Y & -X & 0
\end{array}\right] \\
& \begin{array}{c}
\text { Perspective projection } \\
\text { of } 3 \text {-D velocity }
\end{array} \text { * velocity at point } \mathrm{P} \\
& \text { (from }\left[\begin{array}{l}
\left.\left[\begin{array}{l}
7 \\
\Omega
\end{array}\right]\right)
\end{array}\right.
\end{aligned}
$$

Hard to solve with just optic flow vectors! (but see Horn 17.317.5).

* Convert from scene to image: $\bar{p}=f \frac{\bar{P}}{Z}$

Optic Flow for rigid motion

$$
\left[\begin{array}{l}
v_{x} \\
v_{y}
\end{array}\right]=\mathbf{H}\left[\begin{array}{l}
T \\
\Omega
\end{array}\right]
$$

$$
\begin{aligned}
\mathbf{H} & =\left[\begin{array}{ccc}
f & 0 & -x \\
0 & f & -y
\end{array}\right] \frac{1}{Z^{\prime}}\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & Z & -Y \\
0 & 1 & 0 & -Z & 0 & X \\
0 & 0 & 1 & Y & -X & 0
\end{array}\right] \\
v_{x} & =\frac{T_{z} x-T_{x} f}{Z}-\omega_{y} f+\omega_{z} y+\frac{\omega_{x} x y}{f}-\frac{\omega_{x} x^{2}}{f}
\end{aligned}
$$

$$
v_{y}=\frac{T_{z} y-T_{y} f}{Z}+\omega_{x} f-\omega_{z} x-\frac{\omega_{y} x y}{f}+\frac{\omega_{x} y^{2}}{f}
$$

Flow field of rigid motion

In components, and using (8.5), (8.6) read

$$
\begin{aligned}
& v_{x}=\frac{T_{z} x-T_{x} f}{Z}-\omega_{y} f+\omega_{z} y+\frac{\omega_{x} x y}{f}-\frac{\omega_{y} x^{2}}{f} \\
& v_{y}=\frac{T_{z} y-T_{y} f}{Z}+\omega_{x} f-\omega_{z} x-\frac{\omega_{y} x y}{f}+\frac{\omega_{x} y^{2}}{f} .
\end{aligned}
$$

Notice that the motion field is the sum of two components, one of which depends translation only, the other on rotation only. In particular, the translational compone of the motion field are

$$
\begin{aligned}
& v_{x}^{T}=\frac{T_{z} x-T_{x} f}{Z} \\
& v_{y}^{T}=\frac{T_{z} y-T_{y} f}{Z}
\end{aligned}
$$

and the rotational components are

$$
\begin{aligned}
& v_{x}^{\omega}=-\omega_{y} f+\omega_{z} y+\frac{\omega_{x} x y}{f}-\frac{\omega_{y} x^{2}}{f} \\
& v_{y}^{\omega}=\omega_{x} f-\omega_{z} x-\frac{\omega_{y} x y}{f}+\frac{\omega_{x} y^{2}}{f}
\end{aligned}
$$

Flow field of rigid motion

Notice that the motion field is the sum of two components, one of which depends translation only, the other on rotation only. In particular, the translational compone of the motion field are

$$
\begin{aligned}
& v_{x}^{T}=\frac{T_{z} x-T_{x} f}{Z} \\
& v_{y}^{T}=\frac{T_{z} y-T_{y} f}{Z}
\end{aligned}
$$

and the rotational components are

$$
\begin{aligned}
& v_{x}^{\omega}=-\omega_{y} f+\omega_{z} y+\frac{\omega_{x} x y}{f}-\frac{\omega_{y} x^{2}}{f} \\
& v_{y}^{\omega}=\omega_{x} f-\omega_{z} x-\frac{\omega_{y} x y}{f}+\frac{\omega_{x} y^{2}}{f}
\end{aligned}
$$

Discussion:

- Motion field of translational component depends on T and depth Z. For increasing Z, velocity becomes smaller.
- Motion field that depends on angular velocity does NOT carry information on depth Z!

Special Case: Pure Translation

$$
\begin{array}{lll}
v_{x}=\frac{T_{z} x-T_{x} f}{Z} & \begin{array}{l}
\text { Choose } \mathrm{x}_{0} \\
\text { and } \mathrm{y}_{0} \\
\text { so that } \mathrm{v}
\end{array} & \begin{array}{l}
x_{0}=f T_{x} / T_{z} \\
y_{0}=f T_{y} / T_{z},
\end{array} \\
v_{y}=\frac{T_{z} y-T_{y} f}{Z} & \text { becomes 0 }
\end{array}
$$

Says that motion field of a pure translation is radial, it consists of vectors radiating from a common origin $\mathrm{p}_{0}=\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$, which is the vanishing point.

Trucco \& Verri p. 184/185

Special Case: Pure Translation

(a)

(b)

(c)

Figure 8.4 The three types of motion field generated by translational motion. The filled square marks the instantaneous epipole.

Focus of

expansion/contraction:

$$
\begin{aligned}
& x_{0}=f T_{x} / T_{z} \\
& y_{0}=f T_{y} / T_{z}
\end{aligned}
$$

Trucco \& Verri p. 184/185 See also F\&P Chapter 10.1.3 p. 218

Example: forward motion

courtesy of Andrew Zisserman

Example: forward motion

courtesy of Andrew Zisserman

Moving Plane (Trucco\&Verri p.187)

$$
\begin{aligned}
& v_{x}=\frac{1}{f d}\left(a_{1} x^{2}+a_{2} x y+a_{3} f x+a_{4} f y+a_{5} f^{2}\right) \\
& v_{y}=\frac{1}{f d}\left(a_{1} x y+a_{2} y^{2}+a_{6} f y+a_{7} f x+a_{8} f^{2}\right) \\
& a_{1}=-d \omega_{y}+T_{z} n_{x}, \quad a_{2}=d \omega_{x}+T_{z} n_{y}, \\
& a_{3}=T_{z} n_{z}-T_{x} n_{x}, \quad a_{4}=d \omega_{z}-T_{x} n_{y}, \\
& a_{5}=-d \omega_{y}-T_{x} n_{z}, \quad a_{6}=T_{z} n_{z}-T_{y} n_{y}, \\
& a_{7}=-d \omega_{z}-T_{y} n_{x}, \quad a_{8}=d \omega_{x}-T_{y} n_{z} .
\end{aligned}
$$

- Motion field of planar surface is quadratic polynomial in ($\mathrm{f}, \mathrm{x}, \mathrm{y}$)
- Same motion field produced by two different planes w. two different 3D motions
- Not unique: co-planar set of points (remember 8 point algorithm for calibration)

Application (Szeklisky): Motion representations

- How can we describe this scene?

Optical Flow Field

Layered motion

- Break image sequence up into "layers":

- Describe each layer's motion

Results

t $\in \in \in t \in t \in t \in t \in t+t$ thetttet						
Ctetettettetheththerthtthetter						

Additional Slides, not

 discussed in class.
Direct Motion Estimation

- One equation per pixel:

$$
\left[-\frac{d I}{d t}\right]=\left[\begin{array}{ll}
\frac{d I}{d x} & \frac{d I}{d y}
\end{array}\right]\left[\begin{array}{ccc}
f & 0 & -x \\
0 & f & -y
\end{array}\right] \frac{1}{Z^{\prime}}\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & Z & -y Z^{\prime} / f \\
0 & 1 & 0 & -Z & 0 & x Z^{\prime} / f \\
0 & 0 & 1 & y Z^{\prime} / f & -x Z^{\prime} / f & 0
\end{array}\right]\left[\begin{array}{c}
\mathrm{T} \\
\Omega
\end{array}\right]
$$

- Still hard!
- Z unknown; assume surface shape...
- Negahdaripour \& Horn - Planar
- Black and Yacoob - Affine
- Basu and Pentland; Bregler and Malik - Ellipsoidal
- Essa et al. - Polygonal approximation

Layers for video summarization

Frame 50

Frame 80

Background scene (players removed)

Complete synopsis of the video

Background modeling (MPEG-4)

- Convert masked images into a background sprite for layered video coding

What are layers?

- [Wang \& Adelson, 1994]
- intensities
- alphas
- velocities

Intensity map

Intenaity map

Frame 1

Alpha map

Alpha map

Frame 2

Velasity map

$$
\begin{array}{|ccc|}
\hline \rightarrow & \rightarrow & \cdots \\
\rightarrow & \rightarrow & \cdots \\
\rightarrow & - & \cdots \\
\rightarrow & \rightarrow & \cdots \\
\hline
\end{array}
$$

Frame a

How do we form them?

(a)

(b)

(c)

Figure 7: (a) Frame 1 warped with an affine transformation to align the flowerbed region with that of frame 15. (b) Original frame 15 used as reference. (c) Frame 30 warped with an affine transformation to align the flowerbed region with that of frame 15.

Figure 8: Accumulation of the flowerbed. Tmage intensities are obtained from a temporal median operation on the motion compensated images. Only the regions belonging to the flowerbed layer is accumulated in this image. Note also occluded regions are correctly recovered by accumulating data over many frames.

